2022年江苏省扬州教育院附属中学中考数学最后冲刺模拟试卷含解析
展开
这是一份2022年江苏省扬州教育院附属中学中考数学最后冲刺模拟试卷含解析,共23页。试卷主要包含了若 ,则括号内的数是,一元二次方程的根是等内容,欢迎下载使用。
2021-2022中考数学模拟试卷
注意事项
1.考试结束后,请将本试卷和答题卡一并交回.
2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.
3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.
4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.
5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.
一、选择题(共10小题,每小题3分,共30分)
1.在下列四个图案中既是轴对称图形,又是中心对称图形的是( )
A. B. C.. D.
2.如图,将函数y=(x﹣2)2+1的图象沿y轴向上平移得到一条新函数的图象,其中点A(1,m),B(4,n)平移后的对应点分别为点A'、B'.若曲线段AB扫过的面积为9(图中的阴影部分),则新图象的函数表达式是( )
A.y=(x﹣2)2-2 B.y=(x﹣2)2+7
C.y=(x﹣2)2-5 D.y=(x﹣2)2+4
3.如图,△ABC中,AB=3,AC=4,BC=5,D、E分别是AC、AB的中点,则以DE为直径的圆与BC的位置关系是( )
A.相切 B.相交 C.相离 D.无法确定
4.下列实数0,,,π,其中,无理数共有( )
A.1个 B.2个 C.3个 D.4个
5.如图,在等腰直角三角形ABC中,∠C=90°,D为BC的中点,将△ABC折叠,使点A与点D重合,EF为折痕,则sin∠BED的值是( )
A. B. C. D.
6.自1993年起,联合国将每年的3月11日定为“世界水日”,宗旨是唤起公众的节水意识,加强水资源保护.某校在开展“节约每一滴水”的活动中,从初三年级随机选出10名学生统计出各自家庭一个月的节约用水量,有关数据整理如下表.
节约用水量(单位:吨)
1
1.1
1.4
1
1.5
家庭数
4
6
5
3
1
这组数据的中位数和众数分别是( )
A.1.1,1.1; B.1.4,1.1; C.1.3,1.4; D.1.3,1.1.
7.若 ,则括号内的数是
A. B. C.2 D.8
8.一元二次方程的根是( )
A. B.
C. D.
9.如果三角形满足一个角是另一个角的3倍,那么我们称这个三角形为“智慧三角形”.下列各组数据中,能作为一个智慧三角形三边长的一组是( )
A.1,2,3 B.1,1, C.1,1, D.1,2,
10.今年,我省启动了“关爱留守儿童工程”.某村小为了了解各年级留守儿童的数量, 对一到六年级留守儿童数量进行了统计,得到每个年级的留守儿童人数分别为10,15,10,17,18,1.对于这组数据,下列说法错误的是( )
A.平均数是15 B.众数是10 C.中位数是17 D.方差是
二、填空题(本大题共6个小题,每小题3分,共18分)
11.如图,PA,PB是⊙O是切线,A,B为切点,AC是⊙O的直径,若∠P=46°,则∠BAC= ▲ 度.
12.若点A(1,m)在反比例函数y=的图象上,则m的值为________.
13.如图是一张长方形纸片ABCD,已知AB=8,AD=7,E为AB上一点,AE=5,现要剪下一张等腰三角形纸片(△AEP),使点P落在长方形ABCD的某一条边上,则等腰三角形AEP的底边长是_____________.
14.如图,两个三角形相似,AD=2,AE=3,EC=1,则BD=_____.
15.如果正比例函数的图像经过第一、三象限,那么的取值范围是 __.
16.已知是二元一次方程组的解,则m+3n的立方根为__.
三、解答题(共8题,共72分)
17.(8分)如图,直角坐标系中,直线与反比例函数的图象交于A,B两点,已知A点的纵坐标是2.
(1)求反比例函数的解析式.
(2)将直线沿x轴向右平移6个单位后,与反比例函数在第二象限内交于点C.动点P在y轴正半轴上运动,当线段PA与线段PC之差达到最大时,求点P的坐标.
18.(8分)如图,在Rt△ABC中∠ABC=90°,AC的垂直平分线交BC于D点,交AC于E点,OC=OD.
(1)若,DC=4,求AB的长;
(2)连接BE,若BE是△DEC的外接圆的切线,求∠C的度数.
19.(8分)如图,平面直角坐标系xOy中,已知点A(0,3),点B(,0),连接AB,若对于平面内一点C,当△ABC是以AB为腰的等腰三角形时,称点C是线段AB的“等长点”.
(1)在点C1(﹣2,3+2),点C2(0,﹣2),点C3(3+,﹣)中,线段AB的“等长点”是点________;
(2)若点D(m,n)是线段AB的“等长点”,且∠DAB=60°,求点D的坐标;
(3)若直线y=kx+3k上至少存在一个线段AB的“等长点”,求k的取值范围.
20.(8分)小明遇到这样一个问题:已知:. 求证:.
经过思考,小明的证明过程如下:
∵,∴.∴.接下来,小明想:若把带入一元二次方程(a0),恰好得到.这说明一元二次方程有根,且一个根是.所以,根据一元二次方程根的判别式的知识易证:.
根据上面的解题经验,小明模仿上面的题目自己编了一道类似的题目:
已知:. 求证:.请你参考上面的方法,写出小明所编题目的证明过程.
21.(8分)某服装店用4000元购进一批某品牌的文化衫若干件,很快售完,该店又用6300元钱购进第二批这种文化衫,所进的件数比第一批多40%,每件文化衫的进价比第一批每件文化衫的进价多10元,请解答下列问题:
(1)求购进的第一批文化衫的件数;
(2)为了取信于顾客,在这两批文化衫的销售中,售价保持了一致.若售完这两批文化衫服装店的总利润不少于4100元钱,那么服装店销售该品牌文化衫每件的最低售价是多少元?
22.(10分)今年5月份,某校九年级学生参加了南宁市中考体育考试,为了了解该校九年级(1)班同学的中考体育情况,对全班学生的中考体育成绩进行了统计,并绘制以下不完整的频数分布表(图11-1)和扇形统计图(图11-2),根据图表中的信息解答下列问题:
分组
分数段(分)
频数
A
36≤x<41
22
B
41≤x<46
5
C
46≤x<51
15
D
51≤x<56
m
E
56≤x<61
10
(1)求全班学生人数和m的值;
(2)直接学出该班学生的中考体育成绩的中位数落在哪个分数段;
(3)该班中考体育成绩满分共有3人,其中男生2人,女生1人,现需从这3人中随机选取2人到八年级进行经验交流,请用“列表法”或“画树状图法”求出恰好选到一男一女的概率.
23.(12分)如图1,在正方形ABCD中,E是AB上一点,F是AD延长线上一点,且DF=BE,求证:CE=CF;如图2,在正方形ABCD中,E是AB上一点,G是AD上一点,如果∠GCE=45°,请你利用(1)的结论证明:GE=BE+GD;运用(1)(2)解答中所积累的经验和知识,完成下题:
如图3,在直角梯形ABCD中,AD∥BC(BC>AD),∠B=90°,AB=BC,E是AB上一点,且∠DCE=45°,BE=4,DE=10, 求直角梯形ABCD的面积.
24.已知抛物线y=﹣x2﹣4x+c经过点A(2,0).
(1)求抛物线的解析式和顶点坐标;
(2)若点B(m,n)是抛物线上的一动点,点B关于原点的对称点为C.
①若B、C都在抛物线上,求m的值;
②若点C在第四象限,当AC2的值最小时,求m的值.
参考答案
一、选择题(共10小题,每小题3分,共30分)
1、B
【解析】
试题分析:根据轴对称图形和中心对称图形的定义:如果一个平面图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形就叫做轴对称图形;中心对称图形的定义:把一个图形绕着某一个点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形叫做中心对称图形,这个点就是它的对称中心,因此:
A、不是轴对称图形,是中心对称图形,不符合题意;
B、是轴对称图形,也是中心对称图形,符合题意;
C、不是轴对称图形,也不是中心对称图形,不符合题意;
D、是轴对称图形,不是中心对称图形,不符合题意.
故选B.
考点:轴对称图形和中心对称图形
2、D
【解析】
∵函数的图象过点A(1,m),B(4,n),
∴m==,n==3,
∴A(1,),B(4,3),
过A作AC∥x轴,交B′B的延长线于点C,则C(4,),
∴AC=4﹣1=3,
∵曲线段AB扫过的面积为9(图中的阴影部分),
∴AC•AA′=3AA′=9,
∴AA′=3,即将函数的图象沿y轴向上平移3个单位长度得到一条新函数的图象,
∴新图象的函数表达式是.
故选D.
3、B
【解析】
首先过点A作AM⊥BC,根据三角形面积求出AM的长,得出直线BC与DE的距离,进而得出直线与圆的位置关系.
【详解】
解:过点A作AM⊥BC于点M,交DE于点N,∴AM×BC=AC×AB,∴AM===2.1.
∵D、E分别是AC、AB的中点,∴DE∥BC,DE=BC=2.5,∴AN=MN=AM,∴MN=1.2.
∵以DE为直径的圆半径为1.25,∴r=1.25>1.2,∴以DE为直径的圆与BC的位置关系是:相交.
故选B.
【点睛】
本题考查了直线和圆的位置关系,利用中位线定理得出BC到圆心的距离与半径的大小关系是解题的关键.
4、B
【解析】
根据无理数的概念可判断出无理数的个数.
【详解】
解:无理数有:,.
故选B.
【点睛】
本题主要考查了无理数的定义,注意带根号的要开不尽方才是无理数,无限不循环小数为无理数.
5、A
【解析】
∵△DEF是△AEF翻折而成,
∴△DEF≌△AEF,∠A=∠EDF,
∵△ABC是等腰直角三角形,
∴∠EDF=45°,由三角形外角性质得∠CDF+45°=∠BED+45°,
∴∠BED=∠CDF,
设CD=1,CF=x,则CA=CB=2,
∴DF=FA=2-x,
∴在Rt△CDF中,由勾股定理得,CF2+CD2=DF2,即x2+1=(2-x)2,
解得x=,
∴sin∠BED=sin∠CDF=.
故选:A.
6、D
【解析】
分析:中位数要把数据按从小到大的顺序排列,位于最中间的一个数或两个数的平均数为中位数,众数是一组数据中出现次数最多的数据,注意众数可以不止一个.
详解:这组数据的中位数是;
这组数据的众数是1.1.
故选D.
点睛:本题属于基础题,考查了确定一组数据的中位数和众数的能力,要明确定义,一些学生往往对这个概念掌握不清楚,计算方法不明确而误选其它选项,注意找中位数的时候一定要先排好顺序,然后再根据奇数和偶数个来确定中位数,如果数据有奇数个,则正中间的数字即为所求,如果是偶数个则找中间两位数的平均数.
7、C
【解析】
根据有理数的减法,减去一个数等于加上这个数的相反数,可得答案.
【详解】
解:,
故选:C.
【点睛】
本题考查了有理数的减法,减去一个数等于加上这个数的相反数.
8、D
【解析】
试题分析:此题考察一元二次方程的解法,观察发现可以采用提公因式法来解答此题.原方程可化为:,因此或,所以.故选D.
考点:一元二次方程的解法——因式分解法——提公因式法.
9、D
【解析】
根据三角形三边关系可知,不能构成三角形,依此即可作出判定;
B、根据勾股定理的逆定理可知是等腰直角三角形,依此即可作出判定;
C、解直角三角形可知是顶角120°,底角30°的等腰三角形,依此即可作出判定;
D、解直角三角形可知是三个角分别是90°,60°,30°的直角三角形,依此即可作出判定.
【详解】
∵1+2=3,不能构成三角形,故选项错误;
B、∵12+12=()2,是等腰直角三角形,故选项错误;
C、底边上的高是=,可知是顶角120°,底角30°的等腰三角形,故选项错误;
D、解直角三角形可知是三个角分别是90°,60°,30°的直角三角形,其中90°÷30°=3,符合“智慧三角形”的定义,故选项正确.
故选D.
10、C
【解析】
解:中位数应该是15和17的平均数16,故C选项错误,其他选择正确.
故选C.
【点睛】
本题考查求中位数,众数,方差,理解相关概念是本题的解题关键.
二、填空题(本大题共6个小题,每小题3分,共18分)
11、1.
【解析】
由PA、PB是圆O的切线,根据切线长定理得到PA=PB,即三角形APB为等腰三角形,由顶角的度数,利用三角形的内角和定理求出底角的度数,再由AP为圆O的切线,得到OA与AP垂直,根据垂直的定义得到∠OAP为直角,再由∠OAP-∠PAB即可求出∠BAC的度数
【详解】
∵PA,PB是⊙O是切线,
∴PA=PB.
又∵∠P=46°,
∴∠PAB=∠PBA=.
又∵PA是⊙O是切线,AO为半径,
∴OA⊥AP.
∴∠OAP=90°.
∴∠BAC=∠OAP﹣∠PAB=90°﹣67°=1°.
故答案为:1
【点睛】
此题考查了切线的性质,切线长定理,等腰三角形的性质,以及三角形的内角和定理,熟练掌握定理及性质是解本题的关键.
12、3
【解析】
试题解析:把A(1,m)代入y=得:m=3.
所以m的值为3.
13、或或1
【解析】
如图所示:
①当AP=AE=1时,∵∠BAD=90°,∴△AEP是等腰直角三角形,∴底边PE=AE=;
②当PE=AE=1时,∵BE=AB﹣AE=8﹣1=3,∠B=90°,∴PB==4,∴底边AP===;
③当PA=PE时,底边AE=1;
综上所述:等腰三角形AEP的对边长为或或1;
故答案为或或1.
14、1
【解析】
根据相似三角形的对应边的比相等列出比例式,计算即可.
【详解】
∵△ADE∽△ACB,∴=,即=,
解得:BD=1.
故答案为1.
【点睛】
本题考查的是相似三角形的性质,掌握相似三角形的对应边的比相等是解题的关键.
15、k>1
【解析】
根据正比例函数y=(k-1)x的图象经过第一、三象限得出k的取值范围即可.
【详解】
因为正比例函数y=(k-1)x的图象经过第一、三象限,
所以k-1>0,
解得:k>1,
故答案为:k>1.
【点睛】
此题考查一次函数问题,关键是根据正比例函数y=(k-1)x的图象经过第一、三象限解答.
16、3
【解析】
把x与y的值代入方程组求出m与n的值,即可确定出所求.
【详解】
解:把代入方程组得:
相加得:m+3n=27,
则27的立方根为3,
故答案为3
【点睛】
此题考查了二元一次方程组的解,方程组的解即为能使方程组中两方程左右两边相等的未知数的值.
三、解答题(共8题,共72分)
17、(1);(2)P(0,6)
【解析】
试题分析:(1)先求得点A的坐标,再利用待定系数法求得反比例函数的解析式即可;(2)连接AC,根据三角形两边之差小于第三边知:当A、C、P不共线时,PA-PC
相关试卷
这是一份山东省济宁院附中2023年中考数学最后冲刺模拟试卷含解析,共14页。
这是一份江苏省扬州市教育科研究院2021-2022学年中考数学五模试卷含解析,共24页。试卷主要包含了考生必须保证答题卡的整洁,不等式组的解集在数轴上可表示为等内容,欢迎下载使用。
这是一份2022届北京市教院附中中考数学最后冲刺模拟试卷含解析,共19页。试卷主要包含了在平面直角坐标系内,点P,如果等内容,欢迎下载使用。