|试卷下载
终身会员
搜索
    上传资料 赚现金
    湖南省武冈市洞庭校2022年中考数学五模试卷含解析
    立即下载
    加入资料篮
    湖南省武冈市洞庭校2022年中考数学五模试卷含解析01
    湖南省武冈市洞庭校2022年中考数学五模试卷含解析02
    湖南省武冈市洞庭校2022年中考数学五模试卷含解析03
    还剩16页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    湖南省武冈市洞庭校2022年中考数学五模试卷含解析

    展开
    这是一份湖南省武冈市洞庭校2022年中考数学五模试卷含解析,共19页。试卷主要包含了不等式组的解集是,下列事件是必然事件的是,如图,已知点A等内容,欢迎下载使用。

    2021-2022中考数学模拟试卷
    考生须知:
    1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。
    2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。
    3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。

    一、选择题(共10小题,每小题3分,共30分)
    1.把抛物线y=﹣2x2向上平移1个单位,得到的抛物线是(  )
    A.y=﹣2x2+1 B.y=﹣2x2﹣1 C.y=﹣2(x+1)2 D.y=﹣2(x﹣1)2
    2.下列事件中为必然事件的是( )
    A.打开电视机,正在播放茂名新闻 B.早晨的太阳从东方升起
    C.随机掷一枚硬币,落地后正面朝上 D.下雨后,天空出现彩虹
    3.计算1+2+22+23+…+22010的结果是( )
    A.22011–1 B.22011+1
    C. D.
    4.不等式组的解集是 (  )
    A.x>-1 B.x>3
    C.-1<x<3 D.x<3
    5.下列事件是必然事件的是(  )
    A.任意作一个平行四边形其对角线互相垂直
    B.任意作一个矩形其对角线相等
    C.任意作一个三角形其内角和为
    D.任意作一个菱形其对角线相等且互相垂直平分
    6.在平面直角坐标系xOy中,对于任意三点A,B,C的“矩面积”,给出如下定义:“水平底”a:任意两点横坐标差的最大值,“铅垂高”h:任意两点纵坐标差的最大值,则“矩面积”S=ah.例如:三点坐标分别为A(1,2),B(﹣3,1),C(2,﹣2),则“水平底”a=5,“铅垂高”h=4,“矩面积”S=ah=1.若D(1,2)、E(﹣2,1)、F(0,t)三点的“矩面积”为18,则t的值为(  )
    A.﹣3或7 B.﹣4或6 C.﹣4或7 D.﹣3或6
    7.某射击选手10次射击成绩统计结果如下表,这10次成绩的众数、中位数分别是(  )
    成绩(环)
    7
    8
    9
    10
    次数
    1
    4
    3
    2
    A.8、8 B.8、8.5 C.8、9 D.8、10
    8.如图,已知点A(0,1),B(0,﹣1),以点A为圆心,AB为半径作圆,交x轴的正半轴于点C,则∠BAC等于( )

    A.90° B.120° C.60° D.30°
    9.一块等边三角形的木板,边长为1,现将木板沿水平线翻滚(如图),那么B点从开始至结束所走过的路径长度为(  )

    A. B. C.4 D.2+
    10.如图,已知第一象限内的点A在反比例函数y=上,第二象限的点B在反比例函数上,且OA⊥OB,,则k的值为(  )

    A.﹣2 B.4 C.﹣4 D.2
    二、填空题(本大题共6个小题,每小题3分,共18分)
    11.如图,在四边形ABCD中,点E、F分别是边AB、AD的中点,BC=15,CD=9,EF=6,∠AFE=50°,则∠ADC的度数为_____.

    12.一个凸边形的内角和为720°,则这个多边形的边数是__________________
    13.为了了解某班数学成绩情况,抽样调查了13份试卷成绩,结果如下:3个140分,4个135分,2个130分,2个120分,1个100分,1个80分.则这组数据的中位数为______分.
    14.如图,在菱形ABCD中,于E,,,则菱形ABCD的面积是______.

    15.如图,△ABC中,AB=17,BC=10,CA=21,AM平分∠BAC,点D、E分别为AM、AB上的动点,则BD+DE的最小值是_____.

    16.如图所示,直线y=x+1(记为l1)与直线y=mx+n(记为l2)相交于点P(a,2),则关于x的不等式x+1≥mx+n的解集为__________.

    三、解答题(共8题,共72分)
    17.(8分)已知,平面直角坐标系中的点A(a,1),t=ab﹣a2﹣b2(a,b是实数)
    (1)若关于x的反比例函数y=过点A,求t的取值范围.
    (2)若关于x的一次函数y=bx过点A,求t的取值范围.
    (3)若关于x的二次函数y=x2+bx+b2过点A,求t的取值范围.
    18.(8分)计算:()﹣2﹣+(﹣2)0+|2﹣|
    19.(8分)如图,正方形ABCD中,BD为对角线.
    (1)尺规作图:作CD边的垂直平分线EF,交CD于点E,交BD于点F(保留作图痕迹,不要求写作法);
    (2)在(1)的条件下,若AB=4,求△DEF的周长.

    20.(8分)如图,抛物线y=﹣x2+bx+c与x轴交于点A(﹣1,0)和点B,与y轴交于C(0,3),直线y=+m经过点C,与抛物线的另一交点为点D,点P是直线CD上方抛物线上的一个动点,过点P作PF⊥x轴于点F,交直线CD于点E,设点P的横坐标为m.
    (1)求抛物线解析式并求出点D的坐标;
    (2)连接PD,△CDP的面积是否存在最大值?若存在,请求出面积的最大值;若不存在,请说明理由;
    (3)当△CPE是等腰三角形时,请直接写出m的值.

    21.(8分)如图,已知△ABC,以A为圆心AB为半径作圆交AC于E,延长BA交圆A于D连DE并延长交BC于F,
    (1)判断△ABC的形状,并证明你的结论;
    (2)如图1,若BE=CE=,求⊙A的面积;
    (3)如图2,若tan∠CEF=,求cos∠C的值.

    22.(10分)小王上周五在股市以收盘价(收市时的价格)每股25元买进某公司股票1000股,在接下来的一周交易日内,小王记下该股票每日收盘价格相比前一天的涨跌情况:(单位:元)
    星期





    每股涨跌(元)
    +2
    ﹣1.4
    +0.9
    ﹣1.8
    +0.5
    根据上表回答问题:
    (1)星期二收盘时,该股票每股多少元?
    (2)周内该股票收盘时的最高价,最低价分别是多少?
    (3)已知买入股票与卖出股票均需支付成交金额的千分之五的交易费.若小王在本周五以收盘价将全部股票卖出,他的收益情况如何?
    23.(12分)鲜丰水果店计划用元/盒的进价购进一款水果礼盒以备销售.
    据调查,当该种水果礼盒的售价为元/盒时,月销量为盒,每盒售价每增长元,月销量就相应减少盒,若使水果礼盒的月销量不低于盒,每盒售价应不高于多少元?
    在实际销售时,由于天气和运输的原因,每盒水果礼盒的进价提高了,而每盒水果礼盒的售价比(1)中最高售价减少了,月销量比(1)中最低月销量盒增加了,结果该月水果店销售该水果礼盒的利润达到了元,求的值.
    24.如图,在Rt△ABC中,CD,CE分别是斜边AB上的高,中线,BC=a,AC=b.若a=3,b=4,求DE的长;直接写出:CD=   (用含a,b的代数式表示);若b=3,tan∠DCE=,求a的值.




    参考答案

    一、选择题(共10小题,每小题3分,共30分)
    1、A
    【解析】
    根据“上加下减”的原则进行解答即可.
    【详解】
    解:由“上加下减”的原则可知,把抛物线y=﹣2x2向上平移1个单位,得到的抛物线是:y=﹣2x2+1.
    故选A.
    【点睛】
    本题考查的是二次函数的图象与几何变换,熟知“上加下减”的原则是解答此题的关键.
    2、B
    【解析】
    分析:根据必然事件、不可能事件、随机事件的概念可区别各类事件:
    A、打开电视机,正在播放茂名新闻,可能发生,也可能不发生,是随机事件,故本选项错误;
    B、早晨的太阳从东方升起,是必然事件,故本选项正确;
    C、随机掷一枚硬币,落地后可能正面朝上,也可能背面朝上,故本选项错误;
    D、下雨后,天空出现彩虹,可能发生,也可能不发生,故本选项错误.
    故选B.
    3、A
    【解析】
    可设其和为S,则2S=2+22+23+24+…+22010+22011,两式相减可得答案.
    【详解】
    设S=1+2+22+23+…+22010①
    则2S=2+22+23+…+22010+22011②
    ②-①得S=22011-1.
    故选A.
    【点睛】
    本题考查了因式分解的应用;设出和为S,并求出2S进行做差求解是解题关键.
    4、B
    【解析】
    根据解不等式组的方法可以求得原不等式组的解集.
    【详解】

    解不等式①,得x>-1,
    解不等式②,得x>1,
    由①②可得,x>1,
    故原不等式组的解集是x>1.
    故选B.
    【点睛】
    本题考查解一元一次不等式组,解题的关键是明确解一元一次不等式组的方法.
    5、B
    【解析】
    必然事件就是一定发生的事件,根据定义对各个选项进行判断即可.
    【详解】
    解:A、任意作一个平行四边形其对角线互相垂直不一定发生,是随机事件,故本选项错误;
    B、矩形的对角线相等,所以任意作一个矩形其对角线相等一定发生,是必然事件,故本选项正确;
    C、三角形的内角和为180°,所以任意作一个三角形其内角和为是不可能事件,故本选项错误;
    D、任意作一个菱形其对角线相等且互相垂直平分不一定发生,是随机事件,故选项错误,
    故选:B.
    【点睛】
    解决本题需要正确理解必然事件、不可能事件、随机事件的概念.必然事件指在一定条件下一定发生的事件.不可能事件是指在一定条件下,一定不发生的事件.不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.熟练掌握相关图形的性质也是解题的关键.
    6、C
    【解析】
    由题可知“水平底”a的长度为3,则由“矩面积”为18可知“铅垂高”h=6,再分 >2或t<1两种情况进行求解即可.
    【详解】
    解:由题可知a=3,则h=18÷3=6,则可知t>2或t<1.当t>2时,t-1=6,解得t=7;当t<1时,2-t=6,解得t=-4.综上,t=-4或7.
    故选择C.
    【点睛】
    本题考查了平面直角坐标系的内容,理解题意是解题关键.
    7、B
    【解析】
    根据众数和中位数的概念求解.
    【详解】
    由表可知,8环出现次数最多,有4次,所以众数为8环;
    这10个数据的中位数为第5、6个数据的平均数,即中位数为=8.5(环),
    故选:B.
    【点睛】
    本题考查了众数和中位数的知识,一组数据中出现次数最多的数据叫做众数;将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数;如果这组数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数.
    8、C
    【解析】
    解:∵A(0,1),B(0,﹣1),∴AB=1,OA=1,∴AC=1.在Rt△AOC中,cos∠BAC==,∴∠BAC=60°.故选C.
    点睛:本题考查了垂径定理的应用,关键是求出AC、OA的长.解题时注意:垂直弦的直径平分这条弦,并且平分弦所对的两条弧.
    9、B
    【解析】
    根据题目的条件和图形可以判断点B分别以C和A为圆心CB和AB为半径旋转120°,并且所走过的两路径相等,求出一个乘以2即可得到.
    【详解】
    如图:

    BC=AB=AC=1,
    ∠BCB′=120°,
    ∴B点从开始至结束所走过的路径长度为2×弧BB′=2×.故选B.
    10、C
    【解析】
    试题分析:作AC⊥x轴于点C,作BD⊥x轴于点D.

    则∠BDO=∠ACO=90°,则∠BOD+∠OBD=90°,
    ∵OA⊥OB,∴∠BOD+∠AOC=90°,∴∠BOD=∠AOC,∴△OBD∽△AOC,∴=(tanA)2=2,
    又∵S△AOC=×2=1,∴S△OBD=2,∴k=-1.
    故选C.
    考点:1.相似三角形的判定与性质;2.反比例函数图象上点的坐标特征.

    二、填空题(本大题共6个小题,每小题3分,共18分)
    11、140° 
    【解析】
    如图,连接BD,∵点E、F分别是边AB、AD的中点,
    ∴EF是△ABD的中位线,
    ∴EF∥BD,BD=2EF=12,
    ∴∠ADB=∠AFE=50°,
    ∵BC=15,CD=9,BD=12,
    ∴BC2=225,CD2=81,BD2=144,
    ∴CD2+BD2=BC2,
    ∴∠BDC=90°,
    ∴∠ADC=∠ADB+∠BDC=50°+90°=140°.
    故答案为:140°.

    12、1
    【解析】
    设这个多边形的边数是n,根据多边形的内角和公式:,列方程计算即可.
    【详解】
    解:设这个多边形的边数是n
    根据多边形内角和公式可得
    解得.
    故答案为:1.
    【点睛】
    此题考查的是根据多边形的内角和,求边数,掌握多边形内角和公式是解决此题的关键.
    13、1
    【解析】
    ∵13份试卷成绩,结果如下:3个140分,4个1分,2个130分,2个120分,1个100分,1个80分,
    ∴第7个数是1分,
    ∴中位数为1分,
    故答案为1.
    14、
    【解析】
    根据题意可求AD的长度,即可得CD的长度,根据菱形ABCD的面积=CD×AE,可求菱形ABCD的面积.
    【详解】
    ∵sinD=

    ∴AD=11
    ∵四边形ABCD是菱形
    ∴AD=CD=11
    ∴菱形ABCD的面积=11×8=96cm1.
    故答案为:96cm1.
    【点睛】
    本题考查了菱形的性质,解直角三角形,熟练运用菱形性质解决问题是本题的关键.
    15、8
    【解析】
    试题分析:过B 点作于点,与交于点,根据三角形两边之和小于第三边,可知的最小值是线的长,根据勾股定理列出方程组即可求解.
    过B 点作于点,与交于点,
    设AF=x,,

    ,(负值舍去).
    故BD+DE的值是8
    故答案为8

    考点:轴对称-最短路线问题.
    16、x≥1
    【解析】
    把y=2代入y=x+1,得x=1,
    ∴点P的坐标为(1,2),
    根据图象可以知道当x≥1时,y=x+1的函数值不小于y=mx+n相应的函数值,
    因而不等式x+1≥mx+n的解集是:x≥1,
    故答案为x≥1.
    【点睛】
    本题考查了一次函数与不等式(组)的关系及数形结合思想的应用.解决此类问题关键是仔细观察图形,注意几个关键点(交点、原点等),做到数形结合.

    三、解答题(共8题,共72分)
    17、(1)t≤﹣;(2)t≤3;(3)t≤1.
    【解析】
    (1)把点A的坐标代入反比例函数解析式求得a的值;然后利用二次函数的最值的求法得到t的取值范围.
    (2)把点A的坐标代入一次函数解析式求得a=;然后利用二次函数的最值的求法得到t的取值范围.
    (3)把点A的坐标代入二次函数解析式求得以a2+b2=1-ab;然后利用非负数的性质得到t的取值范围.
    【详解】
    解:(1)把A(a,1)代入y=得到:1=,
    解得a=1,
    则t=ab﹣a2﹣b2=b﹣1﹣b2=﹣(b﹣)2﹣.
    因为抛物线t=﹣(b﹣)2﹣的开口方向向下,且顶点坐标是(,﹣),
    所以t的取值范围为:t≤﹣;
    (2)把A(a,1)代入y=bx得到:1=ab,
    所以a=,
    则t=ab﹣a2﹣b2=﹣(a2+b2)+1=﹣(b+)2+3≤3,
    故t的取值范围为:t≤3;
    (3)把A(a,1)代入y=x2+bx+b2得到:1=a2+ab+b2,
    所以ab=1﹣(a2+b2),
    则t=ab﹣a2﹣b2=1﹣2(a2+b2)≤1,
    故t的取值范围为:t≤1.
    【点睛】
    本题考查了反比例函数、一次函数以及二次函数的性质.代入求值时,注意配方法的应用.
    18、2
    【解析】
    直接利用零指数幂的性质以及负指数幂的性质、绝对值的性质、二次根式以及立方根的运算法则分别化简得出答案.
    【详解】
    解:原式=4﹣3+1+2﹣2=2.
    【点睛】
    本题考查实数的运算,难点也在于对原式中零指数幂、负指数幂、绝对值、二次根式以及立方根的运算化简,关键要掌握这些知识点.
    19、(1)见解析;(2)2+1.
    【解析】
    分析:(1)、根据中垂线的做法作出图形,得出答案;(2)、根据中垂线和正方形的性质得出DF、DE和EF的长度,从而得出答案.
    详解:(1)如图,EF为所作;

    (2)解:∵四边形ABCD是正方形,∴∠BDC=15°,CD=BC=1,又∵EF垂直平分CD,
    ∴∠DEF=90°,∠EDF=∠EFD=15°, DE=EF=CD=2,∴DF=DE=2,
    ∴△DEF的周长=DF+DE+EF=2+1.
    点睛:本题主要考查的是中垂线的性质,属于基础题型.理解中垂线的性质是解题的关键.
    20、(1)y=﹣x2+2x+3,D点坐标为();(2)当m=时,△CDP的面积存在最大值,最大值为;(3)m的值为 或 或.
    【解析】
    (1)利用待定系数法求抛物线解析式和直线CD的解析式,然后解方程组得D点坐标;
    (2)设P(m,-m2+2m+3),则E(m,-m+3),则PE=-m2+m,利用三角形面积公式得到S△PCD=××(-m2+m)=-m2+m,然后利用二次函数的性质解决问题;
    (3)讨论:当PC=PE时,m2+(-m2+2m+3-3)2=(-m2+m)2;当CP=CE时,m2+(-m2+2m+3-3)2=m2+(-m+3-3)2;当EC=EP时,m2+(-m+3-3)2=(-m2+m)2,然后分别解方程即可得到满足条件的m的值.
    【详解】
    (1)把A(﹣1,0),C(0,3)分别代入y=﹣x2+bx+c得,解得,
    ∴抛物线的解析式为y=﹣x2+2x+3;
    把C(0,3)代入y=﹣x+n,解得n=3,
    ∴直线CD的解析式为y=﹣x+3,
    解方程组,解得
    或,
    ∴D点坐标为(,);
    (2)存在.
    设P(m,﹣m2+2m+3),则E(m,﹣m+3),
    ∴PE=﹣m2+2m+3﹣(﹣m+3)=﹣m2+m,
    ∴S△PCD=••(﹣m2+m)=﹣m2+m=﹣(m﹣)2+,
    当m=时,△CDP的面积存在最大值,最大值为;
    (3)当PC=PE时,m2+(﹣m2+2m+3﹣3)2=(﹣m2+m)2,解得m=0(舍去)或m=;
    当CP=CE时,m2+(﹣m2+2m+3﹣3)2=m2+(﹣m+3﹣3)2,解得m=0(舍去)或m=(舍去)或m=;
    当EC=EP时,m2+(﹣m+3﹣3)2=(﹣m2+m)2,解得m=(舍去)或m=,
    综上所述,m的值为或或.

    【点睛】
    本题考核知识点:二次函数的综合应用. 解题关键点:灵活运用二次函数性质,运用数形结合思想.
    21、 (1) △ABC为直角三角形,证明见解析;(2)12π;(3).
    【解析】
    (1)由,得△CEF∽△CBE,∴∠CBE=∠CEF,由BD为直径,得∠ADE+∠ABE=90°,即可得∠DBC=90°故△ABC为直角三角形.(2)设∠EBC=∠ECB=x,根据等腰三角形的性质与直角三角形的性质易得 x=30°,则∠ABE=60°故AB=BE=,则可求出求⊙A的面积;(3)由(1)知∠D=∠CFE=∠CBE,故tan∠CBE=,设EF=a,BE=2a,利用勾股定理求出 BD=2BF=,得AD=AB=,DE=2BE=4a,过F作FK∥BD交CE于K,利用平行线分线段成比例得,求得 , 即可求出tan∠C= 再求出cos∠C即可.
    【详解】
    解:∵,
    ∴,
    ∴△CEF∽△CBE,
    ∴∠CBE=∠CEF,
    ∵AE=AD,
    ∴∠ADE=∠AED=∠FEC=∠CBE,
    ∵BD为直径,
    ∴∠ADE+∠ABE=90°,
    ∴∠CBE+∠ABE=90°,
    ∴∠DBC=90°△ABC为直角三角形.
    (2)∵BE=CE
    ∴设∠EBC=∠ECB=x,
    ∴∠BDE=∠EBC=x,
    ∵AE=AD
    ∴∠AED=∠ADE=x,
    ∴∠CEF=∠AED=x
    ∴∠BFE=2x
    在△BDF中由△内角和可知:
    3x=90°
    ∴x=30°
    ∴∠ABE=60°
    ∴AB=BE=

    (3)由(1)知:∠D=∠CFE=∠CBE,
    ∴tan∠CBE=,
    设EF=a,BE=2a,
    ∴BF=,BD=2BF=,
    ∴AD=AB=,
    ∴,DE=2BE=4a,过F作FK∥BD交CE于K,
    ∴,  
    ∵, 

    ∴,
    ∴tan∠C=
    ∴cos∠C=.

    【点睛】
    此题主要考查圆内的三角形综合问题,解题的关键是熟知圆的切线定理,等腰三角形的性质,及相似三角形的性质.
    22、(1)25.6元;(2)收盘最高价为27元/股,收盘最低价为24.7元/股;(3)-51元,亏损51元.
    【解析】
    试题分析: (1)根据有理数的加减法的运算方法,求出星期二收盘时,该股票每股多少元即可.
    (2)这一周内该股票星期一的收盘价最高,星期四的收盘价最低.
    (3)用本周五以收盘价将全部股票卖出后得到的钱数减去买入股票与卖出股票均需支付的交易费,判断出他的收益情况如何即可.
    试题解析:
    (1)星期二收盘价为25+2−1.4=25.6(元/股)
    答:该股票每股25.6元.
    (2)收盘最高价为25+2=27(元/股)
    收盘最低价为25+2−1.45+0.9−1.8=24.7(元/股)
    答:收盘最高价为27元/股,收盘最低价为24.7元/股.
    (3)(25.2-25) ×1000-5‰×1000×(25.2+25)=200-251=-51(元)
    答:小王的本次收益为-51元.
    23、(1)若使水果礼盒的月销量不低于盒,每盒售价应不高于元;(2)的值为.
    【解析】
    (1)设每盒售价应为x元,根据月销量=980-30×超出14元的部分结合月销量不低于800盒,即可得出关于x的一元一次不等式,解之取其最大值即可得出结论;
    (2)根据总利润=每盒利润×销售数量,即可得出关于m的一元二次方程,解之取其正值即可得出结论.
    【详解】
    解:设每盒售价元.
    依题意得:
    解得:
    答:若使水果礼盒的月销量不低于盒,每盒售价应不高于元
    依题意:
    令:
    化简:
    解得:(舍)

    答:的值为.
    【点睛】
    考查一元二次方程的应用,一元一次不等式的应用,读懂题目,找出题目中的等量关系或不等关系是解题的关键.
    24、(1);(2);(3).
    【解析】
    (1)求出BE,BD即可解决问题.
    (2)利用勾股定理,面积法求高CD即可.
    (3)根据CD=3DE,构建方程即可解决问题.
    【详解】
    解:(1)在Rt△ABC中,∵∠ACB=91°,a=3,b=4,
    ∴.
    ∵CD,CE是斜边AB上的高,中线,
    ∴∠BDC=91°,.
    ∴在Rt△BCD中,

    (2)在Rt△ABC中,∵∠ACB=91°,BC=a,AC=b,


    故答案为:.
    (3)在Rt△BCD中,,
    ∴,
    又,
    ∴CD=3DE,即.
    ∵b=3,
    ∴2a=9﹣a2,即a2+2a﹣9=1.
    由求根公式得(负值舍去),
    即所求a的值是.
    【点睛】
    本题考查解直角三角形的应用,直角三角形斜边中线的性质,勾股定理等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.

    相关试卷

    中考强化练习湖南省武冈市中考数学二模试题(含详解): 这是一份中考强化练习湖南省武冈市中考数学二模试题(含详解),共20页。试卷主要包含了下列式子中,与是同类项的是,如图,,不等式的最小整数解是等内容,欢迎下载使用。

    真题解析湖南省武冈市中考数学三模试题(含答案解析): 这是一份真题解析湖南省武冈市中考数学三模试题(含答案解析),共33页。试卷主要包含了下列现象,下列式子中,与是同类项的是,下列各式中,不是代数式的是等内容,欢迎下载使用。

    【历年真题】湖南省武冈市中考数学三模试题(含详解): 这是一份【历年真题】湖南省武冈市中考数学三模试题(含详解),共27页。试卷主要包含了和按如图所示的位置摆放,顶点B,如图,等内容,欢迎下载使用。

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单

        欢迎来到教习网

        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        使用学贝下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        返回
        顶部
        Baidu
        map