河北省衡水市名校2021-2022学年中考数学考前最后一卷含解析
展开2021-2022中考数学模拟试卷
注意事项:
1. 答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。
2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。
3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。
4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。
一、选择题(每小题只有一个正确答案,每小题3分,满分30分)
1.如图:A、B、C、D四点在一条直线上,若AB=CD,下列各式表示线段AC错误的是( )
A.AC=AD﹣CD B.AC=AB+BC
C.AC=BD﹣AB D.AC=AD﹣AB
2.《孙子算经》是中国古代重要的数学著作,成书于约一千五百年前,其中有首歌谣:今有竿不知其长,量得影长一丈五尺,立一标杆,长一尺五寸,影长五寸,问竿长几何?意即:有一根竹竿不知道有多长,量出它在太阳下的影子长一丈五尺,同时立一根一尺五寸的小标杆,它的影长五寸(提示:1丈=10尺,1尺=10寸),则竹竿的长为( )
A.五丈 B.四丈五尺 C.一丈 D.五尺
3.一个不透明的布袋里装有7个只有颜色不同的球,其中3个红球,4个白球,从布袋中随机摸出一个球,摸出的球是红球的概率是( )
A. B. C. D.
4.如图,为测量平地上一块不规则区域(图中的阴影部分)的面积,画一个边长为4m的正方形,使不规则区域落在正方形内.现向正方形内随机投掷小球(假设小球落在正方形内每一点都是等可能的),经过大量重复投掷试验,发现小球落在不规则区域的频率稳定在常数0.65附近,由此可估计不规则区域的面积约为( )
A.2.6m2 B.5.6m2 C.8.25m2 D.10.4m2
5.桌面上有A、B两球,若要将B球射向桌面任意一边的黑点,则B球一次反弹后击中A球的概率是( )
A. B. C. D.
6.给出下列各数式,① ② ③ ④ 计算结果为负数的有( )
A.1个 B.2个 C.3个 D.4个
7.如果m的倒数是﹣1,那么m2018等于( )
A.1 B.﹣1 C.2018 D.﹣2018
8.计算-5x2-3x2的结果是( )
A.2x2 B.3x2 C.-8x2 D.8x2
9.估计介于( )
A.0与1之间 B.1与2之间 C.2与3之间 D.3与4之间
10.实数a,b,c在数轴上对应点的位置如图所示,则下列结论中正确的是( )
A.a+c>0 B.b+c>0 C.ac>bc D.a﹣c>b﹣c
二、填空题(共7小题,每小题3分,满分21分)
11.大型纪录片《厉害了,我的国》上映25天,累计票房约为402700000元,成为中国纪录电影票房冠军.402700000用科学记数法表示是________.
12.如图,△ABC内接于⊙O,AB是⊙O的直径,点D在圆O上,BD=CD,AB=10,AC=6,连接OD交BC于点E,DE=______.
13.可燃冰是一种新型能源,它的密度很小,可燃冰的质量仅为.数字0.00092用科学记数法表示是__________.
14.如图,正比例函数y=kx与反比例函数y=的图象有一个交点A(2,m),AB⊥x轴于点B,平移直线y=kx使其经过点B,得到直线l,则直线l对应的函数表达式是_________ .
15.如图是一位同学设计的用手电筒来测量某古城墙高度的示意图.点P处放一水平的平面镜,光线从点A出发经平面镜反射后刚好到古城墙CD的顶端C处,已知AB⊥BD,CD⊥BD,测得AB=2米,BP=3米,PD=15米,那么该古城墙的高度CD是_____米.
16.在直径为的圆柱形油槽内装入一些油后,截面如图所示如果油面宽,那么油的最大深度是_________.
17.抛物线y=mx2+2mx+5的对称轴是直线_____.
三、解答题(共7小题,满分69分)
18.(10分)在Rt△ABC中,∠BAC=,D是BC的中点,E是AD的中点.过点A作AF∥BC交BE的延长线于点F.
(1)求证:△AEF≌△DEB;
(2)证明四边形ADCF是菱形;
(3)若AC=4,AB=5,求菱形ADCFD 的面积.
19.(5分)如图,在五边形ABCDE中,∠BCD=∠EDC=90°,BC=ED,AC=AD.求证:△ABC≌△AED;当∠B=140°时,求∠BAE的度数.
20.(8分)已知:如图,△MNQ中,MQ≠NQ.
(1)请你以MN为一边,在MN的同侧构造一个与△MNQ全等的三角形,画出图形,并简要说明构造的方法;
(2)参考(1)中构造全等三角形的方法解决下面问题:
如图,在四边形ABCD中,,∠B=∠D.求证:CD=AB.
21.(10分)如图,在城市改造中,市政府欲在一条人工河上架一座桥,河的两岸PQ与MN平行,河岸MN上有A、B两个相距50米的凉亭,小亮在河对岸D处测得∠ADP=60°,然后沿河岸走了110米到达C处,测得∠BCP=30°,求这条河的宽.(结果保留根号)
22.(10分)工人师傅用一块长为10dm,宽为6dm的矩形铁皮制作一个无盖的长方体容器,需要将四角各裁掉一个正方形.(厚度不计)求长方体底面面积为12dm2时,裁掉的正方形边长多大?
23.(12分)如图,某次中俄“海上联合”反潜演习中,我军舰A测得潜艇C的俯角为30°.位于军舰A正上方1000米的反潜直升机B侧得潜艇C的俯角为68°.试根据以上数据求出潜艇C离开海平面的下潜深度.(结果保留整数.参考数据:sin68°≈0.9,cos68°≈0.4,tan68°≈2.5, ≈1.7)
24.(14分)凯里市某文具店某种型号的计算器每只进价12元,售价20元,多买优惠,优势方法是:凡是一次买10只以上的,每多买一只,所买的全部计算器每只就降价0.1元,例如:某人买18只计算器,于是每只降价0.1×(18﹣10)=0.8(元),因此所买的18只计算器都按每只19.2元的价格购买,但是每只计算器的最低售价为16元.
(1)求一次至少购买多少只计算器,才能以最低价购买?
(2)求写出该文具店一次销售x(x>10)只时,所获利润y(元)与x(只)之间的函数关系式,并写出自变量x的取值范围;
(3)一天,甲顾客购买了46只,乙顾客购买了50只,店主发现卖46只赚的钱反而比卖50只赚的钱多,请你说明发生这一现象的原因;当10<x≤50时,为了获得最大利润,店家一次应卖多少只?这时的售价是多少?
参考答案
一、选择题(每小题只有一个正确答案,每小题3分,满分30分)
1、C
【解析】
根据线段上的等量关系逐一判断即可.
【详解】
A、∵AD-CD=AC,
∴此选项表示正确;
B、∵AB+BC=AC,
∴此选项表示正确;
C、∵AB=CD,
∴BD-AB=BD-CD,
∴此选项表示不正确;
D、∵AB=CD,
∴AD-AB=AD-CD=AC,
∴此选项表示正确.
故答案选:C.
【点睛】
本题考查了线段上两点间的距离及线段的和、差的知识,解题的关键是找出各线段间的关系.
2、B
【解析】
【分析】根据同一时刻物高与影长成正比可得出结论.
【详解】设竹竿的长度为x尺,
∵竹竿的影长=一丈五尺=15尺,标杆长=一尺五寸=1.5尺,影长五寸=0.5尺,
∴,
解得x=45(尺),
故选B.
【点睛】本题考查了相似三角形的应用举例,熟知同一时刻物髙与影长成正比是解答此题的关键.
3、B
【解析】
袋中一共7个球,摸到的球有7种可能,而且机会均等,其中有3个红球,因此摸到红球的概率为,故选B.
4、D
【解析】
首先确定小石子落在不规则区域的概率,然后利用概率公式求得其面积即可.
【详解】
∵经过大量重复投掷试验,发现小石子落在不规则区域的频率稳定在常数0.65附近,
∴小石子落在不规则区域的概率为0.65,
∵正方形的边长为4m,
∴面积为16 m2
设不规则部分的面积为s m2
则=0.65
解得:s=10.4
故答案为:D.
【点睛】
利用频率估计概率.
5、B
【解析】
试题解析:由图可知可以瞄准的点有2个.
.
∴B球一次反弹后击中A球的概率是.
故选B.
6、B
【解析】
∵①;②;③;④;
∴上述各式中计算结果为负数的有2个.
故选B.
7、A
【解析】
因为两个数相乘之积为1,则这两个数互为倒数, 如果m的倒数是﹣1,则m=-1,
然后再代入m2018计算即可.
【详解】
因为m的倒数是﹣1,
所以m=-1,
所以m2018=(-1)2018=1,故选A.
【点睛】
本题主要考查倒数的概念和乘方运算,解决本题的关键是要熟练掌握倒数的概念和乘方运算法则.
8、C
【解析】
利用合并同类项法则直接合并得出即可.
【详解】
解:
故选C.
【点睛】
此题主要考查了合并同类项,熟练应用合并同类项法则是解题关键.
9、C
【解析】
解:∵,
∴,即
∴估计在2~3之间
故选C.
【点睛】
本题考查估计无理数的大小.
10、D
【解析】
分析:根据图示,可得:c<b<0<a,,据此逐项判定即可.
详解: ∵c<0<a,|c|>|a|,
∴a+c<0,
∴选项A不符合题意;
∵c<b<0,
∴b+c<0,
∴选项B不符合题意;
∵c<b<0<a,c<0,
∴ac<0,bc>0,
∴ac<bc,
∴选项C不符合题意;
∵a>b,
∴a﹣c>b﹣c,
∴选项D符合题意.
故选D.
点睛:此题考查了数轴,考查了有理数的大小比较关系,考查了不等关系与不等式.熟记有理数大小比较法则,即正数大于0,负数小于0,正数大于一切负数.
二、填空题(共7小题,每小题3分,满分21分)
11、4.027
【解析】
分析:科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.
详解:4 0270 0000用科学记数法表示是4.027×1.
故答案为4.027×1.
点睛:本题考查了科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.
12、1
【解析】
先利用垂径定理得到OD⊥BC,则BE=CE,再证明OE为△ABC的中位线得到,入境计算OD−OE即可.
【详解】
解:∵BD=CD,
∴,
∴OD⊥BC,
∴BE=CE,
而OA=OB,
∴OE为△ABC的中位线,
∴,
∴DE=OD-OE=5-3=1.
故答案为1.
【点睛】
此题考查垂径定理,中位线的性质,解题的关键在于利用中位线的性质求解.
13、9.2×10﹣1.
【解析】
根据科学记数法的正确表示为,由题意可得0.00092用科学记数法表示是9.2×10﹣1.
【详解】
根据科学记数法的正确表示形式可得:
0.00092用科学记数法表示是9.2×10﹣1.
故答案为: 9.2×10﹣1.
【点睛】
本题主要考查科学记数法的正确表现形式,解决本题的关键是要熟练掌握科学记数法的正确表现形式.
14、y=x-3
【解析】
【分析】由已知先求出点A、点B的坐标,继而求出y=kx的解析式,再根据直线y=kx平移后经过点B,可设平移后的解析式为y=kx+b,将B点坐标代入求解即可得.
【详解】当x=2时,y==3,∴A(2,3),B(2,0),
∵y=kx过点 A(2,3),
∴3=2k,∴k=,
∴y=x,
∵直线y=x平移后经过点B,
∴设平移后的解析式为y=x+b,
则有0=3+b,
解得:b=-3,
∴平移后的解析式为:y=x-3,
故答案为:y=x-3.
【点睛】本题考查了一次函数与反比例函数的综合应用,涉及到待定系数法,一次函数图象的平移等,求出k的值是解题的关键.
15、10
【解析】
首先证明△ABP∽△CDP,可得=,再代入相应数据可得答案.
【详解】
如图,
由题意可得:∠APE=∠CPE,
∴∠APB=∠CPD,
∵AB⊥BD,CD⊥BD,
∴∠ABP=∠CDP=90°,
∴△ABP∽△CDP,
∴=,
∵AB=2米,BP=3米,PD=15米,
∴=,
解得:CD=10米.
故答案为10.
【点睛】
本题考查了相似三角形的应用,解题的关键是熟练的掌握相似三角形的应用.
16、2m
【解析】
本题是已知圆的直径,弦长求油的最大深度其实就是弧AB的中点到弦AB的距离,可以转化为求弦心距的问题,利用垂径定理来解决.
【详解】
解:过点O作OM⊥AB交AB与M,交弧AB于点E.连接OA.
在Rt△OAM中:OA=5m,AM=AB=4m.
根据勾股定理可得OM=3m,则油的最大深度ME为5-3=2m.
【点睛】
圆中的有关半径,弦长,弦心距之间的计算一般是通过垂径定理转化为解直角三角形的问题.
17、x=﹣1
【解析】
根据抛物线的对称轴公式可直接得出.
【详解】
解:这里a=m,b=2m
∴对称轴x=
故答案为:x=-1.
【点睛】
解答本题关键是识记抛物线的对称轴公式x=.
三、解答题(共7小题,满分69分)
18、(1)证明详见解析;(2)证明详见解析;(3)1.
【解析】
(1)利用平行线的性质及中点的定义,可利用AAS证得结论;
(2)由(1)可得AF=BD,结合条件可求得AF=DC,则可证明四边形ADCF为平行四边形,再利用直角三角形的性质可证得AD=CD,可证得四边形ADCF为菱形;
(3)连接DF,可证得四边形ABDF为平行四边形,则可求得DF的长,利用菱形的面积公式可求得答案.
【详解】
(1)证明:∵AF∥BC,
∴∠AFE=∠DBE,
∵E是AD的中点,
∴AE=DE,
在△AFE和△DBE中,
∴△AFE≌△DBE(AAS);
(2)证明:由(1)知,△AFE≌△DBE,则AF=DB.
∵AD为BC边上的中线
∴DB=DC,
∴AF=CD.
∵AF∥BC,
∴四边形ADCF是平行四边形,
∵∠BAC=90°,D是BC的中点,E是AD的中点,
∴AD=DC=BC,
∴四边形ADCF是菱形;
(3)连接DF,
∵AF∥BD,AF=BD,
∴四边形ABDF是平行四边形,
∴DF=AB=5,
∵四边形ADCF是菱形,
∴S菱形ADCF=AC▪DF=×4×5=1.
【点睛】
本题主要考查菱形的性质及判定,利用全等三角形的性质证得AF=CD是解题的关键,注意菱形面积公式的应用.
19、(1)详见解析;(2)80°.
【分析】(1)根据∠ACD=∠ADC,∠BCD=∠EDC=90°,可得∠ACB=∠ADE,进而运用SAS即可判定全等三角形;
(2)根据全等三角形对应角相等,运用五边形内角和,即可得到∠BAE的度数.
【解析】
(1)根据∠ACD=∠ADC,∠BCD=∠EDC=90°,可得∠ACB=∠ADE,进而运用SAS即可判定全等三角形;
(2)根据全等三角形对应角相等,运用五边形内角和,即可得到∠BAE的度数.
【详解】
证明:(1)∵AC=AD,
∴∠ACD=∠ADC,
又∵∠BCD=∠EDC=90°,
∴∠ACB=∠ADE,
在△ABC和△AED中,
,
∴△ABC≌△AED(SAS);
解:(2)当∠B=140°时,∠E=140°,
又∵∠BCD=∠EDC=90°,
∴五边形ABCDE中,∠BAE=540°﹣140°×2﹣90°×2=80°.
【点睛】
考点:全等三角形的判定与性质.
20、(1)作图见解析;(2)证明书见解析.
【解析】
(1)以点N为圆心,以MQ长度为半径画弧,以点M为圆心,以NQ长度为半径画弧,两弧交于一点F,则△MNF为所画三角形.
(2)延长DA至E,使得AE=CB,连结CE.证明△EAC≌△BCA,得:∠B =∠E,AB=CE,根据等量代换可以求得答案.
【详解】
解:(1)如图1,以N 为圆心,以MQ 为半径画圆弧;以M 为圆心,以NQ 为半径画圆弧;两圆弧的交点即为所求.
(2)如图,延长DA至E,使得AE=CB,连结CE.
∵∠ACB +∠CAD =180°,∠DACDAC +∠EAC =180°,∴∠BACBCA =∠EAC.
在△EAC和△BAC中,AE=CE,AC=CA,∠EAC=∠BCN,
∴△AECEAC≌△BCA (SAS).∴∠B=∠E,AB=CE.
∵∠B=∠D,∴∠D=∠E.∴CD=CE,∴CD=AB.
考点:1.尺规作图;2.全等三角形的判定和性质.
21、米.
【解析】
试题分析:根据矩形的性质,得到对边相等,设这条河宽为x米,则根据特殊角的三角函数值,可以表示出ED和BF,根据EC=ED+CD,AF=AB+BF,列出等式方程,求解即可.
试题解析:作AE⊥PQ于E,CF⊥MN于F.
∵PQ∥MN,
∴四边形AECF为矩形,
∴EC=AF,AE=CF.
设这条河宽为x米,
∴AE=CF=x.
在Rt△AED中,
∵PQ∥MN,
∴在Rt△BCF中,
∵EC=ED+CD,AF=AB+BF,
解得
∴这条河的宽为米.
22、裁掉的正方形的边长为2dm,底面积为12dm2.
【解析】
试题分析:设裁掉的正方形的边长为xdm,则制作无盖的长方体容器的长为(10-2x)dm,宽为(6-2x)dm,根据长方体底面面积为12dm2列出方程,解方程即可求得裁掉的正方形边长.
试题解析:
设裁掉的正方形的边长为xdm,
由题意可得(10-2x)(6-2x)=12,
即x2-8x+12=0,解得x=2或x=6(舍去),
答:裁掉的正方形的边长为2dm,底面积为12dm2.
23、潜艇C离开海平面的下潜深度约为308米
【解析】试题分析:过点C作CD⊥AB,交BA的延长线于点D,则AD即为潜艇C的下潜深度,用锐角三角函数分别在Rt△ACD中表示出CD和在Rt△BCD中表示出BD,利用BD=AD+AB二者之间的关系列出方程求解.
试题解析:过点C作CD⊥AB,交BA的延长线于点D,则AD即为潜艇C的下潜深度,根据题意得:∠ACD=30°,∠BCD=68°,
设AD=x,则BD=BA+AD=1000+x,
在Rt△ACD中,CD= = =
在Rt△BCD中,BD=CD•tan68°,
∴325+x= •tan68°
解得:x≈100米,
∴潜艇C离开海平面的下潜深度为100米.
点睛:本题考查了解直角三角形的应用,解题的关键是作出辅助线,从题目中找出直角三角形并选择合适的边角关系求解.
视频
24、(1)1;(3);(3)理由见解析,店家一次应卖45只,最低售价为16.5元,此时利润最大.
【解析】
试题分析:(1)设一次购买x只,由于凡是一次买10只以上的,每多买一只,所买的全部计算器每只就降低0.10元,而最低价为每只16元,因此得到30﹣0.1(x﹣10)=16,解方程即可求解;
(3)由于根据(1)得到x≤1,又一次销售x(x>10)只,因此得到自变量x的取值范围,然后根据已知条件可以得到y与x的函数关系式;
(3)首先把函数变为y==,然后可以得到函数的增减性,再结合已知条件即可解决问题.
试题解析:(1)设一次购买x只,则30﹣0.1(x﹣10)=16,解得:x=1.
答:一次至少买1只,才能以最低价购买;
(3)当10<x≤1时,y=[30﹣0.1(x﹣10)﹣13]x=,当x>1时,y=(16﹣13)x=4x;
综上所述:;
(3)y==,①当10<x≤45时,y随x的增大而增大,即当卖的只数越多时,利润更大.
②当45<x≤1时,y随x的增大而减小,即当卖的只数越多时,利润变小.
且当x=46时,y1=303.4,当x=1时,y3=3.∴y1>y3.
即出现了卖46只赚的钱比卖1只赚的钱多的现象.
当x=45时,最低售价为30﹣0.1(45﹣10)=16.5(元),此时利润最大.故店家一次应卖45只,最低售价为16.5元,此时利润最大.
考点:二次函数的应用;二次函数的最值;最值问题;分段函数;分类讨论.
河北省邯郸市名校2021-2022学年中考考前最后一卷数学试卷含解析: 这是一份河北省邯郸市名校2021-2022学年中考考前最后一卷数学试卷含解析,共17页。试卷主要包含了下列计算正确的是,计算3的结果是,在平面直角坐标系中,将点P,二次函数y=等内容,欢迎下载使用。
2022年河北省保定市重点名校中考数学考前最后一卷含解析: 这是一份2022年河北省保定市重点名校中考数学考前最后一卷含解析,共24页。试卷主要包含了答题时请按要求用笔等内容,欢迎下载使用。
2021-2022学年拉萨市市级名校中考数学考前最后一卷含解析: 这是一份2021-2022学年拉萨市市级名校中考数学考前最后一卷含解析,共22页。试卷主要包含了函数的图象上有两点,,若,则,解分式方程﹣3=时,去分母可得等内容,欢迎下载使用。