|试卷下载
终身会员
搜索
    上传资料 赚现金
    河北省衡水市武邑中学2021-2022学年中考数学模拟预测题含解析
    立即下载
    加入资料篮
    河北省衡水市武邑中学2021-2022学年中考数学模拟预测题含解析01
    河北省衡水市武邑中学2021-2022学年中考数学模拟预测题含解析02
    河北省衡水市武邑中学2021-2022学年中考数学模拟预测题含解析03
    还剩20页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    河北省衡水市武邑中学2021-2022学年中考数学模拟预测题含解析

    展开
    这是一份河北省衡水市武邑中学2021-2022学年中考数学模拟预测题含解析,共23页。试卷主要包含了下列运算正确的是,下列运算结果为正数的是,不等式组的解集是等内容,欢迎下载使用。

    2021-2022中考数学模拟试卷
    注意事项:
    1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。
    2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。
    3.考试结束后,将本试卷和答题卡一并交回。

    一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)
    1.如图,在ABCD中,E为CD上一点,连接AE、BD,且AE、BD交于点F,DE:EC=2:3,则S△DEF:S△ABF=(  )

    A.2:3 B.4:9 C.2:5 D.4:25
    2.一元二次方程x2﹣2x=0的根是(  )
    A.x=2 B.x=0 C.x1=0,x2=2 D.x1=0,x2=﹣2
    3.一元二次方程的根是( )
    A. B.
    C. D.
    4.如图,在等腰直角三角形ABC中,∠C=90°,D为BC的中点,将△ABC折叠,使点A与点D重合,EF为折痕,则sin∠BED的值是( )

    A. B. C. D.
    5.下列运算正确的是( )
    A.(a2)3 =a5 B. C.(3ab)2=6a2b2 D.a6÷a3 =a2
    6.在Rt△ABC中,∠C=90°,如果AC=4,BC=3,那么∠A的正切值为(  )
    A. B. C. D.
    7.下列运算正确的是(  )
    A.a2+a2=a4 B.(a+b)2=a2+b2 C.a6÷a2=a3 D.(﹣2a3)2=4a6
    8.下列运算结果为正数的是( )
    A.1+(–2) B.1–(–2) C.1×(–2) D.1÷(–2)
    9.不等式组的解集是(  )
    A.﹣1≤x≤4 B.x<﹣1或x≥4 C.﹣1<x<4 D.﹣1<x≤4
    10.某校数学兴趣小组在一次数学课外活动中,随机抽查该校10名同学参加今年初中学业水平考试的体育成绩,得到结果如下表所示:

    下列说法正确的是( )
    A.这10名同学体育成绩的中位数为38分
    B.这10名同学体育成绩的平均数为38分
    C.这10名同学体育成绩的众数为39分
    D.这10名同学体育成绩的方差为2
    11.下列各式中,互为相反数的是( )
    A.和 B.和 C.和 D.和
    12.如图,等腰三角形ABC底边BC的长为4 cm,面积为12 cm2,腰AB的垂直平分线EF交AB于点E,交AC于点F,若D为BC边上的中点,M为线段EF上一点,则△BDM的周长最小值为( )

    A.5 cm B.6 cm C.8 cm D.10 cm
    二、填空题:(本大题共6个小题,每小题4分,共24分.)
    13.如图,分别以正六边形相间隔的3个顶点为圆心,以这个正六边形的边长为半径作扇形得到 “三叶草”图案,若正六边形的边长为3,则“三叶草”图案中阴影部分的面积为_____(结果保留π)

    14.如图,将量角器和含30°角的一块直角三角板紧靠着放在同一平面内,使三角板的0cm刻度线与量角器的0°线在同一直线上,且直径DC是直角边BC的两倍,过点A作量角器圆弧所在圆的切线,切点为E,则点E在量角器上所对应的度数是____.

    15.2的平方根是_________.
    16.如图,MN是⊙O的直径,MN=4,∠AMN=40°,点B为弧AN的中点,点P是直径MN上的一个动点,则PA+PB的最小值为_____.

    17.分解因式:2x2﹣8=_____________
    18.正五边形的内角和等于______度.
    三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.
    19.(6分)如图,△ABC中,D是BC上的一点,若AB=10,BD=6,AD=8,AC=17,求△ABC的面积.

    20.(6分)如图,正方形ABCD的边长为4,点E,F分别在边AB,AD上,且∠ECF=45°,CF的延长线交BA的延长线于点G,CE的延长线交DA的延长线于点H,连接AC,EF.,GH.
    填空:∠AHC   ∠ACG;(填“>”或“<”或“=”)线段AC,AG,AH什么关系?请说明理由;设AE=m,
    ①△AGH的面积S有变化吗?如果变化.请求出S与m的函数关系式;如果不变化,请求出定值.
    ②请直接写出使△CGH是等腰三角形的m值.
    21.(6分)已知,△ABC中,∠A=68°,以AB为直径的⊙O与AC,BC的交点分别为D,E
    (Ⅰ)如图①,求∠CED的大小;
    (Ⅱ)如图②,当DE=BE时,求∠C的大小.

    22.(8分)如图,梯形ABCD中,AD∥BC,AE⊥BC于E,∠ADC的平分线交AE于点O,以点O为圆心,OA为半径的圆经过点B,交BC于另一点F.
    (1)求证:CD与⊙O相切;
    (2)若BF=24,OE=5,求tan∠ABC的值.

    23.(8分)抛一枚质地均匀六面分别刻有1、2、3、4、5、6点的正方体骰子两次,若记第一次出现的点数为a,第二次出现的点数为b,则以方程组的解为坐标的点在第四象限的概率为_____.
    24.(10分)已知:如图,AB为⊙O的直径,C是BA延长线上一点,CP切⊙O于P,弦PD⊥AB于E,过点B作BQ⊥CP于Q,交⊙O于H,
    (1)如图1,求证:PQ=PE;
    (2)如图2,G是圆上一点,∠GAB=30°,连接AG交PD于F,连接BF,若tan∠BFE=3,求∠C的度数;
    (3)如图3,在(2)的条件下,PD=6,连接QC交BC于点M,求QM的长.

    25.(10分)如图(1),AB=CD,AD=BC,O为AC中点,过O点的直线分别与AD、BC相交于点M、N,那么∠1与∠2有什么关系?请说明理由;
    若过O点的直线旋转至图(2)、(3)的情况,其余条件不变,那么图(1)中的∠1与∠2的关系成立吗?请说明理由.

    26.(12分)某高科技产品开发公司现有员工50名,所有员工的月工资情况如下表:
    员工
    管理人员
    普通工作人员
    人员结构
    总经理
    部门经理
    科研人员
    销售人员
    高级技工
    中级技工
    勤杂工
    员工数(名)
    1
    3
    2
    3

    24
    1
    每人月工资(元)
    21000
    8400
    2025
    2200
    1800
    1600
    950
    请你根据上述内容,解答下列问题:该公司“高级技工”有   名;所有员工月工资的平均数x为2500元,中位数为   元,众数为   元;小张到这家公司应聘普通工作人员.请你回答右图中小张的问题,并指出用(2)中的哪个数据向小张介绍员工的月工资实际水平更合理些;去掉四个管理人员的工资后,请你计算出其他员工的月平均工资(结果保留整数),并判断能否反映该公司员工的月工资实际水平.

    27.(12分)如图1,图2…、图m是边长均大于2的三角形、四边形、…、凸n边形.分别以它们的各顶点为圆心,以1为半径画弧与两邻边相交,得到3条弧、4条弧…、n条弧.

    (1)图1中3条弧的弧长的和为   ,图2中4条弧的弧长的和为   ;
    (2)求图m中n条弧的弧长的和(用n表示).



    参考答案

    一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)
    1、D
    【解析】
    试题分析:先根据平行四边形的性质及相似三角形的判定定理得出△DEF∽△BAF,从而DE:AB=DE:DC=2:5,所以S△DEF:S△ABF=4:25
    试题解析:∵四边形ABCD是平行四边形,
    ∴AB∥CD,BA=DC
    ∴∠EAB=∠DEF,∠AFB=∠DFE,
    ∴△DEF∽△BAF,
    ∴DE:AB=DE:DC=2:5,
    ∴S△DEF:S△ABF=4:25,
    考点:1.相似三角形的判定与性质;2.三角形的面积;3.平行四边形的性质.
    2、C
    【解析】
    方程左边分解因式后,利用两数相乘积为0,两因式中至少有一个为0转化为两个一元一次方程来求解.
    【详解】
    方程变形得:x(x﹣1)=0,
    可得x=0或x﹣1=0,
    解得:x1=0,x1=1.
    故选C.
    【点睛】
    考查了解一元二次方程﹣因式分解法,熟练掌握因式分解的方法是解本题的关键.
    3、D
    【解析】
    试题分析:此题考察一元二次方程的解法,观察发现可以采用提公因式法来解答此题.原方程可化为:,因此或,所以.故选D.
    考点:一元二次方程的解法——因式分解法——提公因式法.
    4、A
    【解析】
    ∵△DEF是△AEF翻折而成,
    ∴△DEF≌△AEF,∠A=∠EDF,
    ∵△ABC是等腰直角三角形,
    ∴∠EDF=45°,由三角形外角性质得∠CDF+45°=∠BED+45°,
    ∴∠BED=∠CDF,
    设CD=1,CF=x,则CA=CB=2,
    ∴DF=FA=2-x,
    ∴在Rt△CDF中,由勾股定理得,CF2+CD2=DF2,即x2+1=(2-x)2,
    解得x=,
    ∴sin∠BED=sin∠CDF=.
    故选:A.
    5、B
    【解析】
    分析:本题考察幂的乘方,同底数幂的乘法,积的乘方和同底数幂的除法.
    解析: ,故A选项错误; a3·a = a4故B选项正确;(3ab)2 = 9a2b2故C选项错误; a6÷a3 = a3故D选项错误.
    故选B.
    6、A
    【解析】
    根据锐角三角函数的定义求出即可.
    【详解】
    解:在Rt△ABC中,∠C=90°,AC=4,BC=3,∴ tanA=.
    故选A.
    【点睛】
    本题考查了锐角三角函数的定义,熟记锐角三角函数的定义内容是解题的关键.
    7、D
    【解析】
    根据完全平方公式、合并同类项、同底数幂的除法、积的乘方,即可解答.
    【详解】
    A、a2+a2=2a2,故错误;
    B、(a+b)2=a2+2ab+b2,故错误;
    C、a6÷a2=a4,故错误;
    D、(-2a3)2=4a6,正确;
    故选D.
    【点睛】
    本题考查了完全平方公式、同底数幂的除法、积的乘方以及合并同类项,解决本题的关键是熟记公式和法则.
    8、B
    【解析】
    分别根据有理数的加、减、乘、除运算法则计算可得.
    【详解】
    解:A、1+(﹣2)=﹣(2﹣1)=﹣1,结果为负数;
    B、1﹣(﹣2)=1+2=3,结果为正数;
    C、1×(﹣2)=﹣1×2=﹣2,结果为负数;
    D、1÷(﹣2)=﹣1÷2=﹣,结果为负数;
    故选B.
    【点睛】
    本题主要考查有理数的混合运算,熟练掌握有理数的四则运算法则是解题的关键.
    9、D
    【解析】
    试题分析:解不等式①可得:x>-1,解不等式②可得:x≤4,则不等式组的解为-1<x≤4,故选D.
    10、C
    【解析】
    试题分析:10名学生的体育成绩中39分出现的次数最多,众数为39;
    第5和第6名同学的成绩的平均值为中位数,中位数为:=39;
    平均数==38.4
    方差=[(36﹣38.4)2+2×(37﹣38.4)2+(38﹣38.4)2+4×(39﹣38.4)2+2×(40﹣38.4)2]=1.64;
    ∴选项A,B、D错误;
    故选C.
    考点:方差;加权平均数;中位数;众数.
    11、A
    【解析】
    根据乘方的法则进行计算,然后根据只有符号不同的两个数互为相反数,可得答案.
    【详解】
    解:A. =9,=-9,故和互为相反数,故正确;
    B. =9,=9,故和不是互为相反数,故错误;
    C. =-8,=-8,故和不是互为相反数,故错误;
    D. =8,=8故和不是互为相反数,故错误.
    故选A.
    【点睛】
    本题考查了有理数的乘方和相反数的定义,关键是掌握有理数乘方的运算法则.
    12、C
    【解析】
    连接AD,由于△ABC是等腰三角形,点D是BC边的中点,故AD⊥BC,再根据三角形的面积公式求出AD的长,再根据EF是线段AB的垂直平分线可知,点B关于直线EF的对称点为点A,故AD的长为BM+MD的最小值,由此即可得出结论.
    【详解】
    如图,连接AD.
    ∵△ABC是等腰三角形,点D是BC边的中点,∴AD⊥BC,∴S△ABC=BC•AD=×4×AD=12,解得:AD=6(cm).
    ∵EF是线段AB的垂直平分线,∴点B关于直线EF的对称点为点A,∴AD的长为BM+MD的最小值,∴△BDM的周长最短=(BM+MD)+BD=AD+BC=6+×4=6+2=8(cm).
    故选C.

    【点睛】
    本题考查的是轴对称﹣最短路线问题,熟知等腰三角形三线合一的性质是解答此题的关键.

    二、填空题:(本大题共6个小题,每小题4分,共24分.)
    13、18π
    【解析】
    根据“三叶草”图案中阴影部分的面积为三个扇形面积的和,利用扇形面积公式解答即可.
    【详解】
    解:∵正六边形的内角为=120°,
    ∴扇形的圆心角为360°−120°=240°,
    ∴“三叶草”图案中阴影部分的面积为=18π,
    故答案为18π.
    【点睛】
    此题考查正多边形与圆,关键是根据“三叶草”图案中阴影部分的面积为三个扇形面积的和解答.
    14、60.
    【解析】
    首先设半圆的圆心为O,连接OE,OA,由题意易得AC是线段OB的垂直平分线,即可求得∠AOC=∠ABC=60°,又由AE是切线,易证得Rt△AOE≌Rt△AOC,继而求得∠AOE的度数,则可求得答案.
    【详解】
    设半圆的圆心为O,连接OE,OA,
    ∵CD=2OC=2BC,
    ∴OC=BC,
    ∵∠ACB=90°,即AC⊥OB,
    ∴OA=BA,
    ∴∠AOC=∠ABC,
    ∵∠BAC=30°,
    ∴∠AOC=∠ABC=60°,
    ∵AE是切线,
    ∴∠AEO=90°,
    ∴∠AEO=∠ACO=90°,
    ∵在Rt△AOE和Rt△AOC中,

    ∴Rt△AOE≌Rt△AOC(HL),
    ∴∠AOE=∠AOC=60°,
    ∴∠EOD=180°﹣∠AOE﹣∠AOC=60°,
    ∴点E所对应的量角器上的刻度数是60°,
    故答案为:60.

    【点睛】
    本题考查了切线的性质、全等三角形的判定与性质以及垂直平分线的性质,解题的关键是掌握辅助线的作法,注意掌握数形结合思想的应用.
    15、
    【解析】
    直接根据平方根的定义求解即可(需注意一个正数有两个平方根).
    【详解】
    解:2的平方根是故答案为.
    【点睛】
    本题考查了平方根的定义.注意一个正数有两个平方根,它们互为相反数;0的平方根是0;负数没有平方根.
    16、2
    【解析】
    过A作关于直线MN的对称点A′,连接A′B,由轴对称的性质可知A′B即为PA+PB的最小值,
    【详解】
    解:连接OB,OA′,AA′,
    ∵AA′关于直线MN对称,

    ∵∠AMN=40°,
    ∴∠A′ON=80°,∠BON=40°,
    ∴∠A′OB=120°,
    过O作OQ⊥A′B于Q,
    在Rt△A′OQ中,OA′=2,
    ∴A′B=2A′Q=
    即PA+PB的最小值.
    【点睛】
    本题考查轴对称求最小值问题及解直角三角形,根据轴对称的性质准确作图是本题的解题关键.
    17、2(x+2)(x﹣2)
    【解析】
    先提公因式,再运用平方差公式.
    【详解】
    2x2﹣8,
    =2(x2﹣4),
    =2(x+2)(x﹣2).
    【点睛】
    考核知识点:因式分解.掌握基本方法是关键.
    18、540
    【解析】
    过正五边形五个顶点,可以画三条对角线,把五边形分成3个三角形
    ∴正五边形的内角和=3180=540°

    三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.
    19、3
    【解析】
    试题分析:根据AB=30,BD=6,AD=8,利用勾股定理的逆定理求证△ABD是直角三角形,再利用勾股定理求出CD的长,然后利用三角形面积公式即可得出答案.
    试题解析:∵BD3+AD3=63+83=303=AB3,
    ∴△ABD是直角三角形,
    ∴AD⊥BC,
    在Rt△ACD中,CD=,
    ∴S△ABC=BC•AD=(BD+CD)•AD=×33×8=3,
    因此△ABC的面积为3.
    答:△ABC的面积是3.
    考点:3.勾股定理的逆定理;3.勾股定理.
    20、(1)=;(2)结论:AC2=AG•AH.理由见解析;(3)①△AGH的面积不变.②m的值为或2或8﹣4..
    【解析】
    (1)证明∠DAC=∠AHC+∠ACH=43°,∠ACH+∠ACG=43°,即可推出∠AHC=∠ACG;
    (2)结论:AC2=AG•AH.只要证明△AHC∽△ACG即可解决问题;
    (3)①△AGH的面积不变.理由三角形的面积公式计算即可;
    ②分三种情形分别求解即可解决问题.
    【详解】
    (1)∵四边形ABCD是正方形,
    ∴AB=CB=CD=DA=4,∠D=∠DAB=90°∠DAC=∠BAC=43°,
    ∴AC=,
    ∵∠DAC=∠AHC+∠ACH=43°,∠ACH+∠ACG=43°,
    ∴∠AHC=∠ACG.
    故答案为=.
    (2)结论:AC2=AG•AH.
    理由:∵∠AHC=∠ACG,∠CAH=∠CAG=133°,
    ∴△AHC∽△ACG,
    ∴,
    ∴AC2=AG•AH.
    (3)①△AGH的面积不变.
    理由:∵S△AGH=•AH•AG=AC2=×(4)2=1.
    ∴△AGH的面积为1.
    ②如图1中,当GC=GH时,易证△AHG≌△BGC,

    可得AG=BC=4,AH=BG=8,
    ∵BC∥AH,
    ∴,
    ∴AE=AB=.
    如图2中,当CH=HG时,

    易证AH=BC=4,
    ∵BC∥AH,
    ∴=1,
    ∴AE=BE=2.
    如图3中,当CG=CH时,易证∠ECB=∠DCF=22.3.

    在BC上取一点M,使得BM=BE,
    ∴∠BME=∠BEM=43°,
    ∵∠BME=∠MCE+∠MEC,
    ∴∠MCE=∠MEC=22.3°,
    ∴CM=EM,设BM=BE=m,则CM=EMm,
    ∴m+m=4,
    ∴m=4(﹣1),
    ∴AE=4﹣4(﹣1)=8﹣4,
    综上所述,满足条件的m的值为或2或8﹣4.
    【点睛】
    本题属于四边形综合题,考查了正方形的性质,全等三角形的判定和性质,相似三角形的判定和性质等知识,解题的关键是灵活运用所学知识解决问题.
    21、(Ⅰ)68°(Ⅱ)56°
    【解析】
    (1)圆内接四边形的一个外角等于它的内对角,利用圆内接四边形的性质证明∠CED=∠A即可,(2)连接AE,在Rt△AEC中,先根据同圆中,相等的弦所对弧相等,再根据同圆中,相等的弧所对圆周角相等, 求出∠EAC,最后根据直径所对圆周是直角,利用直角三角形两锐角互余即可解决问题.
    【详解】
    (Ⅰ)∵四边形ABED 圆内接四边形,
    ∴∠A+∠DEB=180°,
    ∵∠CED+∠DEB=180°,
    ∴∠CED=∠A,
    ∵∠A=68°,
    ∴∠CED=68°.
    (Ⅱ)连接AE.
    ∵DE=BD,
    ∴,
    ∴∠DAE=∠EAB=∠CAB=34°,
    ∵AB是直径,
    ∴∠AEB=90°,
    ∴∠AEC=90°,
    ∴∠C=90°﹣∠DAE=90°﹣34°=56°

    【点睛】
    本题主要考查圆周角定理、直径的性质、圆内接四边形的性质等知识,解决本题的关键是灵活运用所学知识解决问题.
    22、(1)证明见解析;(2)
    【解析】
    试题分析:(1)过点O作OG⊥DC,垂足为G.先证明∠OAD=90°,从而得到∠OAD=∠OGD=90°,然后利用AAS可证明△ADO≌△GDO,则OA=OG=r,则DC是⊙O的切线;
    (2)连接OF,依据垂径定理可知BE=EF=1,在Rt△OEF中,依据勾股定理可知求得OF=13,然后可得到AE的长,最后在Rt△ABE中,利用锐角三角函数的定义求解即可.
    试题解析:
    (1)证明:
    过点O作OG⊥DC,垂足为G.

    ∵AD∥BC,AE⊥BC于E,
    ∴OA⊥AD.
    ∴∠OAD=∠OGD=90°.
    在△ADO和△GDO中

    ∴△ADO≌△GDO.
    ∴OA=OG.
    ∴DC是⊙O的切线.
    (2)如图所示:连接OF.

    ∵OA⊥BC,
    ∴BE=EF= BF=1.
    在Rt△OEF中,OE=5,EF=1,
    ∴OF=,
    ∴AE=OA+OE=13+5=2.
    ∴tan∠ABC=.
    【点睛】本题主要考查的是切线的判定、垂径定理、勾股定理的应用、锐角三角函数的定义,掌握本题的辅助线的作法是解题的关键.
    23、
    【解析】
    解方程组,根据条件确定a、b的范围,从而确定满足该条件的结果个数,利用古典概率的概率公式求出方程组只有一个解的概率.
    【详解】
    ∵,

    若b>2a,
    即a=2,3,4,5,6    b=4,5,6
    符合条件的数组有(2,5)(2,6)共有2个,
    若b<2a,
    符合条件的数组有(1,1)共有1个,
    ∴概率p=.
    故答案为:.
    【点睛】
    本题主要考查了古典概率及其概率计算公式的应用.
    24、(1)证明见解析(2)30°(3) QM=
    【解析】
    试题分析:
    (1)连接OP,PB,由已知易证∠OBP=∠OPB=∠QBP,从而可得BP平分∠OBQ,结合BQ⊥CP于点Q,PE⊥AB于点E即可由角平分线的性质得到PQ=PE;
    (2)如下图2,连接OP,则由已知易得∠CPO=∠PEC=90°,由此可得∠C=∠OPE,设EF=x,则由∠GAB=30°,∠AEF=90°可得AE=,在Rt△BEF中,由tan∠BFE=可得BE=,从而可得AB=,则OP=OA=,结合AE=可得OE=,这样即可得到sin∠OPE=,由此可得∠OPE=30°,则∠C=30°;
    (3)如下图3,连接BG,过点O作OK⊥HB于点K,结合BQ⊥CP,∠OPQ=90°,可得四边形POKQ为矩形.由此可得QK=PO,OK∥CQ从而可得∠KOB=∠C=30°;由已知易证PE=,在Rt△EPO中结合(2)可解得PO=6,由此可得OB=QK=6;在Rt△KOB中可解得KB=3,由此可得QB=9;在△ABG中由已知条件可得BG=6,∠ABG=60°;过点G作GN⊥QB交QB的延长线于点N,由∠ABG=∠CBQ=60°,可得∠GBN=60°,从而可得解得GN=,BN=3,由此可得QN=12,则在Rt△BGN中可解得QG=,由∠ABG=∠CBQ=60°可知△BQG中BM是角平分线,由此可得QM:GM=QB:GB=9:6由此即可求得QM的长了.
    试题解析:
    (1)如下图1,连接OP,PB,∵CP切⊙O于P,
    ∴OP⊥CP于点P,
    又∵BQ⊥CP于点Q,
    ∴OP∥BQ,
    ∴∠OPB=∠QBP,
    ∵OP=OB,
    ∴∠OPB=∠OBP,
    ∴∠QBP=∠OBP,
    又∵PE⊥AB于点E,
    ∴PQ=PE;

    (2)如下图2,连接,∵CP切⊙O于P,


    ∵PD⊥AB



    在Rt中,∠GAB=30°
    ∴设EF=x,则
    在Rt中,tan∠BFE=3




    ∴在RtPEO中,
    ∴30°;

    (3)如下图3,连接BG,过点O作于K,又BQ⊥CP,
    ∴,
    ∴四边形POKQ为矩形,
    ∴QK=PO,OK//CQ,
    ∴30°,
    ∵⊙O 中PD⊥AB于E ,PD=6 ,AB为⊙O的直径,
    ∴PE= PD= 3,
    根据(2)得,在RtEPO中,,
    ∴,
    ∴OB=QK=PO=6,
    ∴在Rt中, ,
    ∴,
    ∴QB=9,
    在△ABG中,AB为⊙O的直径,
    ∴AGB=90°,
    ∵BAG=30°,
    ∴BG=6,ABG=60°,
    过点G作GN⊥QB交QB的延长线于点N,则∠N=90°,∠GBN=180°-∠CBQ-∠ABG=60°,
    ∴BN=BQ·cos∠GBQ=3,GN=BQ·sin∠GBQ=,
    ∴QN=QB+BN=12,
    ∴在Rt△QGN中,QG=,
    ∵∠ABG=∠CBQ=60°,
    ∴BM是△BQG的角平分线,
    ∴QM:GM=QB:GB=9:6,
    ∴QM=.

    点睛:解本题第3小题的要点是:(1)作出如图所示的辅助线,结合已知条件和(2)先求得BQ、BG的长及∠CBQ=∠ABG=60°;(2)再过点G作GN⊥QB并交QB的延长线于点N,解出BN和GN的长,这样即可在Rt△QGN中求得QG的长,最后在△BQG中“由角平分线分线段成比例定理”即可列出比例式求得QM的长了.
    25、详见解析.
    【解析】
    (1)根据全等三角形判定中的“SSS”可得出△ADC≌△CBA,由全等的性质得∠DAC=∠BCA,可证AD∥BC,根据平行线的性质得出∠1=∠1;
    (1)(3)和(1)的证法完全一样.先证△ADC≌△CBA得到∠DAC=∠BCA,则DA∥BC,从而∠1=∠1.
    【详解】
    证明:∠1与∠1相等.
    在△ADC与△CBA中,

    ∴△ADC≌△CBA.(SSS)
    ∴∠DAC=∠BCA.
    ∴DA∥BC.
    ∴∠1=∠1.
    ②③图形同理可证,△ADC≌△CBA得到∠DAC=∠BCA,则DA∥BC,∠1=∠1.
    26、(1)16人;(2)工中位数是1700元;众数是1600元;(3)用1700元或1600元来介绍更合理些.(4)能反映该公司员工的月工资实际水平.
    【解析】
    (1)用总人数50减去其它部门的人数;
    (2)根据中位数和众数的定义求解即可;
    (3)由平均数、众数、中位数的特征可知,平均数易受极端数据的影响,用众数和中位数映该公司员工的月工资实际水平更合适些;
    (4)去掉极端数据后平均数可以反映该公司员工的月工资实际水平.
    【详解】
    (1)该公司“高级技工”的人数=50﹣1﹣3﹣2﹣3﹣24﹣1=16(人);
    (2)工资数从小到大排列,第25和第26分别是:1600元和1800元,因而中位数是1700元;
    在这些数中1600元出现的次数最多,因而众数是1600元;
    (3)这个经理的介绍不能反映该公司员工的月工资实际水平.
    用1700元或1600元来介绍更合理些.
    (4)(元).
    能反映该公司员工的月工资实际水平.
    27、 (1)π, 2π;(2)(n﹣2)π.
    【解析】
    (1)利用弧长公式和三角形和四边形的内角和公式代入计算;
    (2)利用多边形的内角和公式和弧长公式计算.
    【详解】
    (1)利用弧长公式可得
    =π,
    因为n1+n2+n3=180°.
    同理,四边形的==2π,
    因为四边形的内角和为360度;
    (2)n条弧==(n﹣2)π.
    【点睛】
    本题考查了多边形的内角和定理以及扇形的面积公式和弧长的计算公式,理解公式是关键.

    相关试卷

    河北省廊坊广阳区七校联考2021-2022学年中考数学模拟预测题含解析: 这是一份河北省廊坊广阳区七校联考2021-2022学年中考数学模拟预测题含解析,共17页。

    2021-2022学年重庆育才中学中考数学模拟预测题含解析: 这是一份2021-2022学年重庆育才中学中考数学模拟预测题含解析,共15页。试卷主要包含了比较4,,的大小,正确的是,已知二次函数y=,计算 的结果为等内容,欢迎下载使用。

    2021-2022学年河北省沧州市孟村县中考数学模拟预测题含解析: 这是一份2021-2022学年河北省沧州市孟村县中考数学模拟预测题含解析,共24页。试卷主要包含了考生必须保证答题卡的整洁等内容,欢迎下载使用。

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单

        欢迎来到教习网

        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        还可免费领教师专享福利「樊登读书VIP」

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        返回
        顶部
        Baidu
        map