终身会员
搜索
    上传资料 赚现金
    英语朗读宝

    江苏省淮安市盱眙县2022年中考适应性考试数学试题含解析

    立即下载
    加入资料篮
    江苏省淮安市盱眙县2022年中考适应性考试数学试题含解析第1页
    江苏省淮安市盱眙县2022年中考适应性考试数学试题含解析第2页
    江苏省淮安市盱眙县2022年中考适应性考试数学试题含解析第3页
    还剩22页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    江苏省淮安市盱眙县2022年中考适应性考试数学试题含解析

    展开

    这是一份江苏省淮安市盱眙县2022年中考适应性考试数学试题含解析,共25页。试卷主要包含了计算-5x2-3x2的结果是,下列计算中正确的是,如图,点P等内容,欢迎下载使用。
    2021-2022中考数学模拟试卷
    注意事项:
    1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。
    2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。
    3.考试结束后,将本试卷和答题卡一并交回。

    一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)
    1.我国古代数学家刘徽用“牟合方盖”找到了球体体积的计算方法.“牟合方盖”是由两个圆柱分别从纵横两个方向嵌入一个正方体时两圆柱公共部分形成的几何体.如图所示的几何体是可以形成“牟合方盖”的一种模型,它的俯视图是( )

    A. B. C. D.
    2.的倒数是( )
    A. B. C. D.
    3.某车间20名工人日加工零件数如表所示:
    日加工零件数
    4
    5
    6
    7
    8
    人数
    2
    6
    5
    4
    3
    这些工人日加工零件数的众数、中位数、平均数分别是(  )
    A.5、6、5 B.5、5、6 C.6、5、6 D.5、6、6
    4.如图,是一次函数y=kx+b与反比例函数y=的图象,则关于x的不等式kx+b>的解集为

    A.x>1 B.﹣2<x<1
    C.﹣2<x<0或x>1 D.x<﹣2
    5.计算-5x2-3x2的结果是( )
    A.2x2 B.3x2 C.-8x2 D.8x2
    6.(3分)学校要组织足球比赛.赛制为单循环形式(每两队之间赛一场).计划安排21场比赛,应邀请多少个球队参赛?设邀请x个球队参赛.根据题意,下面所列方程正确的是( )
    A. B. C. D.
    7.如图,将图1中阴影部分拼成图2,根据两个图形中阴影部分的关系,可以验证下列哪个计算公式(  )

    A.(a+b)(a﹣b)=a2﹣b2 B.(a﹣b)2=a2﹣2ab+b2
    C.(a+b)2=a2+2ab+b2 D.(a+b)2=(a﹣b)2+4ab
    8.下列计算中正确的是(  )
    A.x2+x2=x4 B.x6÷x3=x2 C.(x3)2=x6 D.x-1=x
    9.如图,点P(x,y)(x>0)是反比例函数y=(k>0)的图象上的一个动点,以点P为圆心,OP为半径的圆与x轴的正半轴交于点A,若△OPA的面积为S,则当x增大时,S的变化情况是(  )

    A.S的值增大 B.S的值减小
    C.S的值先增大,后减小 D.S的值不变
    10.如图,直线m⊥n,在某平面直角坐标系中,x轴∥m,y轴∥n,点A的坐标为(-4,2),点B的坐标为(2,-4),则坐标原点为( )

    A.O1 B.O2 C.O3 D.O4
    11.二次函数y=ax1+bx+c(a≠0)的部分图象如图所示,图象过点(﹣1,0),对称轴为直线x=1,下列结论:(1)4a+b=0;(1)9a+c>﹣3b;(3)7a﹣3b+1c>0;(4)若点A(﹣3,y1)、点B(﹣,y1)、点C(7,y3)在该函数图象上,则y1<y3<y1;(5)若方程a(x+1)(x﹣5)=﹣3的两根为x1和x1,且x1<x1,则x1<﹣1<5<x1.其中正确的结论有(  )

    A.1个 B.3个 C.4个 D.5个
    12.如图,已知直线 PQ⊥MN 于点 O,点 A,B 分别在 MN,PQ 上,OA=1,OB=2,在直线 MN 或直线 PQ 上找一点 C,使△ABC是等腰三角形,则这样的 C 点有( )

    A.3 个 B.4 个 C.7 个 D.8 个
    二、填空题:(本大题共6个小题,每小题4分,共24分.)
    13.已知线段AB=2cm,点C在线段AB上,且AC2=BC·AB,则AC的长___________cm.
    14.已知点P在一次函数y=kx+b(k,b为常数,且k<0,b>0)的图象上,将点P向左平移1个单位,再向上平移2个单位得到点Q,点Q也在该函数y=kx+b的图象上.
    (1)k的值是 ;
    (2)如图,该一次函数的图象分别与x轴、y轴交于A,B两点,且与反比例函数y=图象交于C,D两点(点C在第二象限内),过点C作CE⊥x轴于点E,记S1为四边形CEOB的面积,S2为△OAB的面积,若=,则b的值是 .

    15.阅读材料:设=(x1,y1),=(x2,y2),如果∥,则x1•y2=x2•y1.根据该材料填空:已知=(2,3),=(4,m),且∥,则m=_____.
    16.如图,AB为⊙O的弦,C为弦AB上一点,设AC=m,BC=n(m>n),将弦AB绕圆心O旋转一周,若线段BC扫过的面积为(m2﹣n2)π,则=______

    17.如图,在矩形ABCD中,AB=,AD=1,把该矩形绕点A顺时针旋转α度得矩形AB′C′D′,点C′落在AB的延长线上,则图中阴影部分的面积是_____.

    18.已知x=2是关于x的一元二次方程kx2+(k2﹣2)x+2k+4=0的一个根,则k的值为_____.
    三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.
    19.(6分)某汽车销售公司6月份销售某厂家的汽车,在一定范围内,每部汽车的进价与销售有如下关系,若当月仅售出1部汽车,则该部汽车的进价为27万元,每多售一部,所有出售的汽车的进价均降低0.1万元/部.月底厂家根据销售量一次性返利给销售公司,销售量在10部以内,含10部,每部返利0.5万元,销售量在10部以上,每部返利1万元.
    ① 若该公司当月卖出3部汽车,则每部汽车的进价为 万元;
    ② 如果汽车的销售价位28万元/部,该公司计划当月盈利12万元,那么要卖出多少部汽车?(盈利=销售利润+返利)
    20.(6分)如图,在等边△ABC中,点D是 AB边上一点,连接CD,将线段CD绕点C按顺时针方向旋转60°后得到CE,连接AE.求证:AE∥BC.

    21.(6分)为进一步深化基教育课程改革,构建符合素质教育要求的学校课程体系,某学校自主开发了A书法、B阅读,C足球,D器乐四门校本选修课程供学生选择,每门课程被选到的机会均等.学生小红计划选修两门课程,请写出所有可能的选法;若学生小明和小刚各计划送修一门课程,则他们两人恰好选修同一门课程的概率为多少?
    22.(8分)如图,正方形ABCD的边长为4,点E,F分别在边AB,AD上,且∠ECF=45°,CF的延长线交BA的延长线于点G,CE的延长线交DA的延长线于点H,连接AC,EF.,GH.
    填空:∠AHC   ∠ACG;(填“>”或“<”或“=”)线段AC,AG,AH什么关系?请说明理由;设AE=m,
    ①△AGH的面积S有变化吗?如果变化.请求出S与m的函数关系式;如果不变化,请求出定值.
    ②请直接写出使△CGH是等腰三角形的m值.
    23.(8分)如图,在平面直角坐标系中,点O为坐标原点,已知△ABC三个定点坐标分别为A(﹣4,1),B(﹣3,3),C(﹣1,2).画出△ABC关于x轴对称的△A1B1C1,点A,B,C的对称点分别是点A1、B1、C1,直接写出点A1,B1,C1的坐标:A1(   ,   ),B1(   ,   ),C1(   ,   );画出点C关于y轴的对称点C2,连接C1C2,CC2,C1C,并直接写出△CC1C2的面积是   .

    24.(10分)已知:如图,四边形ABCD中,AD∥BC,AD=CD,E是对角线BD上一点,且EA=EC.
    (1)求证:四边形ABCD是菱形;
    (2)如果∠BDC=30°,DE=2,EC=3,求CD的长.

    25.(10分)如图,已知抛物线y=ax2+bx+1经过A(﹣1,0),B(1,1)两点.
    (1)求该抛物线的解析式;
    (2)阅读理解:
    在同一平面直角坐标系中,直线l1:y=k1x+b1(k1,b1为常数,且k1≠0),直线l2:y=k2x+b2(k2,b2为常数,且k2≠0),若l1⊥l2,则k1•k2=﹣1.
    解决问题:
    ①若直线y=2x﹣1与直线y=mx+2互相垂直,则m的值是____;
    ②抛物线上是否存在点P,使得△PAB是以AB为直角边的直角三角形?若存在,请求出点P的坐标;若不存在,请说明理由;
    (3)M是抛物线上一动点,且在直线AB的上方(不与A,B重合),求点M到直线AB的距离的最大值.

    26.(12分)如图所示,在正方形ABCD中,E,F分别是边AD,CD上的点,AE=ED,DF=DC,连结EF并延长交BC的延长线于点G,连结BE.求证:△ABE∽△DEF.若正方形的边长为4,求BG的长.

    27.(12分)如图,AD是△ABC的中线,AD=12,AB=13,BC=10,求AC长.




    参考答案

    一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)
    1、A
    【解析】
    根据俯视图即从物体的上面观察得得到的视图,进而得出答案.
    【详解】
    该几何体的俯视图是:.
    故选A.
    【点睛】
    此题主要考查了几何体的三视图;掌握俯视图是从几何体上面看得到的平面图形是解决本题的关键.
    2、C
    【解析】
    由互为倒数的两数之积为1,即可求解.
    【详解】
    ∵,∴的倒数是.
    故选C
    3、D
    【解析】
    5出现了6次,出现的次数最多,则众数是5;
    把这些数从小到大排列,中位数是第10,11个数的平均数,则中位数是(6+6)÷2=6;
    平均数是:(4×2+5×6+6×5+7×4+8×3)÷20=6;
    故答案选D.
    4、C
    【解析】
    根据反比例函数与一次函数在同一坐标系内的图象可直接解答.
    【详解】
    观察图象,两函数图象的交点坐标为(1,2),(-2,-1),kx+b>的解就是一次函数y=kx+b图象在反比例函数y=的图象的上方的时候x的取值范围,
    由图象可得:-2<x<0或x>1,
    故选C.
    【点睛】
    本题考查的是反比例涵数与一次函数图象在同一坐标系中二者的图象之间的关系.一般这种类型的题不要计算反比计算表达式,解不等式,直接从从图象上直接解答.
    5、C
    【解析】
    利用合并同类项法则直接合并得出即可.
    【详解】
    解:
    故选C.
    【点睛】
    此题主要考查了合并同类项,熟练应用合并同类项法则是解题关键.
    6、B.
    【解析】
    试题分析:设有x个队,每个队都要赛(x﹣1)场,但两队之间只有一场比赛,由题意得:,故选B.
    考点:由实际问题抽象出一元二次方程.
    7、B
    【解析】
    根据图形确定出图1与图2中阴影部分的面积,由此即可解答.
    【详解】
    ∵图1中阴影部分的面积为:(a﹣b)2;图2中阴影部分的面积为:a2﹣2ab+b2;
    ∴(a﹣b)2=a2﹣2ab+b2,
    故选B.
    【点睛】
    本题考查了完全平方公式的几何背景,用不同的方法表示出阴影部分的面积是解题的关键.
    8、C
    【解析】
    根据合并同类项的方法、同底数幂的除法法则、幂的乘方、负整数指数幂的意义逐项求解,利用排除法即可得到答案.
    【详解】
    A. x2+x2=2x2 ,故不正确;
    B. x6÷x3=x3 ,故不正确;
    C. (x3)2=x6 ,故正确;
    D. x﹣1=,故不正确;
    故选C.
    【点睛】
    本题考查了合并同类项的方法、同底数幂的除法法则、幂的乘方、负整数指数幂的意义,解答本题的关键是熟练掌握各知识点.
    9、D
    【解析】
    作PB⊥OA于B,如图,根据垂径定理得到OB=AB,则S△POB=S△PAB,再根据反比例函数k的几何意义得到S△POB=|k|,所以S=2k,为定值.
    【详解】
    作PB⊥OA于B,如图,则OB=AB,∴S△POB=S△PAB.
    ∵S△POB=|k|,∴S=2k,∴S的值为定值.
    故选D.

    【点睛】
    本题考查了反比例函数系数k的几何意义:在反比例函数y=图象中任取一点,过这一个点向x轴和y轴分别作垂线,与坐标轴围成的矩形的面积是定值|k|.
    10、A
    【解析】
    试题分析:因为A点坐标为(-4,2),所以,原点在点A的右边,也在点A的下边2个单位处,从点B来看,B(2,-4),所以,原点在点B的左边,且在点B的上边4个单位处.如下图,O1符合.

    考点:平面直角坐标系.
    11、B
    【解析】
    根据题意和函数的图像,可知抛物线的对称轴为直线x=-=1,即b=-4a,变形为4a+b=0,所以(1)正确;
    由x=-3时,y>0,可得9a+3b+c>0,可得9a+c>-3c,故(1)正确;
    因为抛物线与x轴的一个交点为(-1,0)可知a-b+c=0,而由对称轴知b=-4a,可得a+4a+c=0,即c=-5a.代入可得7a﹣3b+1c=7a+11a-5a=14a,由函数的图像开口向下,可知a<0,因此7a﹣3b+1c<0,故(3)不正确;
    根据图像可知当x<1时,y随x增大而增大,当x>1时,y随x增大而减小,可知若点A(﹣3,y1)、点B(﹣,y1)、点C(7,y3)在该函数图象上,则y1=y3<y1,故(4)不正确;
    根据函数的对称性可知函数与x轴的另一交点坐标为(5,0),所以若方程a(x+1)(x﹣5)=﹣3的两根为x1和x1,且x1<x1,则x1<﹣1<x1,故(5)正确.
    正确的共有3个.
    故选B.
    点睛:本题考查了二次函数图象与系数的关系:二次函数y=ax1+bx+c(a≠0),二次项系数a决定抛物线的开口方向和大小,当a>0时,抛物线向上开口;当a<0时,抛物线向下开口;一次项系数b和二次项系数a共同决定对称轴的位置,当a与b同号时(即ab>0),对称轴在y轴左; 当a与b异号时(即ab<0),对称轴在y轴右;常数项c决定抛物线与y轴交点. 抛物线与y轴交于(0,c);抛物线与x轴交点个数由△决定,△=b1﹣4ac>0时,抛物线与x轴有1个交点;△=b1﹣4ac=0时,抛物线与x轴有1个交点;△=b1﹣4ac<0时,抛物线与x轴没有交点.
    12、D
    【解析】
    试题分析:根据等腰三角形的判定分类别分别找寻,分AB可能为底,可能是腰进行分析.
    解:使△ABC是等腰三角形,
    当AB当底时,则作AB的垂直平分线,交PQ,MN的有两点,即有两个三角形.
    当让AB当腰时,则以点A为圆心,AB为半径画圆交PQ,MN有三点,所以有三个.
    当以点B为圆心,AB为半径画圆,交PQ,MN有三点,所以有三个.
    所以共8个.
    故选D.

    点评:本题考查了等腰三角形的判定;解题的关键是要分情况而定,所以学生一定要思维严密,不可遗漏.

    二、填空题:(本大题共6个小题,每小题4分,共24分.)
    13、
    【解析】
    设AC=x,则BC=2-x,根据AC2=BC·AB列方程求解即可.
    【详解】
    解:设AC=x,则BC=2-x,根据AC2=BC·AB可得x2=2(2-x),
    解得:x=或(舍去).
    故答案为.
    【点睛】
    本题考查了黄金分割的应用,关键是明确黄金分割所涉及的线段的比.
    14、(1)-2;(2)
    【解析】
    (1)设点P的坐标为(m,n),则点Q的坐标为(m−1,n+2),
    依题意得:

    解得:k=−2.
    故答案为−2.
    (2)∵BO⊥x轴,CE⊥x轴,
    ∴BO∥CE,
    ∴△AOB∽△AEC.
    又∵,

    令一次函数y=−2x+b中x=0,则y=b,
    ∴BO=b;
    令一次函数y=−2x+b中y=0,则0=−2x+b,
    解得:x=,即AO=.
    ∵△AOB∽△AEC,且,
    ∴,
    ∴AE=,AO=,CE=BO=b,OE=AE−AO=.
    ∵OE⋅CE=|−4|=4,即=4,
    解得:b=,或b=− (舍去).
    故答案为.
    15、6
    【解析】
    根据题意得,2m=3×4,解得m=6,故答案为6.
    16、
    【解析】
    先确定线段BC过的面积:圆环的面积,作辅助圆和弦心距OD,根据已知面积列等式可得:S=πOB2-πOC2=(m2-n2)π,则OB2-OC2=m2-n2,由勾股定理代入,并解一元二次方程可得结论.
    【详解】
    如图,连接OB、OC,以O为圆心,OC为半径画圆,

    则将弦AB绕圆心O旋转一周,线段BC扫过的面积为圆环的面积,
    即S=πOB2-πOC2=(m2-n2)π,
    OB2-OC2=m2-n2,
    ∵AC=m,BC=n(m>n),
    ∴AM=m+n,
    过O作OD⊥AB于D,
    ∴BD=AD=AB=,CD=AC-AD=m-=,
    由勾股定理得:OB2-OC2=(BD2+OD2)-(CD2+OD2)=BD2-CD2=(BD+CD)(BD-CD)=mn,
    ∴m2-n2=mn,
    m2-mn-n2=0,
    m=,
    ∵m>0,n>0,
    ∴m=,
    ∴,
    故答案为.
    【点睛】
    此题主要考查了勾股定理,垂径定理,一元二次方程等知识,根据旋转的性质确定线段BC扫过的面积是解题的关键,是一道中等难度的题目.
    17、
    【解析】
    ∵在矩形ABCD中,AB=,∠DAC=60°,
    ∴DC=,AD=1.
    由旋转的性质可知:D′C′=,AD′=1,
    ∴tan∠D′AC′==,
    ∴∠D′AC′=60°.
    ∴∠BAB′=30°,
    ∴S△AB′C′=×1×=,
    S扇形BAB′==.
    S阴影=S△AB′C′-S扇形BAB′=-.
    故答案为-.
    【点睛】
    错因分析  中档题.失分原因有2点:(1)不能准确地将阴影部分面积转化为易求特殊图形的面积;(2)不能根据矩形的边求出α的值.
    18、﹣1
    【解析】【分析】把x=2代入kx2+(k2﹣2)x+2k+4=0得4k+2k2﹣4+2k+4=0,再解关于k的方程,然后根据一元二次方程的定义确定k的值即可.
    【详解】把x=2代入kx2+(k2﹣2)x+2k+4=0得4k+2k2﹣4+2k+4=0,
    整理得k2+1k=0,解得k1=0,k2=﹣1,
    因为k≠0,
    所以k的值为﹣1.
    故答案为:﹣1.
    【点睛】本题考查了一元二次方程的定义以及一元二次方程的解,能使一元二次方程左右两边相等的未知数的值是一元二次方程的解.

    三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.
    19、解:(1)22.1.
    (2)设需要售出x部汽车,
    由题意可知,每部汽车的销售利润为:21-[27-0.1(x-1)]=(0.1x+0.9)(万元),
    当0≤x≤10,根据题意,得x·(0.1x+0.9)+0.3x=12,整理,得x2+14x-120=0,
    解这个方程,得x1=-20(不合题意,舍去),x2=2.
    当x>10时,根据题意,得x·(0.1x+0.9)+x=12,整理,得x2+19x-120=0,
    解这个方程,得x1=-24(不合题意,舍去),x2=3.
    ∵3<10,∴x2=3舍去.
    答:要卖出2部汽车.
    【解析】
    一元二次方程的应用.
    (1)根据若当月仅售出1部汽车,则该部汽车的进价为27万元,每多售出1部,所有售出的汽车的进价均降低0.1万元/部,得出该公司当月售出3部汽车时,则每部汽车的进价为:27-0.1×2=22.1.,
    (2)利用设需要售出x部汽车,由题意可知,每部汽车的销售利润,根据当0≤x≤10,以及当x>10时,分别讨论得出即可.
    20、见解析
    【解析】
    试题分析:根据等边三角形的性质得出AC=BC,∠B=∠ACB=60°,根据旋转的性质得出CD=CE,∠DCE=60°,求出∠BCD=∠ACE,根据SAS推出△BCD≌△ACE,根据全等得出∠EAC=∠B=60°,求出∠EAC=∠ACB,根据平行线的判定得出即可.
    试题解析:∵△ABC是等边三角形,
    ∴AC=BC,∠B=∠ACB=60°,
    ∵线段CD绕点C顺时针旋转60°得到CE,
    ∴CD=CE,∠DCE=60°,
    ∴∠DCE=∠ACB,即∠BCD+∠DCA=∠DCA+∠ACE,
    ∴∠BCD=∠ACE,
    在△BCD与△ACE中,
    ,
    ∴△BCD≌△ACE,
    ∴∠EAC=∠B=60°,
    ∴∠EAC=∠ACB,
    ∴AE∥BC.
    21、(1)答案见解析;(2)
    【解析】
    分析:(1)直接列举出所有可能的结果即可.
    (2)画树状图展示所有16种等可能的结果数,再找出他们两人恰好选修同一门课程的结果数,然后根据概率公式求解.
    详解:(1)学生小红计划选修两门课程,她所有可能的选法有:A书法、B阅读;A书法、C足球;A书法、D器乐;B阅读,C足球;B阅读,D器乐;C足球,D器乐.
    共有6种等可能的结果数;
    (2)画树状图为:

    共有16种等可能的结果数,其中他们两人恰好选修同一门课程的结果数为4,
    所以他们两人恰好选修同一门课程的概率
    点睛:本题考查了列表法与树状图法:利用列表法或树状图法展示所有等可能的结果n,再从中选出符合事件A或B的结果数目m,然后利用概率公式计算事件A或事件B的概率.
    22、(1)=;(2)结论:AC2=AG•AH.理由见解析;(3)①△AGH的面积不变.②m的值为或2或8﹣4..
    【解析】
    (1)证明∠DAC=∠AHC+∠ACH=43°,∠ACH+∠ACG=43°,即可推出∠AHC=∠ACG;
    (2)结论:AC2=AG•AH.只要证明△AHC∽△ACG即可解决问题;
    (3)①△AGH的面积不变.理由三角形的面积公式计算即可;
    ②分三种情形分别求解即可解决问题.
    【详解】
    (1)∵四边形ABCD是正方形,
    ∴AB=CB=CD=DA=4,∠D=∠DAB=90°∠DAC=∠BAC=43°,
    ∴AC=,
    ∵∠DAC=∠AHC+∠ACH=43°,∠ACH+∠ACG=43°,
    ∴∠AHC=∠ACG.
    故答案为=.
    (2)结论:AC2=AG•AH.
    理由:∵∠AHC=∠ACG,∠CAH=∠CAG=133°,
    ∴△AHC∽△ACG,
    ∴,
    ∴AC2=AG•AH.
    (3)①△AGH的面积不变.
    理由:∵S△AGH=•AH•AG=AC2=×(4)2=1.
    ∴△AGH的面积为1.
    ②如图1中,当GC=GH时,易证△AHG≌△BGC,

    可得AG=BC=4,AH=BG=8,
    ∵BC∥AH,
    ∴,
    ∴AE=AB=.
    如图2中,当CH=HG时,

    易证AH=BC=4,
    ∵BC∥AH,
    ∴=1,
    ∴AE=BE=2.
    如图3中,当CG=CH时,易证∠ECB=∠DCF=22.3.

    在BC上取一点M,使得BM=BE,
    ∴∠BME=∠BEM=43°,
    ∵∠BME=∠MCE+∠MEC,
    ∴∠MCE=∠MEC=22.3°,
    ∴CM=EM,设BM=BE=m,则CM=EMm,
    ∴m+m=4,
    ∴m=4(﹣1),
    ∴AE=4﹣4(﹣1)=8﹣4,
    综上所述,满足条件的m的值为或2或8﹣4.
    【点睛】
    本题属于四边形综合题,考查了正方形的性质,全等三角形的判定和性质,相似三角形的判定和性质等知识,解题的关键是灵活运用所学知识解决问题.
    23、(1)﹣1、﹣1,﹣3、﹣3,﹣1、﹣2;(2)见解析,1.
    【解析】
    (1)分别作出点A、B、C关于x轴的对称点,再顺次连接可得;
    (2)作出点C关于y轴的对称点,然后连接得到三角形,根据面积公式计算可得.
    【详解】
    (1)如图所示,△A1B1C1即为所求.

    A1(﹣1,﹣1)B1(﹣3,﹣3),C1(﹣1,﹣2).
    故答案为:﹣1、﹣1、﹣3、﹣3、﹣1、﹣2;
    (2)如图所示,△CC1C2的面积是2×1=1.
    故答案为:1.
    【点睛】
    本题考查了作图﹣轴对称变换,解题的关键是熟练掌握轴对称变换的定义和性质.
    24、(1)证明见解析;(2)CD的长为2.
    【解析】
    (1)首先证得△ADE≌△CDE,由全等三角形的性质可得∠ADE=∠CDE,由AD∥BC可得∠ADE=∠CBD,易得∠CDB=∠CBD,可得BC=CD,易得AD=BC,利用平行线的判定定理可得四边形ABCD为平行四边形,由AD=CD可得四边形ABCD是菱形;
    (2)作EF⊥CD于F,在Rt△DEF中,根据30°的性质和勾股定理可求出EF和DF的长,在Rt△CEF中,根据勾股定理可求出CF的长,从而可求CD的长.
    【详解】
    证明:(1)在△ADE与△CDE中,

    ∴△ADE≌△CDE(SSS),
    ∴∠ADE=∠CDE,
    ∵AD∥BC,
    ∴∠ADE=∠CBD,
    ∴∠CDE=∠CBD,
    ∴BC=CD,
    ∵AD=CD,
    ∴BC=AD,
    ∴四边形ABCD为平行四边形,
    ∵AD=CD,
    ∴四边形ABCD是菱形;
    (2)作EF⊥CD于F.
    ∵∠BDC=30°,DE=2,
    ∴EF=1,DF=,
    ∵CE=3,
    ∴CF=2,
    ∴CD=2+.
    .
    【点睛】
    本题考查了全等三角形的判定与性质,平行线的性质,菱形的判定,含30°的直角三角形的性质,勾股定理.证明AD=BC是解(1)的关键,作EF⊥CD于F,构造直角三角形是解(2)的关键.
    25、(1)y=﹣x2+x+1;(2)①-;②点P的坐标(6,﹣14)(4,﹣5);(3).
    【解析】
    (1)根据待定系数法,可得函数解析式;
    (2)根据垂线间的关系,可得PA,PB的解析式,根据解方程组,可得P点坐标;
    (3)根据垂直于x的直线上两点间的距离是较大的纵坐标减较小的纵坐标,可得MQ,根据三角形的面积,可得二次函数,根据二次函数的性质,可得面积的最大值,根据三角形的底一定时面积与高成正比,可得三角形高的最大值
    【详解】
    解:(1)将A,B点坐标代入,得

    解得,
    抛物线的解析式为y=;
    (2)①由直线y=2x﹣1与直线y=mx+2互相垂直,得
    2m=﹣1,
    即m=﹣;
    故答案为﹣;
    ②AB的解析式为
    当PA⊥AB时,PA的解析式为y=﹣2x﹣2,
    联立PA与抛物线,得,
    解得(舍),,
    即P(6,﹣14);
    当PB⊥AB时,PB的解析式为y=﹣2x+3,
    联立PB与抛物线,得,
    解得(舍),
    即P(4,﹣5),
    综上所述:△PAB是以AB为直角边的直角三角形,点P的坐标(6,﹣14)(4,﹣5);
    (3)如图:

    ∵M(t,﹣t2+t+1),Q(t, t+),
    ∴MQ=﹣t2+
    S△MAB=MQ|xB﹣xA|
    =(﹣t2+)×2
    =﹣t2+,
    当t=0时,S取最大值,即M(0,1).
    由勾股定理,得
    AB==,
    设M到AB的距离为h,由三角形的面积,得
    h==.
    点M到直线AB的距离的最大值是.
    【点睛】
    本题考查了二次函数综合题,涉及到抛物线的解析式求法,两直线垂直,解一元二次方程组,及点到直线的最大距离,需要注意的是必要的辅助线法是解题的关键
    26、(1)见解析;(2)BG=BC+CG=1.
    【解析】
    (1)利用正方形的性质,可得∠A=∠D,根据已知可得AE:AB=DF:DE,根据有两边对应成比例且夹角相等三角形相似,可得△ABE∽△DEF;
    (2)根据相似三角形的预备定理得到△EDF∽△GCF,再根据相似的性质即可求得CG的长,那么BG的长也就不难得到.
    【详解】
    (1)证明:∵ABCD为正方形,
    ∴AD=AB=DC=BC,∠A=∠D=90 °.
    ∵AE=ED,
    ∴AE:AB=1:2.
    ∵DF=DC,
    ∴DF:DE=1:2,
    ∴AE:AB=DF:DE,
    ∴△ABE∽△DEF;
    (2)解:∵ABCD为正方形,
    ∴ED∥BG,
    ∴△EDF∽△GCF,
    ∴ED:CG=DF:CF.
    又∵DF=DC,正方形的边长为4,
    ∴ED=2,CG=6,
    ∴BG=BC+CG=1.
    【点睛】
    本题考查了正方形的性质,相似三角形的判定与性质,熟练掌握相似三角形的判定与性质是解答本题的关键.
    27、2.
    【解析】
    根据勾股定理逆定理,证△ABD是直角三角形,得AD⊥BC,可证AD垂直平分BC,所以AB=AC.
    【详解】
    解:∵AD是△ABC的中线,且BC=10,
    ∴BD=BC=1.
    ∵12+122=22,即BD2+AD2=AB2,
    ∴△ABD是直角三角形,则AD⊥BC,
    又∵CD=BD,
    ∴AC=AB=2.
    【点睛】
    本题考核知识点:勾股定理、全等三角形、垂直平分线.解题关键点:熟记相关性质,证线段相等.

    相关试卷

    2022-2023学年江苏省淮安市盱眙县九年级(下)期中数学试卷(含解析):

    这是一份2022-2023学年江苏省淮安市盱眙县九年级(下)期中数学试卷(含解析),共28页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    2022年江苏省盱眙县第三中学中考适应性考试数学试题含解析:

    这是一份2022年江苏省盱眙县第三中学中考适应性考试数学试题含解析,共20页。试卷主要包含了下列说法中,正确的是,下列运算正确的是等内容,欢迎下载使用。

    【苏科版】江苏省淮安市盱眙县2021-2022学年十校联考最后数学试题含解析:

    这是一份【苏科版】江苏省淮安市盱眙县2021-2022学年十校联考最后数学试题含解析,共20页。试卷主要包含了已知抛物线y=ax2﹣等内容,欢迎下载使用。

    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map