中考总复习:特殊三角形--巩固练习(基础)
展开
这是一份中考总复习:特殊三角形--巩固练习(基础),共8页。
中考总复习:全等三角形—巩固练习(基础)【巩固练习】一、选择题1.已知等腰三角形的一个内角为,则这个等腰三角形的顶角为( )
A. B. C.或 D.或
2.如图,在△ABC中,AB=AC,∠A=36°,BD、CE分别是△ABC、△BCD的角平分线,则图中的等腰三角形有 ( )A.5个 B.4个 C.3个 D.2个
3.如果线段a、b、c能组成直角三角形,则它们的比可以是( )
A. 1:2:4 B. 1:3:5 C. 3:4:7 D. 5:12:13
4.下列条件能确定△ABC是直角三角形的条件有( )
(1)∠A+∠B=∠C;(2)∠A:∠B:∠C=1:2:3;(3)∠A=90°-∠B;(4)∠A=∠B=∠C.
A.1个 B.2个 C.3个 D.4个5. 已知:△ABC中,AB=AC=,BC=6,则腰长的取值范围是( )
A. B. C. D.
6.(2015•泰安)如图,AD是△ABC的角平分线,DE⊥AC,垂足为E,BF∥AC交ED的延长线于点F,若BC恰好平分∠ABF,AE=2BF.给出下列四个结论:①DE=DF;②DB=DC;③AD⊥BC;④AC=3BF,其中正确的结论共有( )A.4个 B.3个 C.2个 D.1个二、填空题7.如图,一个直角三角形纸片,剪去直角后,得到一个四边形,则_____________度.8.如图,和都是边长为2的等边三角形,点在同一条直线上,连接,则的长为_________.
9.如图,在等腰Rt△ABC中,∠C=90°,AC=BC,AD平分∠BAC交BC于D,DE⊥AB于D,若AB=10,则△BDE的周长等于____________.
10.等腰三角形一腰上的高与底边的夹角等于45°,则这个三角形的顶角等于_________.11. (2015春•鄄城县期中)如图,AB=AC=AD=4cm,DB=DC,若∠ABC为60度,则BE为 ,∠ABD= . 12. 已知等腰三角形一腰上的中线把这个三角形的周长分为15和6两部分,则腰长与底边的长分别为 .三、解答题13. 如图14-59,点O为等边ΔABC内一点,∠AOB=1100,∠BOC=1350,试问: (1)以OA、OB、OC为边,能否构成三角形?若能,请求出该三角形各内角的度数;若不能,请说明理由; (2)如果∠AOB大小保持不变,那么当∠BOC等于多少度时,以OA、OB、OC为边的三角形是一个直角三角形? 14.(2015秋•淮安期中)如图,在△ABC中,BA=BC,D在边CB上,且DB=DA=AC.(1)如图1,填空∠B= ,∠C= ;(2)若M为线段BC上的点,过M作直线MH⊥AD于H,分别交直线AB、AC与点N、E,如图2①求证:△ANE是等腰三角形;②试写出线段BN、CE、CD之间的数量关系,并加以证明. 15.已知:如图, AF平分∠BAC,BC⊥AF, 垂足为E,点D与点A关于点E对称,PB分别与线段CF, AF相交于P,M.1)求证:AB=CD;
2)若∠BAC=2∠MPC,请你判断∠F与∠MCD的数量关系,并说明理由.
16.(1)如图14-63,下列每个图形都是由若干个边长为1的等边三角形组成的等边三角形,它们的边长分别为1,2,3,…,设边长为n的等边三角形由s个小等边三角形组成,按此规律推断s与n有怎样的关系; (2)现有一个等角六边形ABCDEF(六个内角都相等的六边形,如图14-64),它的四条边长分别是2、5、3、1,求这个等角六边形的周长;(3)(2)中的等角六边形能否用(1)中最小的等边三角形无空隙拼合而成?如果能,请求出需要这种小等边三角形的个数. 【答案与解析】一、选择题1.【答案】C.【解析】提示:分类讨论.2.【答案】A 3.【答案】D. 【解析】常见的一些勾股数如:3、4、5;5、12、13;7、24、25及倍数等,应熟练掌握.
D中设三边的比中每一份为k,则(5k)2+(12k)2=(13k) 2 ,所以该三角形是直角三角形.其它答案都不满足,故选D.4.【答案】D.【解析】三角形中有一个角是90°,就是直角三角形.题中四个关系式都可以解得△ABC中∠C =90°.故选D.5.【答案】B.6.【答案】A.【解析】∵BF∥AC,∴∠C=∠CBF,∵BC平分∠ABF,∴∠ABC=∠CBF,∴∠C=∠ABC,∴AB=AC,∵AD是△ABC的角平分线,∴BD=CD,AD⊥BC,故②③正确,在△CDE与△DBF中,,∴△CDE≌△DBF,∴DE=DF,CE=BF,故①正确;∵AE=2BF,∴AC=3BF,故④正确.故选A.二、填空题7.【答案】270°.【解析】提示:根据邻补角的性质可得.8.【答案】.【解析】作DF⊥BE,∵BC=CD,∴∠1=30°,又∵为2的等边三角形∴DF=,即BD=9.【答案】10.10.【答案】90°.11.【答案】2cm; 75°【解析】①∵AB=AC,∠ABC为60度,∴△ABC为等边三角形.在△ABD和△ACD中,∵,∴△ABD≌△ACD,∴∠BAD=∠CAD,∴AE是BC边的中垂线,∴BE=BC=2cm;故答案是:2cm;②∵AB=AD(已知),∴∠ABD=∠ADB(等边对等角),∴∠ABD=(180°﹣∠BAD)=(180°﹣30°)=75°.故答案是:75°. 12.【答案】腰为10,底边长为1.【解析】提示:注意此类题型要分类讨论,最终结果要进行验证.三、解答题13.【答案与解析】(1)将△ABO绕A点旋转60度,使B与C重合,O点转动后的点为O',
因为AO=AO',∠AOO'=60°,所以△AOO'是等边三角形。所以OO'=OA.
转动后O'C=OB,所以△OO'C其实就是以OA、OB、OC为边组成的三角形,
∠COO'=360°-∠AOB-∠BOC-∠O'OA=360°-110°-135°-60°=55°,
∠C O'O=∠AO’C-∠O O'A=∠AOB-∠O O'A=110°-60°=50°,
∠O'CO=180°-∠COO'-∠C O'O=180°-55°-50°=75°.
(2)从上面的角度计算我们可以看出来,当∠BOC可变时,∠C O'O依旧为定值50°.若三角形为直角三角形,则∠COO'=90°或∠O'CO=90°.
若使∠COO'=90°,则360°-∠AOB-∠BOC-∠O'OA=90°,可解出∠BOC=100°.
若使∠O'CO=90°,则∠COO'=40°,可解出∠BOC=150°.14.【答案与解析】解:(1)∵BA=BC,∴∠BCA=∠BAC,∵DA=DB,∴∠BAD=∠B,∵AD=AC,∴∠ADC=∠C=∠BAC=2∠B,∴∠DAC=∠B,∵∠DAC+∠ADC+∠C=180°,∴2∠B+2∠B+∠B=180°,∴∠B=36°,∠C=2∠B=72°,故答案为:36;72;(2)①在△ADB中,∵DB=DA,∠B=36°,∴∠BAD=36°,在△ACD中,∵AD=AC,∴∠ACD=∠ADC=72°,∴∠CAD=36°,∴∠BAD=∠CAD=36°,∵MH⊥AD,∴∠AHN=∠AHE=90°,∴∠AEN=∠ANE=54°,即△ANE是等腰三角形;②CD=BN+CE.证明:由①知AN=AE,又∵BA=BC,DB=AC,∴BN=AB﹣AN=BC﹣AE,CE=AE﹣AC=AE﹣BD,∴BN+CE=BC﹣BD=CD,即CD=BN+CE.15.【答案与解析】(1)证明:∵AF平分∠BAC,
∴∠CAD=∠DAB=∠BAC.
∵D与A关于E对称,
∴E为AD中点.
∵BC⊥AD,
∴BC为AD的中垂线,
∴AC=CD.
∵在Rt△ACE和Rt△ABE中
∠CAD+∠ACE=∠DAB+∠ABE=90°, ∠CAD=∠DAB.
∴∠ACE=∠ABE,
∴AC=AB.
∴AB=CD.
(2)∵∠BAC=2∠MPC,
又∵∠BAC=2∠CAD,
∴∠MPC=∠CAD.
∵AC=CD,
∴∠CAD=∠CDA,
∴∠MPC=∠CDA.
∴∠MPF=∠CDM.
∵AC=AB,AE⊥BC,
∴CE=BE.
∴AM为BC的中垂线,
∴CM=BM.
∵EM⊥BC,
∴EM平分∠CMB,
∴∠CME=∠BME.
∵∠BME=∠PMF,
∴∠PMF=∠CME,
∴∠MCD=∠F(三角形内角和).16.【答案与解析】(1)s=n2 (2)19. 提示:延长FA、CB交于点P,延长AF、DE交于点Q,延长ED、BC交于点R,可证ΔPAB、ΔQEF、ΔRCD、ΔPQR为等边三角形 . ∴DC=CR=DR=3,AB=BP=AP=2,即PR=3+2+5=10=QR=QP,∴EF=6,FA=2,∴周长=1+3+5+2+2+6=19.(3)能,s=102-22-32-62=51(个).
相关试卷
这是一份中考总复习:特殊三角形--巩固练习(提高),共10页。
这是一份中考总复习:图形的相似--巩固练习(基础),共8页。
这是一份中考数学一轮总复习16《特殊三角形》知识讲解+巩固练习(基础版)(含答案),共14页。