年终活动
搜索
    上传资料 赚现金
    英语朗读宝

    第22章二次函数(选择、填空题)-【人教版-中考真题】九年级数学上学期期末复习培优练习(黑龙江)

    立即下载
    加入资料篮
    第22章二次函数(选择、填空题)-【人教版-中考真题】九年级数学上学期期末复习培优练习(黑龙江)第1页
    第22章二次函数(选择、填空题)-【人教版-中考真题】九年级数学上学期期末复习培优练习(黑龙江)第2页
    第22章二次函数(选择、填空题)-【人教版-中考真题】九年级数学上学期期末复习培优练习(黑龙江)第3页
    还剩14页未读, 继续阅读
    下载需要20学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    第22章二次函数(选择、填空题)-【人教版-中考真题】九年级数学上学期期末复习培优练习(黑龙江)

    展开

    这是一份第22章二次函数(选择、填空题)-【人教版-中考真题】九年级数学上学期期末复习培优练习(黑龙江),共17页。
    第22章二次函数(选择、填空题)-【人教版-中考真题】九年级数学上学期期末复习培优练习(黑龙江)
    一.选择题(共11小题)
    1.(2022•牡丹江)如图,抛物线y=ax2+bx+c(a≠0)的对称轴是直线x=﹣2,并与x轴交于A,B两点,若OA=5OB,则下列结论中:①abc>0;②(a+c)2﹣b2=0;③9a+4c<0;④若m为任意实数,则am2+bm+2b≥4a,正确的个数是(  )

    A.1 B.2 C.3 D.4
    2.(2022•哈尔滨)抛物线y=2(x+9)2﹣3的顶点坐标是(  )
    A.(9,﹣3) B.(﹣9,﹣3) C.(9,3) D.(﹣9,3)
    3.(2022•齐齐哈尔)如图,二次函数y=ax2+bx+c(a≠0)的图象与y轴的交点在(0,1)与(0,2)之间,对称轴为x=﹣1,函数最大值为4,结合图象给出下列结论:①b=2a;②﹣3<a<﹣2;③4ac﹣b2<0;④若关于x的一元二次方程ax2+bx+a=m﹣4(a≠0)有两个不相等的实数根,则m>4;⑤当x<0时,y随x的增大而减小.其中正确的结论有(  )

    A.2个 B.3个 C.4个 D.5个
    4.(2022•黑龙江)若二次函数y=ax2的图象经过点P(﹣2,4),则该图象必经过点(  )
    A.(2,4) B.(﹣2,﹣4) C.(﹣4,2) D.(4,﹣2)
    5.(2021•牡丹江)如图,抛物线y=ax2+bx+c(a≠0)的顶点为(1,n),与x轴的一个交点B(3,0),与y轴的交点在(0,﹣3)和(0,﹣2)之间.下列结论中:①>0;②﹣2<b<﹣;③(a+c)2﹣b2=0;④2c﹣a<2n,则正确的个数为(  )

    A.1 B.2 C.3 D.4
    6.(2021•齐齐哈尔)如图,二次函数y=ax2+bx+c(a≠0)图象的一部分与x轴的一个交点坐标为(1,0),对称轴为直线x=﹣1,结合图象给出下列结论:
    ①a+b+c=0;
    ②a﹣2b+c<0;
    ③关于x的一元二次方程ax2+bx+c=0(a≠0)的两根分别为﹣3和1;
    ④若点(﹣4,y1),(﹣2,y2),(3,y3)均在二次函数图象上,则y1<y2<y3;
    ⑤a﹣b<m(am+b)(m为任意实数).
    其中正确的结论有(  )

    A.1个 B.2个 C.3个 D.4个
    7.(2020•黑龙江)如图是二次函数y=ax2+bx+c(a≠0)图象的一部分,对称轴为x=,且经过点(2,0).下列说法:
    ①abc<0;②﹣2b+c=0;③4a+2b+c<0;④若(﹣,y1),(,y2)是抛物线上的两点,则y1<y2;⑤b>m(am+b)(其中m≠).
    其中说法正确的是(  )

    A.①②④⑤ B.①②④ C.①④⑤ D.③④⑤
    8.(2020•牡丹江)如图,抛物线y=ax2+bx+c与x轴正半轴交于A,B两点,与y轴负半轴交于点C.若点B(4,0),则下列结论中,正确的个数是(  )
    ①abc>0;
    ②4a+b>0;
    ③M(x1,y1)与N(x2,y2)是抛物线上两点,若0<x1<x2,则y1>y2;
    ④若抛物线的对称轴是直线x=3,m为任意实数,则a(m﹣3)(m+3)≤b(3﹣m);⑤若AB≥3,则4b+3c>0.

    A.5 B.4 C.3 D.2
    9.(2020•齐齐哈尔)如图,抛物线y=ax2+bx+c(a≠0)与x轴交于点(4,0),其对称轴为直线x=1,结合图象给出下列结论:
    ①ac<0;
    ②4a﹣2b+c>0;
    ③当x>2时,y随x的增大而增大;
    ④关于x的一元二次方程ax2+bx+c=0有两个不相等的实数根.
    其中正确的结论有(  )

    A.1个 B.2个 C.3个 D.4个
    10.(2020•绥化)将抛物线y=2(x﹣3)2+2向左平移3个单位长度,再向下平移2个单位长度,得到抛物线的解析式是(  )
    A.y=2(x﹣6)2 B.y=2(x﹣6)2+4
    C.y=2x2 D.y=2x2+4
    11.(2020•哈尔滨)将抛物线y=x2向上平移3个单位长度,再向右平移5个单位长度,所得到的抛物线为(  )
    A.y=(x+3)2+5 B.y=(x﹣3)2+5 C.y=(x+5)2+3 D.y=(x﹣5)2+3
    二.填空题(共8小题)
    12.(2022•牡丹江)抛物线y=x2﹣2x+3向右平移2个单位长度,再向上平移3个单位长度,得到抛物线的顶点坐标是    .
    13.(2022•大庆)已知函数y=mx2+3mx+m﹣1的图象与坐标轴恰有两个公共点,则实数m的值为    .
    14.(2022•黑龙江)把二次函数y=2x2的图象向左平移1个单位长度,再向下平移2个单位长度,平移后抛物线的解析式为    .
    15.(2021•牡丹江)将抛物线y=x2﹣2x+3向左平移2个单位长度,所得抛物线为    .
    16.(2021•哈尔滨)二次函数y=﹣3x2﹣2的最大值为    .
    17.(2020•哈尔滨)抛物线y=3(x﹣1)2+8的顶点坐标为   .
    18.(2020•黑龙江)将抛物线y=(x﹣1)2﹣5关于y轴对称,再向右平移3个单位长度后顶点的坐标是   .
    19.(2020•牡丹江)将抛物线y=ax2+bx﹣1向上平移3个单位长度后,经过点(﹣2,5),则8a﹣4b﹣11的值是   .

    第22章二次函数(选择、填空题)-【人教版-中考真题】九年级数学上学期期末复习培优练习(黑龙江)
    参考答案与试题解析
    一.选择题(共11小题)
    1.(2022•牡丹江)如图,抛物线y=ax2+bx+c(a≠0)的对称轴是直线x=﹣2,并与x轴交于A,B两点,若OA=5OB,则下列结论中:①abc>0;②(a+c)2﹣b2=0;③9a+4c<0;④若m为任意实数,则am2+bm+2b≥4a,正确的个数是(  )

    A.1 B.2 C.3 D.4
    【解答】解:①观察图象可知:a>0,b>0,c<0,
    ∴abc<0,故①错误;
    ②∵对称轴为直线x=﹣2,OA=5OB,
    可得OA=5,OB=1,
    ∴点A(﹣5,0),点B(1,0),
    ∴当x=1时,y=0,即a+b+c=0,
    ∴(a+c)2﹣b2=(a+b+c)(a+c﹣b)=0,故②正确;
    ③抛物线的对称轴为直线x=﹣2,即﹣=﹣2,
    ∴b=4a,
    ∵a+b+c=0,
    ∴5a+c=0,
    ∴c=﹣5a,
    ∴9a+4c=﹣11a,
    ∵a>0,
    ∴9a+4c<0,故③正确;
    ④当x=﹣2时,函数有最小值y=4a﹣2b+c,
    由am2+bm+c≥4a﹣2b+c,可得am2+bm+2b≥4a,
    ∴若m为任意实数,则am2+bm+2b≥4a,故④正确;
    故选:C.
    2.(2022•哈尔滨)抛物线y=2(x+9)2﹣3的顶点坐标是(  )
    A.(9,﹣3) B.(﹣9,﹣3) C.(9,3) D.(﹣9,3)
    【解答】解:∵y=2(x+9)2﹣3,
    ∴抛物线顶点坐标为(﹣9,﹣3),
    故选:B.
    3.(2022•齐齐哈尔)如图,二次函数y=ax2+bx+c(a≠0)的图象与y轴的交点在(0,1)与(0,2)之间,对称轴为x=﹣1,函数最大值为4,结合图象给出下列结论:①b=2a;②﹣3<a<﹣2;③4ac﹣b2<0;④若关于x的一元二次方程ax2+bx+a=m﹣4(a≠0)有两个不相等的实数根,则m>4;⑤当x<0时,y随x的增大而减小.其中正确的结论有(  )

    A.2个 B.3个 C.4个 D.5个
    【解答】解:∵抛物线对称轴为直线x=﹣=﹣1,
    ∴b=2a,①正确.
    ∵抛物线经过(﹣1,4),
    ∴a﹣b+c=﹣a+c=4,
    ∴a=c﹣4,
    ∵抛物线与y轴交点在(0,1)与(0,2)之间,
    ∴1<c<2,
    ∴﹣3<a<﹣2,②正确.
    ∵抛物线与x轴有2个交点,
    ∴b2﹣4ac>0,即4ac﹣b2<0,③正确.
    ∵a=c﹣4,
    ∴ax2+bx+a=m﹣4可整理为ax2+bx+c=m,
    ∵抛物线开口向下,顶点坐标为(﹣1,4),
    ∴m<4时,抛物线与直线y=m有两个不同交点,④错误.
    由图象可得x<﹣1时y随x增大而增大,
    ∴⑤错误.
    故选:B.
    4.(2022•黑龙江)若二次函数y=ax2的图象经过点P(﹣2,4),则该图象必经过点(  )
    A.(2,4) B.(﹣2,﹣4) C.(﹣4,2) D.(4,﹣2)
    【解答】解:∵二次函数y=ax2的对称轴为y轴,
    ∴若图象经过点P(﹣2,4),
    则该图象必经过点(2,4).
    故选:A.
    5.(2021•牡丹江)如图,抛物线y=ax2+bx+c(a≠0)的顶点为(1,n),与x轴的一个交点B(3,0),与y轴的交点在(0,﹣3)和(0,﹣2)之间.下列结论中:①>0;②﹣2<b<﹣;③(a+c)2﹣b2=0;④2c﹣a<2n,则正确的个数为(  )

    A.1 B.2 C.3 D.4
    【解答】解:①∵函数图象开口向上,
    ∴a>0,
    ∵对称轴在y轴右侧,a与b异号,
    ∴b<0,
    ∵函数图象与y轴交负半轴,
    ∴c<0,故,正确
    ②∵顶点坐标(1,n),对称轴x==1,
    ∴b=﹣2a<0,a=﹣,
    ∴B点(3,0)关于对称轴x=1对称点为(﹣1,0),
    ∴当x=﹣1时,y=a﹣b+c=0,得c=b,
    ∵﹣3<c<﹣2,
    ∴﹣3<<﹣2,
    ∴﹣2<b<,错误.
    ③当x=﹣1时,y=a﹣b+c=0,(a+c)2﹣b2=(a+b+c)(a﹣b+c)=0,正确.
    ④当x=1,时,y=a+b+c=n,
    ∵a=﹣,c=b,
    ∴n=2b,
    ∴2c﹣a=,
    ∵b<0,
    ∴>4b,即2c﹣a>2n,错误.
    故选:B.
    6.(2021•齐齐哈尔)如图,二次函数y=ax2+bx+c(a≠0)图象的一部分与x轴的一个交点坐标为(1,0),对称轴为直线x=﹣1,结合图象给出下列结论:
    ①a+b+c=0;
    ②a﹣2b+c<0;
    ③关于x的一元二次方程ax2+bx+c=0(a≠0)的两根分别为﹣3和1;
    ④若点(﹣4,y1),(﹣2,y2),(3,y3)均在二次函数图象上,则y1<y2<y3;
    ⑤a﹣b<m(am+b)(m为任意实数).
    其中正确的结论有(  )

    A.1个 B.2个 C.3个 D.4个
    【解答】解:①∵二次函数y=ax2+bx+c(a≠0)图象的一部分与x轴的一个交点坐标为(1,0),
    ∴a+b+c=0,
    故①正确;
    ②∵抛物线的对称轴为直线x=﹣=﹣1,
    ∴b=2a,
    ∵抛物线开口向上,与y轴交于负半轴,
    ∴a>0,c<0,
    ∴a﹣2b+c=c﹣3a<0,
    故②正确;
    ③由对称得:抛物线与x轴的另一交点为(﹣3,0),
    ∴关于x的一元二次方程ax2+bx+c=0(a≠0)的两根分别为﹣3和1,
    故③正确;
    ④∵对称轴为直线x=﹣1,且开口向上,
    ∴离对称轴越近,y值越小,
    ∵|﹣4+1|=3,||﹣2+1|=1,|3+1|=4,
    ∵点(﹣4,y1),(﹣2,y2),(3,y3)均在二次函数图象上,
    ∴y2<y1<y3,
    故④不正确;
    ⑤∵x=﹣1时,y有最小值,
    ∴a﹣b+c≤am2+bm+c(m为任意实数),
    ∴a﹣b≤m(am+b),
    故⑤不正确.
    所以正确的结论有①②③,共3个.
    故选:C.
    7.(2020•黑龙江)如图是二次函数y=ax2+bx+c(a≠0)图象的一部分,对称轴为x=,且经过点(2,0).下列说法:
    ①abc<0;②﹣2b+c=0;③4a+2b+c<0;④若(﹣,y1),(,y2)是抛物线上的两点,则y1<y2;⑤b>m(am+b)(其中m≠).
    其中说法正确的是(  )

    A.①②④⑤ B.①②④ C.①④⑤ D.③④⑤
    【解答】解:①∵抛物线开口向下,
    ∴a<0,
    ∵抛物线对称轴为x=﹣=,
    ∴b=﹣a>0,
    ∵抛物线与y轴的交点在x轴上方,
    ∴c>0,
    ∴abc<0,
    所以①正确;
    ②∵对称轴为x=,且经过点(2,0),
    ∴抛物线与x轴的另一个交点为(﹣1,0),
    ∴=﹣1×2=﹣2,
    ∴c=﹣2a,
    ∴﹣2b+c=2a﹣2a=0
    所以②正确;
    ③∵抛物线经过(2,0),
    ∴当x=2时,y=0,
    ∴4a+2b+c=0,
    所以③错误;
    ④∵点(﹣,y1)离对称轴要比点(,y2)离对称轴远,
    ∴y1<y2,
    所以④正确;
    ⑤∵抛物线的对称轴x=,
    ∴当x=时,y有最大值,
    ∴a+b+c>am2+bm+c(其中m≠).
    ∵a=﹣b,
    ∴b>m(am+b)(其中m≠),
    所以⑤正确.
    所以其中说法正确的是①②④⑤.
    故选:A.
    8.(2020•牡丹江)如图,抛物线y=ax2+bx+c与x轴正半轴交于A,B两点,与y轴负半轴交于点C.若点B(4,0),则下列结论中,正确的个数是(  )
    ①abc>0;
    ②4a+b>0;
    ③M(x1,y1)与N(x2,y2)是抛物线上两点,若0<x1<x2,则y1>y2;
    ④若抛物线的对称轴是直线x=3,m为任意实数,则a(m﹣3)(m+3)≤b(3﹣m);⑤若AB≥3,则4b+3c>0.

    A.5 B.4 C.3 D.2
    【解答】解:如图,抛物线开口向下,与y轴交于负半轴,对称轴在y轴右侧,
    ∴a<0,c<0,,∴b>0,
    ∴abc>0,故①正确;
    如图,∵抛物线过点B(4,0),点A在x轴正半轴,
    ∴对称轴在直线x=2右侧,即,
    ∴,又a<0,∴4a+b>0,故②正确;
    ∵M(x1,y1)与N(x2,y2)是抛物线上两点,0<x1<x2,
    可得:抛物线y=ax2+bx+c在上,y随x的增大而增大,
    在上,y随x的增大而减小,
    ∴y1>y2不一定成立,故③错误;
    若抛物线对称轴为直线x=3,则,即b=﹣6a,
    则a(m﹣3)(m+3)﹣b(3﹣m)=a(m﹣3)2≤0,
    ∴a(m﹣3)(m+3)≤b(3﹣m),故④正确;∵AB≥3,则点A的横坐标大于0或小于等于1,
    当x=1时,代入,y=a+b+c≥0,
    当x=4时,16a+4b+c=0,
    ∴a=,
    则,整理得:4b+5c≥0,则4b+3c≥﹣2c,又c<0,
    ﹣2c>0,
    ∴4b+3c>0,故⑤正确,
    故正确的有4个.
    故选:B.
    9.(2020•齐齐哈尔)如图,抛物线y=ax2+bx+c(a≠0)与x轴交于点(4,0),其对称轴为直线x=1,结合图象给出下列结论:
    ①ac<0;
    ②4a﹣2b+c>0;
    ③当x>2时,y随x的增大而增大;
    ④关于x的一元二次方程ax2+bx+c=0有两个不相等的实数根.
    其中正确的结论有(  )

    A.1个 B.2个 C.3个 D.4个
    【解答】解:抛物线开口向上,因此a>0,与y轴交于负半轴,因此c<0,故ac<0,所以①正确;
    抛物线对称轴为x=1,与x轴的一个交点为(4,0),则另一个交点为(﹣2,0),于是有4a﹣2b+c=0,所以②不正确;
    x>1时,y随x的增大而增大,所以③正确;
    抛物线与x轴有两个不同交点,因此关于x的一元二次方程ax2+bx+c=0有两个不相等的实数根,所以④正确;
    综上所述,正确的结论有:①③④,
    故选:C.
    10.(2020•绥化)将抛物线y=2(x﹣3)2+2向左平移3个单位长度,再向下平移2个单位长度,得到抛物线的解析式是(  )
    A.y=2(x﹣6)2 B.y=2(x﹣6)2+4
    C.y=2x2 D.y=2x2+4
    【解答】解:将抛物线y=2(x﹣3)2+2向左平移3个单位长度所得抛物线解析式为:y=2(x﹣3+3)2+2,即y=2x2+2;
    再向下平移2个单位为:y=2x2+2﹣2,即y=2x2.
    故选:C.
    11.(2020•哈尔滨)将抛物线y=x2向上平移3个单位长度,再向右平移5个单位长度,所得到的抛物线为(  )
    A.y=(x+3)2+5 B.y=(x﹣3)2+5 C.y=(x+5)2+3 D.y=(x﹣5)2+3
    【解答】解:由“上加下减”的原则可知,将抛物线y=x2向上平移3个单位所得抛物线的解析式为:y=x2+3;
    由“左加右减”的原则可知,将抛物线y=x2+3向右平移5个单位所得抛物线的解析式为:y=(x﹣5)2+3;
    故选:D.
    二.填空题(共8小题)
    12.(2022•牡丹江)抛物线y=x2﹣2x+3向右平移2个单位长度,再向上平移3个单位长度,得到抛物线的顶点坐标是  (3,5) .
    【解答】解:∵抛物线y=x2﹣2x+3=(x﹣1)2+2,
    ∴抛物线y=x2﹣2x+3向右平移2个单位长度,再向上平移3个单位长度,得到抛物线y=(x﹣1﹣2)2+2+3,即y=(x﹣3)2+5,
    ∴平移后的抛物线的顶点坐标为(3,5).
    故答案为:(3,5).
    13.(2022•大庆)已知函数y=mx2+3mx+m﹣1的图象与坐标轴恰有两个公共点,则实数m的值为  1或﹣ .
    【解答】解:当m=0时,y=﹣1,与坐标轴只有一个交点,不符合题意.
    当m≠0时,∵函数y=mx2+3mx+m﹣1的图象与坐标轴恰有两个公共点,
    ①过坐标原点,m﹣1=0,m=1,
    ②与x、y轴各一个交点,
    ∴Δ=0,m≠0,
    (3m)2﹣4m(m﹣1)=0,
    解得m=0(舍去)或m=﹣,
    综上所述:m的值为1或﹣.
    14.(2022•黑龙江)把二次函数y=2x2的图象向左平移1个单位长度,再向下平移2个单位长度,平移后抛物线的解析式为  y=2(x+1)2﹣2 .
    【解答】解:由“左加右减”的原则可知,将二次函数y=2x2的图象向左平移1个单位长度所得抛物线的解析式为:y=2(x+1)2;由“上加下减”的原则可知,将抛物线y=2(x+1)2向下平移2个单位长度所得抛物线的解析式为:y=2(x+1)2﹣2,
    故答案为:y=2(x+1)2﹣2.
    15.(2021•牡丹江)将抛物线y=x2﹣2x+3向左平移2个单位长度,所得抛物线为  y=(x+1)2+2 .
    【解答】解:将抛物线y=x2﹣2x+3=(x﹣1)2+2向左平移2个单位长度得到解析式:y=(x+1)2+2,
    故答案为:y=(x+1)2+2.
    16.(2021•哈尔滨)二次函数y=﹣3x2﹣2的最大值为  ﹣2 .
    【解答】解:在二次函数y=﹣3x2﹣2中,
    ∵顶点坐标为(0,﹣2),
    且a=﹣3<0,
    ∴抛物线开口向下,
    ∴二次函数y=﹣3x2﹣2的最大值为﹣2.
    故答案为:﹣2.
    17.(2020•哈尔滨)抛物线y=3(x﹣1)2+8的顶点坐标为 (1,8) .
    【解答】解:∵抛物线y=3(x﹣1)2+8是顶点式,
    ∴顶点坐标是(1,8).
    故答案为:(1,8).
    18.(2020•黑龙江)将抛物线y=(x﹣1)2﹣5关于y轴对称,再向右平移3个单位长度后顶点的坐标是 (2,﹣5) .
    【解答】解:∵抛物线y=(x﹣1)2﹣5的顶点坐标是(1,﹣5),将抛物线y=(x﹣1)2﹣5关于y轴对称,
    ∴顶点坐标是(﹣1,﹣5),
    ∴再向右平移3个单位长度后的抛物线的顶点坐标为(2,﹣5).
    故答案为:(2,﹣5).
    19.(2020•牡丹江)将抛物线y=ax2+bx﹣1向上平移3个单位长度后,经过点(﹣2,5),则8a﹣4b﹣11的值是 ﹣5 .
    【解答】解:将抛物线y=ax2+bx﹣1向上平移3个单位长度后,
    表达式为:y=ax2+bx+2,
    ∵经过点(﹣2,5),代入得:4a﹣2b=3,
    则8a﹣4b﹣11=2(4a﹣2b)﹣11=2×3﹣11=﹣5,
    故答案为:﹣5.

    相关试卷

    第22章二次函数(选择、填空题)-【人教版-中考真题】九年级数学上学期期末复习培优练习(贵州):

    这是一份第22章二次函数(选择、填空题)-【人教版-中考真题】九年级数学上学期期末复习培优练习(贵州),共18页。试卷主要包含了的图象如图所示,有下列5个结论等内容,欢迎下载使用。

    第26反比例函数(选择、填空题)-【人教版-中考真题】九年级数学上学期期末复习培优练习(湖北):

    这是一份第26反比例函数(选择、填空题)-【人教版-中考真题】九年级数学上学期期末复习培优练习(湖北),共31页。

    第25章概率初步(选择、填空题)-【人教版-中考真题】九年级数学上学期期末复习培优练习(湖北):

    这是一份第25章概率初步(选择、填空题)-【人教版-中考真题】九年级数学上学期期末复习培优练习(湖北),共17页。

    文档详情页底部广告位
    • 精品推荐
    • 所属专辑
    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map