2021-2022学年江苏省泰兴市济川中学中考数学最后冲刺模拟试卷含解析
展开
这是一份2021-2022学年江苏省泰兴市济川中学中考数学最后冲刺模拟试卷含解析,共32页。试卷主要包含了近似数精确到,关于x的方程等内容,欢迎下载使用。
2021-2022中考数学模拟试卷
注意事项:
1. 答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。
2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。
3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。
4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。
一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)
1.下列计算正确的是( )
A.2x2+3x2=5x4 B.2x2﹣3x2=﹣1
C.2x2÷3x2=x2 D.2x2•3x2=6x4
2.﹣3的相反数是( )
A. B. C. D.
3.如图,在⊙O中,点P是弦AB的中点,CD是过点P的直径,则下列结论:①AB⊥CD; ②∠AOB=4∠ACD;③弧AD=弧BD;④PO=PD,其中正确的个数是( )
A.4 B.1 C.2 D.3
4.如图,比例规是一种画图工具,它由长度相等的两脚AC和BD交叉构成,利用它可以把线段按一定的比例伸长或缩短.如果把比例规的两脚合上,使螺丝钉固定在刻度3的地方(即同时使OA=3OC,OB=3OD),然后张开两脚,使A,B两个尖端分别在线段a的两个端点上,当CD=1.8cm时,则AB的长为( )
A.7.2 cm B.5.4 cm C.3.6 cm D.0.6 cm
5.(﹣1)0+|﹣1|=( )
A.2 B.1 C.0 D.﹣1
6.近似数精确到( )
A.十分位 B.个位 C.十位 D.百位
7.关于x的方程(a﹣1)x|a|+1﹣3x+2=0是一元二次方程,则( )
A.a≠±1 B.a=1 C.a=﹣1 D.a=±1
8.某射手在同一条件下进行射击,结果如下表所示:
射击次数(n)
10
20
50
100
200
500
……
击中靶心次数(m)
8
19
44
92
178
451
……
击中靶心频率()
0.80
0.95
0.88
0.92
0.89
0.90
……
由此表推断这个射手射击1次,击中靶心的概率是( )
A.0.6 B.0.7 C.0.8 D.0.9
9.如图,△ABC中,AD⊥BC,AB=AC,∠BAD=30°,且AD=AE,则∠EDC等于( )
A.10° B.12.5° C.15° D.20°
10.如图,在△ABC中,点D,E分别在边AB,AC上,且,则的值为
A. B. C. D.
11.甲乙两同学均从同一本书的第一页开始,按照顺序逐页依次在每页上写一个数,甲同学在第1页写1,第2页写3,第3页写1,……,每一页写的数均比前一页写的数多2;乙同学在第1页写1,第2页写6,第3页写11,……,每一页写的数均比前一页写的数多1.若甲同学在某一页写的数为49,则乙同学在这一页写的数为( )
A.116 B.120 C.121 D.126
12.已知一次函数y=ax﹣x﹣a+1(a为常数),则其函数图象一定过象限( )
A.一、二 B.二、三 C.三、四 D.一、四
二、填空题:(本大题共6个小题,每小题4分,共24分.)
13.如图,已知点A(4,0),O为坐标原点,P是线段OA上任意一点(不含端点O、A),过P、O两点的二次函数y1和过P、A两点的二次函数y2的图象开口均向下,它们的顶点分别为B、C,射线OB与AC相交于点D.当OD=AD=3时,这两个二次函数的最大值之和等于______.
14.在数学课上,老师提出如下问题:尺规作图:确定图1中所在圆的圆心.
已知:.
求作:所在圆的圆心.
曈曈的作法如下:如图2,
(1)在上任意取一点,分别连接,;
(2)分别作弦,的垂直平分线,两条垂直平分线交于点.点就是所在圆的圆心.
老师说:“曈曈的作法正确.”
请你回答:曈曈的作图依据是_____.
15.如图,在平面直角坐标系中,已知点A(1,1),以点O为旋转中心,将点A逆时针旋转到点B的位置,则的长为_____.
16.如图,中,AC=3,BC=4,,P为AB上一点,且AP=2BP,若点A绕点C顺时针旋转60°,则点P随之运动的路径长是_________
17.如图,在四边形ABCD中,,AC、BD相交于点E,若,则______.
18.对于实数a,b,我们定义符号max{a,b}的意义为:当a≥b时,max{a,b}=a;当a<b时,max{a,b]=b;如:max{4,﹣2}=4,max{3,3}=3,若关于x的函数为y=max{x+3,﹣x+1},则该函数的最小值是_____.
三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.
19.(6分)如图,热气球的探测器显示,从热气球 A 看一栋髙楼顶部 B 的仰角为 30°,看这栋高楼底部 C 的 俯角为 60°,热气球 A 与高楼的水平距离为 120m,求这栋高楼 BC 的高度.
20.(6分)某工厂计划生产,两种产品共10件,其生产成本和利润如下表.
种产品
种产品
成本(万元件)
2
5
利润(万元件)
1
3
(1)若工厂计划获利14万元,问,两种产品应分别生产多少件?
(2)若工厂计划投入资金不多于44万元,且获利多于22万元,问工厂有哪几种生产方案?
21.(6分)已知:如图,在平面直角坐标系中,O为坐标原点,△OAB的顶点A、B的坐标分别是A(0,5),B(3,1),过点B画BC⊥AB交直线于点C,连结AC,以点A为圆心,AC为半径画弧交x轴负半轴于点D,连结AD、CD.
(1)求证:△ABC≌△AOD.
(2)设△ACD的面积为,求关于的函数关系式.
(3)若四边形ABCD恰有一组对边平行,求的值.
22.(8分)观察下列等式:
①1×5+4=32;
②2×6+4=42;
③3×7+4=52;
…
(1)按照上面的规律,写出第⑥个等式:_____;
(2)模仿上面的方法,写出下面等式的左边:_____=502;
(3)按照上面的规律,写出第n个等式,并证明其成立.
23.(8分)如图,分别与相切于点,点在上,且,,垂足为.
求证:;若的半径,,求的长
24.(10分)如图,在矩形ABCD中,AB=3,AD=4,P沿射线BD运动,连接AP,将线段AP绕点P顺时针旋转90°得线段PQ.
(1)当点Q落到AD上时,∠PAB=____°,PA=_____,长为_____;
(2)当AP⊥BD时,记此时点P为P0,点Q为Q0,移动点P的位置,求∠QQ0D的大小;
(3)在点P运动中,当以点Q为圆心,BP为半径的圆与直线BD相切时,求BP的长度;
(4)点P在线段BD上,由B向D运动过程(包含B、D两点)中,求CQ的取值范围,直接写出结果.
25.(10分)如图,在中,,是边上的高线,平分交于点,经过,两点的交于点,交于点,为的直径.
(1)求证:是的切线;
(2)当,时,求的半径.
26.(12分)已知△ABC中,D为AB边上任意一点,DF∥AC交BC于F,AE∥BC,∠CDE=∠ABC=∠ACB=α,
(1)如图1所示,当α=60°时,求证:△DCE是等边三角形;
(2)如图2所示,当α=45°时,求证:=;
(3)如图3所示,当α为任意锐角时,请直接写出线段CE与DE的数量关系:=_____.
27.(12分)(问题情境)
张老师给爱好学习的小军和小俊提出这样的一个问题:如图1,在△ABC中,AB=AC,点P为边BC上任一点,过点P作PD⊥AB,PE⊥AC,垂足分别为D,E,过点C作CF⊥AB,垂足为F,求证:PD+PE=CF.
小军的证明思路是:如图2,连接AP,由△ABP与△ACP面积之和等于△ABC的面积可以证得:PD+PE=CF.
小俊的证明思路是:如图2,过点P作PG⊥CF,垂足为G,可以证得:PD=GF,PE=CG,则PD+PE=CF.
[变式探究]
如图3,当点P在BC延长线上时,其余条件不变,求证:PD﹣PE=CF;
请运用上述解答中所积累的经验和方法完成下列两题:
[结论运用]
如图4,将矩形ABCD沿EF折叠,使点D落在点B上,点C落在点C′处,点P为折痕EF上的任一点,过点P作PG⊥BE、PH⊥BC,垂足分别为G、H,若AD=8,CF=3,求PG+PH的值;
[迁移拓展]
图5是一个航模的截面示意图.在四边形ABCD中,E为AB边上的一点,ED⊥AD,EC⊥CB,垂足分别为D、C,且AD•CE=DE•BC,AB=2dm,AD=3dm,BD=dm.M、N分别为AE、BE的中点,连接DM、CN,求△DEM与△CEN的周长之和.
参考答案
一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)
1、D
【解析】
先利用合并同类项法则,单项式除以单项式,以及单项式乘以单项式法则计算即可得到结果.
【详解】
A、2x2+3x2=5x2,不符合题意;
B、2x2﹣3x2=﹣x2,不符合题意;
C、2x2÷3x2=,不符合题意;
D、2x23x2=6x4,符合题意,
故选:D.
【点睛】
本题主要考查了合并同类项法则,单项式除以单项式,单项式乘以单项式法则,正确掌握运算法则是解题关键.
2、D
【解析】
相反数的定义是:如果两个数只有符号不同,我们称其中一个数为另一个数的相反数,特别地,1的相反数还是1.
【详解】
根据相反数的定义可得:-3的相反数是3.故选D.
【点睛】
本题考查相反数,题目简单,熟记定义是关键.
3、D
【解析】
根据垂径定理,圆周角的性质定理即可作出判断.
【详解】
∵P是弦AB的中点,CD是过点P的直径.
∴AB⊥CD,弧AD=弧BD,故①正确,③正确;
∠AOB=2∠AOD=4∠ACD,故②正确.
P是OD上的任意一点,因而④不一定正确.
故正确的是:①②③.
故选:D.
【点睛】
本题主要考查了垂径定理,圆周角定理,正确理解定理是关键.平分弦(不是直径)的直径垂直与这条弦,并且平分这条弦所对的两段弧;同圆或等圆中,圆周角等于它所对的弧上的圆心角的一半.
4、B
【解析】
【分析】由已知可证△ABO∽CDO,故 ,即.
【详解】由已知可得,△ABO∽CDO,
所以, ,
所以,,
所以,AB=5.4
故选B
【点睛】本题考核知识点:相似三角形. 解题关键点:熟记相似三角形的判定和性质.
5、A
【解析】
根据绝对值和数的0次幂的概念作答即可.
【详解】
原式=1+1=2
故答案为:A.
【点睛】
本题考查的知识点是绝对值和数的0次幂,解题关键是熟记数的0次幂为1.
6、C
【解析】
根据近似数的精确度:近似数5.0×102精确到十位.
故选C.
考点:近似数和有效数字
7、C
【解析】
根据一元一次方程的定义即可求出答案.
【详解】
由题意可知:,解得a=−1
故选C.
【点睛】
本题考查一元二次方程的定义,解题的关键是熟练运用一元二次方程的定义,本题属于基础题型.
8、D
【解析】
观察表格的数据可以得到击中靶心的频率,然后用频率估计概率即可求解.
【详解】
依题意得击中靶心频率为0.90,
估计这名射手射击一次,击中靶心的概率约为0.90.
故选:D.
【点睛】
此题主要考查了利用频率估计概率,首先通过实验得到事件的频率,然后用频率估计概率即可解决问题.
9、C
【解析】
试题分析:根据三角形的三线合一可求得∠DAC及∠ADE的度数,根据∠EDC=90°-∠ADE即可得到答案.
∵△ABC中,AD⊥BC,AB=AC,∠BAD=30°,
∴∠DAC=∠BAD=30°,
∵AD=AE(已知),
∴∠ADE=75°
∴∠EDC=90°-∠ADE=15°.
故选C.
考点:本题主要考查了等腰三角形的性质,三角形内角和定理
点评:解答本题的关键是掌握等腰三角形的顶角平分线、底边上的中线、底边上的高相互重合.
10、C
【解析】
∵,∠A=∠A,
∴△ABC∽△AED。∴。
∴。故选C。
11、C
【解析】
根据题意确定出甲乙两同学所写的数字,设甲所写的第n个数为49,根据规律确定出n的值,即可确定出乙在该页写的数.
【详解】
甲所写的数为 1,3,1,7,…,49,…;乙所写的数为 1,6,11,16,…,
设甲所写的第n个数为49,
根据题意得:49=1+(n﹣1)×2,
整理得:2(n﹣1)=48,即n﹣1=24,
解得:n=21,
则乙所写的第21个数为1+(21﹣1)×1=1+24×1=121,
故选:C.
【点睛】
考查了有理数的混合运算,弄清题中的规律是解本题的关键.
12、D
【解析】
分析:根据一次函数的图形与性质,由一次函数y=kx+b的系数k和b的符号,判断所过的象限即可.
详解:∵y=ax﹣x﹣a+1(a为常数),
∴y=(a-1)x-(a-1)
当a-1>0时,即a>1,此时函数的图像过一三四象限;
当a-1<0时,即a<1,此时函数的图像过一二四象限.
故其函数的图像一定过一四象限.
故选D.
点睛:此题主要考查了一次函数的图像与性质,利用一次函数的图像与性质的关系判断即可.
一次函数y=kx+b(k≠0,k、b为常数)的图像与性质:当k>0,b>0时,图像过一二三象限,y随x增大而增大;当k>0,b<0时,图像过一三四象限,y随x增大而增大;当k<0,b>0时,图像过一二四象限,y随x增大而减小;当k<0,b<0,图像过二三四象限,y随x增大而减小.
二、填空题:(本大题共6个小题,每小题4分,共24分.)
13、
【解析】
此题考查了二次函数的最值,勾股定理,等腰三角形的性质和判定的应用,题目比较好,但是有一定的难度,属于综合性试题.
【详解】
过B作BF⊥OA于F,过D作DE⊥OA于E,过C作CM⊥OA于M,则BF+CM是这两个二次函数的最大值之和,BF∥DE∥CM,求出AE=OE=2,DE= ,设P(2x,0),根据二次函数的对称性得出OF=PF=x,推出△OBF∽△ODE,△ACM∽△ADE,得出= ,代入求出BF和CM,相加即可求出答案.
过B作BF⊥OA于F,过D作DE⊥OA于E,过C作CM⊥OA于M,
∵BF⊥OA,DE⊥OA,CM⊥OA,
∴BF∥DE∥CM.
∵OD=AD=3,DE⊥OA,
∴OE=EA= OA=2,
由勾股定理得:DE= =5,设P(2x,0),根据二次函数的对称性得出OF=PF=x,
∵BF∥DE∥CM,
∴△OBF∽△ODE,△ACM∽△ADE,
∴,
∵AM=PM= (OA-OP)= (4-2x)=2-x,
即,
解得:
∴BF+CM= .
故答案为.
【点睛】
考核知识点:二次函数综合题.熟记性质,数形结合是关键.
14、①线段垂直平分线上的点到线段两端点的距离相等②圆的定义(到定点的距离等于定长的点的轨迹是圆)
【解析】
(1)在上任意取一点,分别连接,;
(2)分别作弦,的垂直平分线,两条垂直平分线交于点.点就是所在圆的圆心.
【详解】
解:根据线段的垂直平分线的性质定理可知:,
所以点是所在圆的圆心(理由①线段垂直平分线上的点到线段两端点的距离相等②圆的定义(到定点的距离等于定长的点的轨迹是圆):)
故答案为①线段垂直平分线上的点到线段两端点的距离相等②圆的定义(到定点的距离等于定长的点的轨迹是圆)
【点睛】
本题考查作图﹣复杂作图、线段的垂直平分线的性质等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.
15、.
【解析】
由点A(1,1),可得OA的长,点A在第一象限的角平分线上,可得∠AOB=45°,,再根据弧长公式计算即可.
【详解】
∵A(1,1),
∴OA=,点A在第一象限的角平分线上,
∵以点O为旋转中心,将点A逆时针旋转到点B的位置,
∴∠AOB=45°,
∴的长为=,
故答案为:.
【点睛】
本题考查坐标与图形变化——旋转,弧长公式,熟练掌握旋转的性质以及弧长公式是解题的关键.本题中求出OA=以及∠AOB=45°也是解题的关键.
16、
【解析】
作PD⊥BC,则点P运动的路径长是以点D为圆心,以PD为半径,圆心角为60°的一段圆弧,根据相似三角形的判定与性质求出PD的长,然后根据弧长公式求解即可.
【详解】
作PD⊥BC,则PD∥AC,
∴△PBD~△ABC,
∴ .
∵AC=3,BC=4,
∴AB=,
∵AP=2BP,
∴BP=,
∴,
∴点P运动的路径长=.
故答案为:.
【点睛】
本题考查了相似三角形的判定与性质,弧长的计算,根据相似三角形的判定与性质求出PD的长是解答本题的关键.
17、
【解析】
利用相似三角形的性质即可求解;
【详解】
解:∵ AB∥CD,
∴△AEB∽△CED,
∴ ,
∴ ,
故答案为 .
【点睛】
本题考查相似三角形的性质和判定,解题的关键是熟练掌握相似三角形的性质.
18、2
【解析】
试题分析:当x+3≥﹣x+1,
即:x≥﹣1时,y=x+3,
∴当x=﹣1时,ymin=2,
当x+3<﹣x+1,
即:x<﹣1时,y=﹣x+1,
∵x<﹣1,
∴﹣x>1,
∴﹣x+1>2,
∴y>2,
∴ymin=2,
三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.
19、这栋高楼的高度是
【解析】
过A作AD⊥BC,垂足为D,在直角△ABD与直角△ACD中,根据三角函数的定义求得BD和CD,再根据BC=BD+CD即可求解.
【详解】
过点A作AD⊥BC于点D,
依题意得,,,AD=120,
在Rt△ABD中,
∴,
在Rt△ADC中,
∴,
∴ ,
答:这栋高楼的高度是.
【点睛】
本题主要考查了解直角三角形的应用-仰角俯角问题,难度适中.对于一般三角形的计算,常用的方法是利用作高线转化为直角三角形的计算.
20、(1)生产产品8件,生产产品2件;(2)有两种方案:方案①,种产品2件,则种产品8件;方案②,种产品3件,则种产品7件.
【解析】
(1)设生产种产品件,则生产种产品件,根据“工厂计划获利14万元”列出方程即可得出结论;
(2)设生产产品件,则生产产品件,根据题意,列出一元一次不等式组,求出y的取值范围,即可求出方案.
【详解】
解:(1)设生产种产品件,则生产种产品件,
依题意得:,
解得: ,
则,
答:生产产品8件,生产产品2件;
(2)设生产产品件,则生产产品件
,
解得:.
因为为正整数,故或3;
答:共有两种方案:方案①,种产品2件,则种产品8件;方案②,种产品3件,则种产品7件.
【点睛】
此题考查的是一元一次方程的应用和一元一次不等式组的应用,掌握实际问题中的等量关系和不等关系是解决此题的关键.
21、(1)证明详见解析;(2)S=(m+1)2+(m>);(2)2或1.
【解析】
试题分析:(1)利用两点间的距离公式计算出AB=5,则AB=OA,则可根据“HL”证明△ABC≌△AOD;
(2)过点B作直线BE⊥直线y=﹣m于E,作AF⊥BE于F,如图,证明Rt△ABF∽Rt△BCE,利用相似比可得BC=(m+1),再在Rt△ACB中,由勾股定理得AC2=AB2+BC2=25+(m+1)2,然后证明△AOB∽△ACD,利用相似的性质得,而S△AOB=,于是可得S=(m+1)2+(m>);
(2)作BH⊥y轴于H,如图,分类讨论:当AB∥CD时,则∠ACD=∠CAB,由△AOB∽△ACD得∠ACD=∠AOB,所以∠CAB=∠AOB,利用三角函数得到tan∠AOB=2,tan∠ACB=,所以=2;当AD∥BC,则∠5=∠ACB,由△AOB∽△ACD得到∠4=∠5,则∠ACB=∠4,根据三角函数定义得到tan∠4=,tan∠ACB=,则=,然后分别解关于m的方程即可得到m的值.
试题解析:(1)证明:∵A(0,5),B(2,1),
∴AB==5,
∴AB=OA,
∵AB⊥BC,
∴∠ABC=90°,
在Rt△ABC和Rt△AOD中,
,
∴Rt△ABC≌Rt△AOD;
(2)解:过点B作直线BE⊥直线y=﹣m于E,作AF⊥BE于F,如图,∵∠1+∠2=90°,∠1+∠2=90°,
∴∠2=∠2,
∴Rt△ABF∽Rt△BCE,
∴,即,
∴BC=(m+1),
在Rt△ACB中,AC2=AB2+BC2=25+(m+1)2,
∵△ABC≌△AOD,
∴∠BAC=∠OAD,即∠4+∠OAC=∠OAC+∠5,
∴∠4=∠5,
而AO=AB,AD=AC,
∴△AOB∽△ACD,
∴=,
而S△AOB=×5×2=,
∴S=(m+1)2+(m>);
(2)作BH⊥y轴于H,如图,
当AB∥CD时,则∠ACD=∠CAB,
而△AOB∽△ACD,
∴∠ACD=∠AOB,
∴∠CAB=∠AOB,
而tan∠AOB==2,tan∠ACB===,
∴=2,解得m=1;
当AD∥BC,则∠5=∠ACB,
而△AOB∽△ACD,
∴∠4=∠5,
∴∠ACB=∠4,
而tan∠4=,tan∠ACB=,
∴=,
解得m=2.
综上所述,m的值为2或1.
考点:相似形综合题.
22、6×10+4=82 48×52+4
【解析】
(1)根据题目中的式子的变化规律可以解答本题;
(2)根据题目中的式子的变化规律可以解答本题;
(3)根据题目中的式子的变化规律可以写出第n个等式,并加以证明.
【详解】
解:(1)由题目中的式子可得,
第⑥个等式:6×10+4=82,
故答案为6×10+4=82;
(2)由题意可得,
48×52+4=502,
故答案为48×52+4;
(3)第n个等式是:n×(n+4)+4=(n+2)2,
证明:∵n×(n+4)+4
=n2+4n+4
=(n+2)2,
∴n×(n+4)+4=(n+2)2成立.
【点睛】
本题考查有理数的混合运算、数字的变化类,解答本题的关键是明确有理数的混合运算的计算方法.
23、(1)见解析(2)5
【解析】
解:(1)证明:如图,连接,则.
∵,
∴.
∵,
∴四边形是平行四边形.
∴.
(2)连接,则.
∵,,,
∴,.
∴.
∴.
设,则.
在中,有.
∴.即.
24、 (1)45,,π;(2)满足条件的∠QQ0D为45°或135°;(3)BP的长为或;(4)≤CQ≤7.
【解析】
(1)由已知,可知△APQ为等腰直角三角形,可得∠PAB,再利用三角形相似可得PA,及弧AQ的长度;
(2)分点Q在BD上方和下方的情况讨论求解即可.
(3)分别讨论点Q在BD上方和下方的情况,利用切线性质,在由(2)用BP0表示BP,由射影定理计算即可;
(4)由(2)可知,点Q在过点Qo,且与BD夹角为45°的线段EF上运动,有图形可知,当点Q运动到点E时,CQ最长为7,再由垂线段最短,应用面积法求CQ最小值.
【详解】
解:(1)如图,过点P做PE⊥AD于点E
由已知,AP=PQ,∠APQ=90°
∴△APQ为等腰直角三角形
∴∠PAQ=∠PAB=45°
设PE=x,则AE=x,DE=4﹣x
∵PE∥AB
∴△DEP∽△DAB
∴=
∴=
解得x=
∴PA=PE=
∴弧AQ的长为•2π•=π.
故答案为45,,π.
(2)如图,过点Q做QF⊥BD于点F
由∠APQ=90°,
∴∠APP0+∠QPD=90°
∵∠P0AP+∠APP0=90°
∴∠QPD=∠P0AP
∵AP=PQ
∴△APP0≌△PQF
∴AP0=PF,P0P=QF
∵AP0=P0Q0
∴Q0D=P0P
∴QF=FQ0
∴∠QQ0D=45°.
当点Q在BD的右下方时,同理可得∠PQ0Q=45°,
此时∠QQ0D=135°,
综上所述,满足条件的∠QQ0D为45°或135°.
(3)如图当点Q直线BD上方,当以点Q为圆心,BP为半径的圆与直线BD相切时
过点Q做QF⊥BD于点F,则QF=BP
由(2)可知,PP0=BP
∴BP0=BP
∵AB=3,AD=4
∴BD=5
∵△ABP0∽△DBA
∴AB2=BP0•BD
∴9=BP×5
∴BP=
同理,当点Q位于BD下方时,可求得BP=
故BP的长为或
(4)由(2)可知∠QQ0D=45°
则如图,点Q在过点Q0,且与BD夹角为45°的线段EF上运动,
当点P与点B重合时,点Q与点F重合,此时,CF=4﹣3=1
当点P与点D重合时,点Q与点E重合,此时,CE=4+3=7
∴EF===5
过点C做CH⊥EF于点H
由面积法可知
CH===
∴CQ的取值范围为:≤CQ≤7
【点睛】
本题是几何综合题,考查了三角形全等、勾股定理、切线性质以及三角形相似的相关知识,应用了分类讨论和数形结合的数学思想.
25、(1)见解析;(2)的半径是.
【解析】
(1)连结,易证,由于是边上的高线,从而可知,所以是的切线.
(2)由于,从而可知,由,可知:,易证,所以,再证明,所以,从而可求出.
【详解】
解:(1)连结.
∵平分,
∴,又,
∴,
∴,
∵是边上的高线,
∴,
∴,
∴是的切线.
(2)∵,
∴,,
∴是中点,
∴,
∵,
∴,
∵,,
∴,
∴,
又∵,
∴,
在中,
,
∴,
∴,
,
而,
∴,
∴,
∴的半径是.
【点睛】
本题考查圆的综合问题,涉及锐角三角函数,相似三角形的判定与性质,等腰三角形的性质等知识,综合程度较高,需要学生综合运用知识的能力.
26、1
【解析】
试题分析:(1)证明△CFD≌△DAE即可解决问题.
(2)如图2中,作FG⊥AC于G.只要证明△CFD∽△DAE,推出=,再证明CF=AD即可.
(3)证明EC=ED即可解决问题.
试题解析:(1)证明:如图1中,∵∠ABC=∠ACB=60°,∴△ABC是等边三角形,∴BC=BA.∵DF∥AC,∴∠BFD=∠BCA=60°,∠BDF=∠BAC=60°,∴△BDF是等边三角形,∴BF=BD,∴CF=AD,∠CFD=120°.∵AE∥BC,∴∠B+∠DAE=180°,∴∠DAE=∠CFD=120°.∵∠CDA=∠B+∠BCD=∠CDE+∠ADE.∵∠CDE=∠B=60°,∴∠FCD=∠ADE,∴△CFD≌△DAE,∴DC=DE.∵∠CDE=60°,∴△CDE是等边三角形.
(2)证明:如图2中,作FG⊥AC于G.∵∠B=∠ACB=45°,∴∠BAC=90°,∴△ABC是等腰直角三角形.∵DF∥AC,∴∠BDF=∠BAC=90°,∴∠BFD=45°,∠DFC=135°.∵AE∥BC,∴∠BAE+∠B=180°,∴∠DFC=∠DAE=135°.∵∠CDA=∠B+∠BCD=∠CDE+∠ADE.∵∠CDE=∠B=45°,∴∠FCD=∠ADE,∴△CFD∽△DAE,∴=.∵四边形ADFG是矩形,FC=FG,∴FG=AD,CF=AD,∴=.
(3)解:如图3中,设AC与DE交于点O.
∵AE∥BC,∴∠EAO=∠ACB.∵∠CDE=∠ACB,∴∠CDO=∠OAE.∵∠COD=∠EOA,∴△COD∽△EOA,∴=,∴=.∵∠COE=∠DOA,∴△COE∽△DOA,∴∠CEO=∠DAO.∵∠CED+∠CDE+∠DCE=180°,∠BAC+∠B+∠ACB=180°.∵∠CDE=∠B=∠ACB,∴∠EDC=∠ECD,∴EC=ED,∴=1.
点睛:本题考查了相似三角形综合题、全等三角形的判定和性质等知识,解题的关键是学会添加常用辅助线,灵活运用所学知识解决问题,属于中考压轴题.
27、小军的证明:见解析;小俊的证明:见解析;[变式探究]见解析;[结论运用]PG+PH的值为1;[迁移拓展](6+2)dm
【解析】
小军的证明:连接AP,利用面积法即可证得;
小俊的证明:过点P作PG⊥CF,先证明四边形PDFG为矩形,再证明△PGC≌△CEP,即可得到答案;
[变式探究]小军的证明思路:连接AP,根据S△ABC=S△ABP﹣S△ACP,即可得到答案;
小俊的证明思路:过点C,作CG⊥DP,先证明四边形CFDG是矩形,再证明△CGP≌△CEP即可得到答案;
[结论运用] 过点E作EQ⊥BC,先根据矩形的性质求出BF,根据翻折及勾股定理求出DC,证得四边形EQCD是矩形,得出BE=BF即可得到答案;
[迁移拓展]延长AD,BC交于点F,作BH⊥AF,证明△ADE∽△BCE得到FA=FB,设DH=x,利用勾股定理求出x得到BH=6,再根据∠ADE=∠BCE=90°,且M,N分别为AE,BE的中点即可得到答案.
【详解】
小军的证明:
连接AP,如图②
∵PD⊥AB,PE⊥AC,CF⊥AB,
∴S△ABC=S△ABP+S△ACP,
∴AB×CF=AB×PD+AC×PE,
∵AB=AC,
∴CF=PD+PE.
小俊的证明:
过点P作PG⊥CF,如图2,
∵PD⊥AB,CF⊥AB,PG⊥FC,
∴∠CFD=∠FDG=∠FGP=90°,
∴四边形PDFG为矩形,
∴DP=FG,∠DPG=90°,
∴∠CGP=90°,
∵PE⊥AC,
∴∠CEP=90°,
∴∠PGC=∠CEP,
∵∠BDP=∠DPG=90°,
∴PG∥AB,
∴∠GPC=∠B,
∵AB=AC,
∴∠B=∠ACB,
∴∠GPC=∠ECP,
在△PGC和△CEP中
,
∴△PGC≌△CEP,
∴CG=PE,
∴CF=CG+FG=PE+PD;
[变式探究]
小军的证明思路:连接AP,如图③,
∵PD⊥AB,PE⊥AC,CF⊥AB,
∴S△ABC=S△ABP﹣S△ACP,
∴AB×CF=AB×PD﹣AC×PE,
∵AB=AC,
∴CF=PD﹣PE;
小俊的证明思路:
过点C,作CG⊥DP,如图③,
∵PD⊥AB,CF⊥AB,CG⊥DP,
∴∠CFD=∠FDG=∠DGC=90°,
∴CF=GD,∠DGC=90°,四边形CFDG是矩形,
∵PE⊥AC,
∴∠CEP=90°,
∴∠CGP=∠CEP,
∵CG⊥DP,AB⊥DP,
∴∠CGP=∠BDP=90°,
∴CG∥AB,
∴∠GCP=∠B,
∵AB=AC,
∴∠B=∠ACB,
∵∠ACB=∠PCE,
∴∠GCP=∠ECP,
在△CGP和△CEP中,
,
∴△CGP≌△CEP,
∴PG=PE,
∴CF=DG=DP﹣PG=DP﹣PE.
[结论运用]
如图④
过点E作EQ⊥BC,
∵四边形ABCD是矩形,
∴AD=BC,∠C=∠ADC=90°,
∵AD=8,CF=3,
∴BF=BC﹣CF=AD﹣CF=5,
由折叠得DF=BF,∠BEF=∠DEF,
∴DF=5,
∵∠C=90°,
∴DC==1,
∵EQ⊥BC,∠C=∠ADC=90°,
∴∠EQC=90°=∠C=∠ADC,
∴四边形EQCD是矩形,
∴EQ=DC=1,
∵AD∥BC,
∴∠DEF=∠EFB,
∵∠BEF=∠DEF,
∴∠BEF=∠EFB,
∴BE=BF,
由问题情景中的结论可得:PG+PH=EQ,
∴PG+PH=1.
∴PG+PH的值为1.
[迁移拓展]
延长AD,BC交于点F,作BH⊥AF,如图⑤,
∵AD×CE=DE×BC,
∴,
∵ED⊥AD,EC⊥CB,
∴∠ADE=∠BCE=90°,
∴△ADE∽△BCE,
∴∠A=∠CBE,
∴FA=FB,
由问题情景中的结论可得:ED+EC=BH,
设DH=x,
∴AH=AD+DH=3+x,
∵BH⊥AF,
∴∠BHA=90°,
∴BH2=BD2﹣DH2=AB2﹣AH2,
∵AB=2,AD=3,BD=,
∴()2﹣x2=(2)2﹣(3+x)2,
∴x=1,
∴BH2=BD2﹣DH2=37﹣1=36,
∴BH=6,
∴ED+EC=6,
∵∠ADE=∠BCE=90°,且M,N分别为AE,BE的中点,
∴DM=EM=AE,CN=EN=BE,
∴△DEM与△CEN的周长之和
=DE+DM+EM+CN+EN+EC
=DE+AE+BE+EC
=DE+AB+EC
=DE+EC+AB
=6+2,
∴△DEM与△CEN的周长之和(6+2)dm.
【点睛】
此题是一道综合题,考查三角形全等的判定及性质,勾股定理,矩形的性质定理,三角形的相似的判定及性质定理,翻折的性质,根据题中小军和小俊的思路进行证明,故正确理解题意由此进行后面的证明是解题的关键.
相关试卷
这是一份江苏省泰州市泰兴市西城中学2022年中考数学最后冲刺模拟试卷含解析,共21页。试卷主要包含了考生必须保证答题卡的整洁,方程的解是,下列运算正确的是等内容,欢迎下载使用。
这是一份江苏省泰兴市洋思中学2021-2022学年中考数学最后一模试卷含解析,共20页。试卷主要包含了下列说法不正确的是,二次函数y=等内容,欢迎下载使用。
这是一份江苏省泰兴市老叶初级中学2022年中考数学最后冲刺模拟试卷含解析,共18页。试卷主要包含了下列计算正确的是,解分式方程﹣3=时,去分母可得,有个零件如图放置,它的主视图是等内容,欢迎下载使用。