江苏省淮安市涟水实验中学2021-2022学年中考数学最后冲刺浓缩精华卷含解析
展开
这是一份江苏省淮安市涟水实验中学2021-2022学年中考数学最后冲刺浓缩精华卷含解析,共22页。试卷主要包含了下列命题中,真命题是等内容,欢迎下载使用。
2021-2022中考数学模拟试卷
注意事项
1.考试结束后,请将本试卷和答题卡一并交回.
2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.
3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.
4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.
5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.
一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)
1.将一副三角板按如图方式摆放,∠1与∠2不一定互补的是( )
A. B. C. D.
2.如图,△A′B′C′是△ABC以点O为位似中心经过位似变换得到的,若△A′B′C′的面积与△ABC的面积比是4:9,则OB′:OB为( )
A.2:3 B.3:2 C.4:5 D.4:9
3.如图,已知边长为2的正三角形ABC顶点A的坐标为(0,6),BC的中点D在y轴上,且在点A下方,点E是边长为2、中心在原点的正六边形的一个顶点,把这个正六边形绕中心旋转一周,在此过程中DE的最小值为( )
A.3 B.4﹣ C.4 D.6﹣2
4.数据”1,2,1,3,1”的众数是( )
A.1 B.1.5 C.1.6 D.3
5.如图,AD是半圆O的直径,AD=12,B,C是半圆O上两点.若,则图中阴影部分的面积是( )
A.6π B.12π C.18π D.24π
6.如图,△ABC是等边三角形,点P是三角形内的任意一点,PD∥AB,PE∥BC,PF∥AC,若△ABC的周长为12,则PD+PE+PF=( )
A.12 B.8 C.4 D.3
7.如图,若△ABC内接于半径为R的⊙O,且∠A=60°,连接OB、OC,则边BC的长为( )
A. B. C. D.
8.义安区某中学九年级人数相等的甲、乙两班学生参加同一次数学测试,两班平均分和方差分别为甲=89分,乙=89分,S甲2=195,S乙2=1.那么成绩较为整齐的是( )
A.甲班 B.乙班 C.两班一样 D.无法确定
9.下列命题中,真命题是( )
A.对角线互相垂直且相等的四边形是正方形
B.等腰梯形既是轴对称图形又是中心对称图形
C.圆的切线垂直于经过切点的半径
D.垂直于同一直线的两条直线互相垂直
10.如图,平行四边形ABCD中,E,F分别为AD,BC边上的一点,增加下列条件,不一定能得出BE∥DF的是( )
A.AE=CF B.BE=DF C.∠EBF=∠FDE D.∠BED=∠BFD
11.如图所示,从☉O外一点A引圆的切线AB,切点为B,连接AO并延长交圆于点C,连接BC,已知∠A=26°,则∠ACB的度数为( )
A.32° B.30° C.26° D.13°
12.已知xa=2,xb=3,则x3a﹣2b等于( )
A. B.﹣1 C.17 D.72
二、填空题:(本大题共6个小题,每小题4分,共24分.)
13.如图,在△ABC中,∠ACB=90°,∠B=60°,AB=12,若以点A为圆心, AC为半径的弧交AB于点E,以点B为圆心,BC为半径的弧交AB于点D,则图中阴影部分图形的面积为__(保留根号和π)
14.如图,在矩形ABCD中,E是AD边的中点,,垂足为点F,连接DF,分析下列四个结论:∽;;;其中正确的结论有______.
15.在平面直角坐标系中,点A,B的坐标分别为(m,7),(3m﹣1,7),若线段AB与直线y=﹣2x﹣1相交,则m的取值范围为__.
16.若一个三角形两边的垂直平分线的交点在第三边上,则这个三角形是_____三角形.
17.分解因式:x2y﹣2xy2+y3=_____.
18.若点A(1,m)在反比例函数y=的图象上,则m的值为________.
三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.
19.(6分)如图,在方格纸中.
(1)请在方格纸上建立平面直角坐标系,使,,并求出点坐标;
(2)以原点为位似中心,相似比为2,在第一象限内将放大,画出放大后的图形;
(3)计算的面积.
20.(6分)如图所示,点B、F、C、E在同一直线上,AB⊥BE,DE⊥BE,连接AC、DF,且AC=DF,BF=CE,求证:AB=DE.
21.(6分)从一幢建筑大楼的两个观察点A,B观察地面的花坛(点C),测得俯角分别为15°和60°,如图,直线AB与地面垂直,AB=50米,试求出点B到点C的距离.(结果保留根号)
22.(8分)如图1,点P是平面直角坐标系中第二象限内的一点,过点P作PA⊥y轴于点A,点P绕点A顺时针旋转60°得到点P',我们称点P'是点P的“旋转对应点”.
(1)若点P(﹣4,2),则点P的“旋转对应点”P'的坐标为 ;若点P的“旋转对应点”P'的坐标为(﹣5,16)则点P的坐标为 ;若点P(a,b),则点P的“旋转对应点”P'的坐标为 ;
(2)如图2,点Q是线段AP'上的一点(不与A、P'重合),点Q的“旋转对应点”是点Q',连接PP'、QQ',求证:PP'∥QQ';
(3)点P与它的“旋转对应点”P'的连线所在的直线经过点(,6),求直线PP'与x轴的交点坐标.
23.(8分)先化简,再求值:(﹣1)÷,其中x=1.
24.(10分)由我国完全自主设计、自主建造的首艘国产航母于2018年5月成功完成第一次海上试验任务.如图,航母由西向东航行,到达处时,测得小岛位于它的北偏东方向,且与航母相距80海里,再航行一段时间后到达B处,测得小岛位于它的北偏东方向.如果航母继续航行至小岛的正南方向的处,求还需航行的距离的长.
25.(10分)计算:﹣3tan30°.
26.(12分)(2017四川省内江市)小明随机调查了若干市民租用共享单车的骑车时间t(单位:分),将获得的数据分成四组,绘制了如下统计图(A:0<t≤10,B:10<t≤20,C:20<t≤30,D:t>30),根据图中信息,解答下列问题:
(1)这项被调查的总人数是多少人?
(2)试求表示A组的扇形统计图的圆心角的度数,补全条形统计图;
(3)如果小明想从D组的甲、乙、丙、丁四人中随机选择两人了解平时租用共享单车情况,请用列表或画树状图的方法求出恰好选中甲的概率.
27.(12分)货车行驶25与轿车行驶35所用时间相同.已知轿车每小时比货车多行驶20,求货车行驶的速度.
参考答案
一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)
1、D
【解析】
A选项:
∠1+∠2=360°-90°×2=180°;
B选项:
∵∠2+∠3=90°,∠3+∠4=90°,
∴∠2=∠4,
∵∠1+∠4=180°,
∴∠1+∠2=180°;
C选项:
∵∠ABC=∠DEC=90°,∴AB∥DE,∴∠2=∠EFC,
∵∠1+∠EFC=180°,∴∠1+∠2=180°;
D选项:∠1和∠2不一定互补.
故选D.
点睛:本题主要掌握平行线的性质与判定定理,关键在于通过角度之间的转化得出∠1和∠2的互补关系.
2、A
【解析】
根据位似的性质得△ABC∽△A′B′C′,再根据相似三角形的性质进行求解即可得.
【详解】
由位似变换的性质可知,A′B′∥AB,A′C′∥AC,
∴△A′B′C′∽△ABC,
∵△A'B'C'与△ABC的面积的比4:9,
∴△A'B'C'与△ABC的相似比为2:3,
∴ ,
故选A.
【点睛】
本题考查了位似变换:如果两个图形不仅是相似图形,而且对应顶点的连线相交于一点,对应边互相平行,那么这样的两个图形叫做位似图形,这个点叫做位似中心.
3、B
【解析】
分析:首先得到当点E旋转至y轴上时DE最小,然后分别求得AD、OE′的长,最后求得DE′的长即可.
详解:如图,当点E旋转至y轴上时DE最小;
∵△ABC是等边三角形,D为BC的中点,
∴AD⊥BC
∵AB=BC=2
∴AD=AB•sin∠B=,
∵正六边形的边长等于其半径,正六边形的边长为2,
∴OE=OE′=2
∵点A的坐标为(0,6)
∴OA=6
∴DE′=OA-AD-OE′=4-
故选B.
点睛:本题考查了正多边形的计算及等边三角形的性质,解题的关键是从图形中整理出直角三角形.
4、A
【解析】
众数指一组数据中出现次数最多的数据,根据众数的定义就可以求解.
【详解】
在这一组数据中1是出现次数最多的,故众数是1.
故选:A.
【点睛】
本题为统计题,考查众数的意义.众数是一组数据中出现次数最多的数据,注意众数可以不止一个.
5、A
【解析】
根据圆心角与弧的关系得到∠AOB=∠BOC=∠COD=60°,根据扇形面积公式计算即可.
【详解】
∵,
∴∠AOB=∠BOC=∠COD=60°.
∴阴影部分面积=.
故答案为:A.
【点睛】
本题考查的知识点是扇形面积的计算,解题关键是利用圆心角与弧的关系得到∠AOB=∠BOC=∠COD=60°.
6、C
【解析】
过点P作平行四边形PGBD,EPHC,进而利用平行四边形的性质及等边三角形的性质即可.
【详解】
延长EP、FP分别交AB、BC于G、H,
则由PD∥AB,PE∥BC,PF∥AC,可得,
四边形PGBD,EPHC是平行四边形,
∴PG=BD,PE=HC,
又△ABC是等边三角形,
又有PF∥AC,PD∥AB可得△PFG,△PDH是等边三角形,
∴PF=PG=BD,PD=DH,
又△ABC的周长为12,
∴PD+PE+PF=DH+HC+BD=BC=×12=4,
故选C.
【点睛】
本题主要考查了平行四边形的判定及性质以及等边三角形的判定及性质,等边三角形的性质:等边三角形的三个内角都相等,且都等于60°.
7、D
【解析】
延长BO交圆于D,连接CD,则∠BCD=90°,∠D=∠A=60°;又BD=2R,根据锐角三角函数的定义得BC=R.
【详解】
解:延长BO交⊙O于D,连接CD,
则∠BCD=90°,∠D=∠A=60°,
∴∠CBD=30°,
∵BD=2R,
∴DC=R,
∴BC=R,
故选D.
【点睛】
此题综合运用了圆周角定理、直角三角形30°角的性质、勾股定理,注意:作直径构造直角三角形是解决本题的关键.
8、B
【解析】
根据方差的意义,方差反映了一组数据的波动大小,故可由两人的方差得到结论.
【详解】
∵S甲2>S乙2,
∴成绩较为稳定的是乙班。
故选:B.
【点睛】
本题考查了方差,解题的关键是掌握方差的概念进行解答.
9、C
【解析】
分析是否为真命题,需要分别分析各题设是否能推出结论,从而利用排除法得出答案.
解答:解:A、错误,例如对角线互相垂直的等腰梯形;
B、错误,等腰梯形是轴对称图形不是中心对称图形;
C、正确,符合切线的性质;
D、错误,垂直于同一直线的两条直线平行.
故选C.
10、B
【解析】
由四边形ABCD是平行四边形,可得AD//BC,AD=BC,然后由AE=CF,∠EBF=∠FDE,∠BED=∠BFD均可判定四边形BFDE是平行四边形,则可证得BE//DF,利用排除法即可求得答案.
【详解】
四边形ABCD是平行四边形,
∴AD//BC,AD=BC,
A、∵AE=CF,
∴DE=BF,
∴四边形BFDE是平行四边形,
∴BE//DF,故本选项能判定BE//DF;
B、∵BE=DF,
四边形BFDE是等腰梯形,
本选项不一定能判定BE//DF;
C、∵AD//BC,
∴∠BED+∠EBF=180°,∠EDF+∠BFD=180°,
∵∠EBF=∠FDE,
∴∠BED=∠BFD,
四边形BFDE是平行四边形,
∴BE//DF,
故本选项能判定BE//DF;
D、∵AD//BC,
∴∠BED+∠EBF=180°,∠EDF+∠BFD=180°,
∵∠BED=∠BFD,
∴∠EBF=∠FDE,
∴四边形BFDE是平行四边形,
∴BE//DF,故本选项能判定BE//DF.
故选B.
【点睛】
本题考查了平行四边形的判定与性质,注意根据题意证得四边形BFDE是平行四边形是关键.
11、A
【解析】
连接OB,根据切线的性质和直角三角形的两锐角互余求得∠AOB=64°,再由等腰三角形的性质可得∠C=∠OBC,根据三角形外角的性质即可求得∠ACB的度数.
【详解】
连接OB,
∵AB与☉O相切于点B,
∴∠OBA=90°,
∵∠A=26°,
∴∠AOB=90°-26°=64°,
∵OB=OC,
∴∠C=∠OBC,
∴∠AOB=∠C+∠OBC=2∠C,
∴∠C=32°.
故选A.
【点睛】
本题考查了切线的性质,利用切线的性质,结合三角形外角的性质求出角的度数是解决本题的关键.
12、A
【解析】
∵xa=2,xb=3,
∴x3a−2b=(xa)3÷(xb)2=8÷9= ,
故选A.
二、填空题:(本大题共6个小题,每小题4分,共24分.)
13、15π−18.
【解析】
根据扇形的面积公式:S=分别计算出S扇形ACE,S扇形BCD,并且求出三角形ABC的面积,最后由S阴影部分=S扇形ACE+S扇形BCD-S△ABC即可得到答案.
【详解】
S阴影部分=S扇形ACE+S扇形BCD-S△ABC,
∵S扇形ACE==12π,
S扇形BCD==3π,
S△ABC=×6×6=18,
∴S阴影部分=12π+3π−18=15π−18.
故答案为15π−18.
【点睛】
本题考查了扇形面积的计算,解题的关键是熟练的掌握扇形的面积公式.
14、
【解析】
①证明∠EAC=∠ACB,∠ABC=∠AFE=90°即可;
②由AD∥BC,推出△AEF∽△CBF,得到,由AE=AD=BC,得到,即CF=2AF;
③作DM∥EB交BC于M,交AC于N,证明DM垂直平分CF,即可证明;
④设AE=a,AB=b,则AD=2a,根据△BAE∽△ADC,得到,即b=a,可得tan∠CAD=.
【详解】
如图,过D作DM∥BE交AC于N,
∵四边形ABCD是矩形,
∴AD∥BC,∠ABC=90°,AD=BC,
∵BE⊥AC于点F,
∴∠EAC=∠ACB,∠ABC=∠AFE=90°,
∴△AEF∽△CAB,故①正确;
∵AD∥BC,
∴△AEF∽△CBF,
∴,
∵AE=AD=BC,
∴,即CF=2AF,
∴CF=2AF,故②正确;
作DM∥EB交BC于M,交AC于N,
∵DE∥BM,BE∥DM,
∴四边形BMDE是平行四边形,
∴BM=DE=BC,
∴BM=CM,
∴CN=NF,
∵BE⊥AC于点F,DM∥BE,
∴DN⊥CF,
∴DM垂直平分CF,
∴DF=DC,故③正确;
设AE=a,AB=b,则AD=2a,
由△BAE∽△ADC,
∴,即b=a,
∴tan∠CAD=,故④错误;
故答案为:①②③.
【点睛】
本题主要考查了相似三角形的判定和性质,矩形的性质,图形面积的计算以及解直角三角形的综合应用,正确的作出辅助线构造平行四边形是解题的关键.
15、﹣4≤m≤﹣1
【解析】
先求出直线y=7与直线y=﹣2x﹣1的交点为(﹣4,7),再分类讨论:当点B在点A的右侧,则m≤﹣4≤3m﹣1,当点B在点A的左侧,则3m﹣1≤﹣4≤m,然后分别解关于m的不等式组即可.
【详解】
解:当y=7时,﹣2x﹣1=7,解得x=﹣4,
所以直线y=7与直线y=﹣2x﹣1的交点为(﹣4,7),
当点B在点A的右侧,则m≤﹣4≤3m﹣1,无解;
当点B在点A的左侧,则3m﹣1≤﹣4≤m,解得﹣4≤m≤﹣1,
所以m的取值范围为﹣4≤m≤﹣1,
故答案为﹣4≤m≤﹣1.
【点睛】
本题考查了一次函数图象上点的坐标特征,根据直线y=﹣2x﹣1与线段AB有公共点找出关于m的一元一次不等式组是解题的关键.
16、直角三角形.
【解析】
根据题意,画出图形,用垂直平分线的性质解答.
【详解】
点O落在AB边上,
连接CO,
∵OD是AC的垂直平分线,
∴OC=OA,
同理OC=OB,
∴OA=OB=OC,
∴A、B、C都落在以O为圆心,以AB为直径的圆周上,
∴∠C是直角.
∴这个三角形是直角三角形.
【点睛】
本题考查线段垂直平分线的性质,解题关键是准确画出图形,进行推理证明.
17、y(x﹣y)2
【解析】
原式提取公因式,再利用完全平方公式分解即可
【详解】
x2y﹣2xy2+y3=y(x2-2xy+y2)=y(x-y)2.
【点睛】
本题考查了提公因式法与公式法的综合运用,熟练掌握运算法则是解本题的关键.
18、3
【解析】
试题解析:把A(1,m)代入y=得:m=3.
所以m的值为3.
三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.
19、(1)作图见解析;.(2)作图见解析;(3)1.
【解析】
分析:(1)直接利用A,C点坐标得出原点位置进而得出答案;
(2)利用位似图形的性质即可得出△A'B'C';
(3)直接利用(2)中图形求出三角形面积即可.
详解:(1)如图所示,即为所求的直角坐标系;B(2,1);
(2)如图:△A'B'C'即为所求;
(3)S△A'B'C'=×4×8=1.
点睛:此题主要考查了位似变换以及三角形面积求法,正确得出对应点位置是解题的关键.画位似图形的一般步骤为:①确定位似中心;②分别连接并延长位似中心和关键点;③根据位似比,确定位似图形的关键点;④顺次连接上述各点,得到放大或缩小的图形.
20、证明见解析
【解析】
试题分析:证明三角形△ABC△DEF,可得=.
试题解析:
证明:∵=,
∴BC=EF,
∵⊥,⊥,
∴∠B=∠E=90°,AC=DF,
∴△ABC△DEF,
∴AB=DE.
21、
【解析】
试题分析:根据题意构建图形,结合图形,根据直角三角形的性质可求解.
试题解析:作AD⊥BC于点D,∵∠MBC=60°,
∴∠ABC=30°,
∵AB⊥AN,∴∠BAN=90°,∴∠BAC=105°,
则∠ACB=45°,
在Rt△ADB中,AB=1000,则AD=500,BD=,
在Rt△ADC中,AD=500,CD=500, 则BC=.
答:观察点B到花坛C的距离为米.
考点:解直角三角形
22、(1)(﹣2,2+2),(﹣10,16﹣5),(,b﹣a);(2)见解析;(3)直线PP'与x轴的交点坐标(﹣,0)
【解析】
(1)①当P(-4,2)时,OA=2,PA=4,由旋转知,∠P'AH=30°,进而P'H=P'A=2,AH=P'H=2,即可得出结论;
②当P'(-5,16)时,确定出P'A=10,AH=5,由旋转知,PA=PA'=10,OA=OH-AH=16-5,即可得出结论;
③当P(a,b)时,同①的方法得,即可得出结论;
(2)先判断出∠BQQ'=60°,进而得出∠PAP'=∠PP'A=60°,即可得出∠P'QQ'=∠PAP'=60°,即可得出结论;
(3)先确定出yPP'=x+3,即可得出结论.
【详解】
解:(1)如图1,
①当P(﹣4,2)时,
∵PA⊥y轴,
∴∠PAH=90°,OA=2,PA=4,
由旋转知,P'A=4,∠PAP'=60°,
∴∠P'AH=30°,
在Rt△P'AH中,P'H=P'A=2,
∴AH=P'H=2,
∴OH=OA+AH=2+2,
∴P'(﹣2,2+2),
②当P'(﹣5,16)时,
在Rt△P'AH中,∠P'AH=30°,P'H=5,
∴P'A=10,AH=5,
由旋转知,PA=PA'=10,OA=OH﹣AH=16﹣5,
∴P(﹣10,16﹣5),
③当P(a,b)时,同①的方法得,P'(,b﹣a),
故答案为:(﹣2,2+2),(﹣10,16﹣5),(,b﹣a);
(2)如图2,过点Q作QB⊥y轴于B,
∴∠BQQ'=60°,
由题意知,△PAP'是等边三角形,
∴∠PAP'=∠PP'A=60°,
∵QB⊥y轴,PA⊥y轴,
∴QB∥PA,
∴∠P'QQ'=∠PAP'=60°,
∴∠P'QQ'=60°=∠PP'A,
∴PP'∥QQ';
(3)设yPP'=kx+b',
由题意知,k=,
∵直线经过点(,6),
∴b'=3,
∴yPP'=x+3,
令y=0,
∴x=﹣,
∴直线PP'与x轴的交点坐标(﹣,0).
【点睛】
此题是几何变换综合题,主要考查了含30度角的直角三角形的性质,旋转的性质,等边三角形的判定和性质,待定系数法,解本题的关键是理解新定义.
23、-1.
【解析】
先化简题目中的式子,再将x的值代入化简后的式子即可解答本题.
【详解】
解:原式=,
=,
=,
=﹣,
当x=1时,
原式=﹣=﹣1.
【点睛】
本题主要考查分式的化简求值,解题的关键是掌握分式的混合运算顺序和运算法则
24、还需要航行的距离的长为20.4海里.
【解析】
分析:根据题意得:∠ACD=70°,∠BCD=37°,AC=80海里,在直角三角形ACD中,由三角函数得出CD=27.2海里,在直角三角形BCD中,得出BD,即可得出答案.
详解:由题知:,,.
在中,,,(海里).
在中,,,(海里).
答:还需要航行的距离的长为20.4海里.
点睛:此题考查了解直角三角形的应用-方向角问题,三角函数的应用;求出CD的长度是解决问题的关键.
25、1.
【解析】
直接利用零指数幂的性质、绝对值的性质和负整数指数幂的性质及特殊角三角函数值分别化简得出答案.
【详解】
﹣3tan30°
=4+﹣1﹣1﹣3×
=1.
【点睛】
此题主要考查了实数运算及特殊角三角函数值,正确化简各数是解题关键.
26、(1)50;(2)108°;(3).
【解析】
分析:(1)根据B组的人数和所占的百分比,即可求出这次被调查的总人数,从而补全统计图;用360乘以A组所占的百分比,求出A组的扇形圆心角的度数,再用总人数减去A、B、D组的人数,求出C组的人数;(2)画出树状图,由概率公式即可得出答案.
本题解析:解:(1)调查的总人数是:19÷38%=50(人).C组的人数有50-15-19-4=12(人),补全条形图如图所示.
(2)画树状图如下.共有12种等可能的结果,恰好选中甲的结果有6种,∴P(恰好选中甲)=.
点睛:本题考查了列表法与树状图、条形统计图的综合运用.熟练掌握画树状图法,读懂统计图,从统计图中得到必要的信息是解决问题的关键.
27、50千米/小时.
【解析】
根据题中等量关系:货车行驶25千米与小车行驶35千米所用时间相同,列出方程求解即可.
【详解】
解:设货车的速度为x千米/小时,依题意得:
解:根据题意,得
.
解得:x=50
经检验x=50是原方程的解.
答:货车的速度为50千米/小时.
【点睛】
本题考查了分式方程的应用,找出题中的等量关系,列出关系式是解题的关键.
相关试卷
这是一份2022年江苏省盐城市东台实验中考数学最后冲刺浓缩精华卷含解析,共22页。试卷主要包含了下列解方程去分母正确的是等内容,欢迎下载使用。
这是一份2021-2022学年浙江省温州市南浦实验中学中考数学最后冲刺浓缩精华卷含解析,共18页。试卷主要包含了下列事件中是必然事件的是,下列算式的运算结果正确的是等内容,欢迎下载使用。
这是一份2021-2022学年江苏省扬州市邗江实验重点名校中考数学最后冲刺浓缩精华卷含解析,共25页。试卷主要包含了估计介于等内容,欢迎下载使用。