|试卷下载
搜索
    上传资料 赚现金
    广东省香洲区四校联考2022年中考数学五模试卷含解析
    立即下载
    加入资料篮
    广东省香洲区四校联考2022年中考数学五模试卷含解析01
    广东省香洲区四校联考2022年中考数学五模试卷含解析02
    广东省香洲区四校联考2022年中考数学五模试卷含解析03
    还剩20页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    广东省香洲区四校联考2022年中考数学五模试卷含解析

    展开
    这是一份广东省香洲区四校联考2022年中考数学五模试卷含解析,共23页。试卷主要包含了下列计算正确的是等内容,欢迎下载使用。

    2021-2022中考数学模拟试卷
    注意事项:
    1. 答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。
    2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。
    3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。
    4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。

    一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)
    1.郑州地铁Ⅰ号线火车站站口分布如图所示,有A,B,C,D,E五个进出口,小明要从这里乘坐地铁去新郑机场,回来后仍从这里出站,则他恰好选择从同一个口进出的概率是(  )

    A. B. C. D.
    2.某居委会组织两个检查组,分别对“垃圾分类”和“违规停车”的情况进行抽查.各组随机抽取辖区内某三个小区中的一个进行检查,则两个组恰好抽到同一个小区的概率是(  )
    A. B. C. D.
    3.为弘扬传统文化,某校初二年级举办传统文化进校园朗诵大赛,小明同学根据比赛中九位评委所给的某位参赛选手的分数,制作了一个表格,如果去掉一个最高分和一个最低分,则表中数据一定不发生变化的是(  )
    中位数
    众数
    平均数
    方差
    9.2
    9.3
    9.1
    0.3
    A.中位数 B.众数 C.平均数 D.方差
    4.如图,一束平行太阳光线FA、GB照射到正五边形ABCDE上,∠ABG=46°,则∠FAE的度数是(  )

    A.26°. B.44°. C.46°. D.72°
    5.如图,A、B、C、D是⊙O上的四点,BD为⊙O的直径,若四边形ABCO是平行四边形,则∠ADB的大小为(  )

    A.30° B.45° C.60° D.75°
    6.某校举行运动会,从商场购买一定数量的笔袋和笔记本作为奖品.若每个笔袋的价格比每个笔记本的价格多3元,且用200元购买笔记本的数量与用350元购买笔袋的数量相同.设每个笔记本的价格为x元,则下列所列方程正确的是(  )
    A. B. C. D.
    7.在△ABC中,∠C=90°,AC=9,sinB=,则AB=(    )
    A.15                               B.12                               C.9                        D.6
    8.如果关于x的方程没有实数根,那么c在2、1、0、中取值是( )
    A.; B.; C.; D..
    9.下列计算正确的是(  )
    A.2a2﹣a2=1 B.(ab)2=ab2 C.a2+a3=a5 D.(a2)3=a6
    10.已知正比例函数的图象经过点,则此正比例函数的关系式为( ).
    A. B. C. D.
    11.下列方程中有实数解的是(  )
    A.x4+16=0 B.x2﹣x+1=0
    C. D.
    12.在代数式 中,m的取值范围是(  )
    A.m≤3 B.m≠0 C.m≥3 D.m≤3且m≠0
    二、填空题:(本大题共6个小题,每小题4分,共24分.)
    13.计算=_____.
    14.如图,点A、B、C在圆O上,弦AC与半径OB互相平分,那么∠AOC度数为_____度.

    15.如图,在等腰中,,点在以斜边为直径的半圆上,为的中点.当点沿半圆从点运动至点时,点运动的路径长是________.

    16.已知|x|=3,y2=16,xy<0,则x﹣y=_____.
    17.如图,在Rt△ABC中,∠ACB=90°,将边BC沿斜边上的中线CD折叠到CB′,若∠B=48°,则∠ACB′=_____.

    18.如图,AB为半圆的直径,且AB=2,半圆绕点B顺时针旋转40°,点A旋转到A′的位置,则图中阴影部分的面积为_____(结果保留π).

    三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.
    19.(6分)如图,是一座古拱桥的截面图,拱桥桥洞的上沿是抛物线形状,当水面的宽度为10m时,桥洞与水面的最大距离是5m.经过讨论,同学们得出三种建立平面直角坐标系的方案(如图),你选择的方案是  (填方案一,方案二,或方案三),则B点坐标是   ,求出你所选方案中的抛物线的表达式;因为上游水库泄洪,水面宽度变为6m,求水面上涨的高度.

    20.(6分)如图,中,于,点分别是的中点.

    (1)求证:四边形是菱形
    (2)如果,求四边形的面积
    21.(6分)2015年1月,市教育局在全市中小学中选取了63所学校从学生的思想品德、学业水平、学业负担、身心发展和兴趣特长五个维度进行了综合评价.评价小组在选取的某中学七年级全体学生中随机抽取了若干名学生进行问卷调查,了解他们每天在课外用于学习的时间,并绘制成如下不完整的统计图. 根据上述信息,解答下列问题:

    (1)本次抽取的学生人数是 ______ ;扇形统计图中的圆心角α等于 ______ ;补全统计直方图;
    (2)被抽取的学生还要进行一次50米跑测试,每5人一组进行.在随机分组时,小红、小花两名女生被分到同一个小组,请用列表法或画树状图求出她俩在抽道次时抽在相邻两道的概率.
    22.(8分)已知:如图,梯形ABCD中,AD∥BC,DE∥AB,与对角线交于点,∥,且FG=EF.
    (1)求证:四边形是菱形;
    (2)联结AE,又知AC⊥ED,求证: .

    23.(8分)尺规作图:校园有两条路OA、OB,在交叉路口附近有两块宣传牌C、D,学校准备在这里安装一盏路灯,要求灯柱的位置P离两块宣传牌一样远,并且到两条路的距离也一样远,请你帮助画出灯柱的位置P.(不写画图过程,保留作图痕迹)

    24.(10分) “低碳生活,绿色出行”是我们倡导的一种生活方式,有关部门抽样调查了某单位员工上下班的交通方式,绘制了两幅统计图:

    (1)样本中的总人数为  人;扇形统计十图中“骑自行车”所在扇形的圆心角为  度;
    (2)补全条形统计图;
    (3)该单位共有1000人,积极践行这种生活方式,越来越多的人上下班由开私家车改为骑自行车.若步行,坐公交车上下班的人数保持不变,问原来开私家车的人中至少有多少人改为骑自行车,才能使骑自行车的人数不低于开私家车的人数?
    25.(10分)为奖励优秀学生,某校准备购买一批文具袋和圆规作为奖品,已知购买1个文具袋和2个圆规需21元,购买2个文具袋和3个圆规需39元。求文具袋和圆规的单价。学校准备购买文具袋20个,圆规若干,文具店给出两种优惠方案:
    方案一:购买一个文具袋还送1个圆规。
    方案二:购买圆规10个以上时,超出10个的部分按原价的八折优惠,文具袋不打折.
    ①设购买面规m个,则选择方案一的总费用为______,选择方案二的总费用为______.
    ②若学校购买圆规100个,则选择哪种方案更合算?请说明理由.
    26.(12分)如图,一次函数y=kx+b的图象与反比例函数y=(x>0)的图象交于点P(n,2),与x轴交于点A(-4,0),与y轴交于点C,PB⊥x轴于点B,点A与点B关于y轴对称.
    (1)求一次函数,反比例函数的表达式;
    (2)求证:点C为线段AP的中点;
    (3)反比例函数图象上是否存在点D,使四边形BCPD为菱形?如果存在,说明理由并求出点D的坐标;如果不存在,说明理由.

    27.(12分)如图,在平面直角坐标系xOy中,将抛物线y=x2平移,使平移后的抛物线经过点A(–3,0)、B(1,0).
    (1)求平移后的抛物线的表达式.
    (2)设平移后的抛物线交y轴于点C,在平移后的抛物线的对称轴上有一动点P,当BP与CP之和最小时,P点坐标是多少?
    (3)若y=x2与平移后的抛物线对称轴交于D点,那么,在平移后的抛物线的对称轴上,是否存在一点M,使得以M、O、D为顶点的三角形△BOD相似?若存在,求点M坐标;若不存在,说明理由.




    参考答案

    一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)
    1、C
    【解析】
    列表得出进出的所有情况,再从中确定出恰好选择从同一个口进出的结果数,继而根据概率公式计算可得.
    【详解】
    解:列表得:

    A
    B
    C
    D
    E
    A
    AA
    BA
    CA
    DA
    EA
    B
    AB
    BB
    CB
    DB
    EB
    C
    AC
    BC
    CC
    DC
    EC
    D
    AD
    BD
    CD
    DD
    ED
    E
    AE
    BE
    CE
    DE
    EE
    ∴一共有25种等可能的情况,恰好选择从同一个口进出的有5种情况,
    ∴恰好选择从同一个口进出的概率为=,
    故选C.
    【点睛】
    此题主要考查了列表法求概率,列表法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件;树状图法适用于两步或两步以上完成的事件;解题时还要注意是放回实验还是不放回实验.用到的知识点为:概率=所求情况数与总情况数之比.
    2、C
    【解析】
    分析:将三个小区分别记为A、B、C,列举出所有情况即可,看所求的情况占总情况的多少即可.
    详解:将三个小区分别记为A、B、C,
    列表如下:

    A
    B
    C
    A
    (A,A)
    (B,A)
    (C,A)
    B
    (A,B)
    (B,B)
    (C,B)
    C
    (A,C)
    (B,C)
    (C,C)
    由表可知,共有9种等可能结果,其中两个组恰好抽到同一个小区的结果有3种,
    所以两个组恰好抽到同一个小区的概率为.
    故选:C.
    点睛:此题主要考查了列表法求概率,列表法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件;树状图法适用于两步或两步以上完成的事件;解题时还要注意是放回实验还是不放回实验.用到的知识点为:概率=所求情况数与总情况数之比.
    3、A
    【解析】
    根据中位数:将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数;如果这组数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数可得答案.
    【详解】
    如果去掉一个最高分和一个最低分,则表中数据一定不发生变化的是中位数.
    故选A.
    点睛:本题主要考查了中位数,关键是掌握中位数定义.
    4、A
    【解析】
    先根据正五边形的性质求出∠EAB的度数,再由平行线的性质即可得出结论.
    【详解】
    解:∵图中是正五边形.
    ∴∠EAB=108°.
    ∵太阳光线互相平行,∠ABG=46°,
    ∴∠FAE=180°﹣∠ABG﹣∠EAB=180°﹣46°﹣108°=26°.
    故选A.
    【点睛】
    此题考查平行线的性质,多边形内角与外角,解题关键在于求出∠EAB.
    5、A
    【解析】
    解:∵四边形ABCO是平行四边形,且OA=OC,
    ∴四边形ABCO是菱形,
    ∴AB=OA=OB,
    ∴△OAB是等边三角形,
    ∴∠AOB=60°,
    ∵BD是⊙O的直径,
    ∴点B、D、O在同一直线上,
    ∴∠ADB=∠AOB=30°
    故选A.
    6、B
    【解析】
    试题分析:设每个笔记本的价格为x元,根据“用200元购买笔记本的数量与用350元购买笔袋的数量相同”这一等量关系列出方程即可.
    考点:由实际问题抽象出分式方程
    7、A
    【解析】
    根据三角函数的定义直接求解.
    【详解】
    在Rt△ABC中,∠C=90°,AC=9,
    ∵,
    ∴,
    解得AB=1.
    故选A
    8、A
    【解析】
    分析:由方程根的情况,根据根的判别式可求得c的取值范围,则可求得答案.
    详解:∵关于x的方程x1+1x+c=0没有实数根,∴△<0,即11﹣4c<0,解得:c>1,∴c在1、1、0、﹣3中取值是1.故选A.
    点睛:本题主要考查了根的判别式,熟练掌握一元二次方程根的个数与根的判别式的关系是解题的关键.
    9、D
    【解析】
    根据合并同类项法则判断A、C;根据积的乘方法则判断B;根据幂的乘方法判断D,由此即可得答案.
    【详解】
    A、2a2﹣a2=a2,故A错误;
    B、(ab)2=a2b2,故B错误;
    C、a2与a3不是同类项,不能合并,故C错误;
    D、(a2)3=a6,故D正确,
    故选D.
    【点睛】
    本题考查幂的乘方与积的乘方,合并同类项,熟练掌握各运算的运算性质和运算法则是解题的关键.
    10、A
    【解析】
    根据待定系数法即可求得.
    【详解】
    解:∵正比例函数y=kx的图象经过点(1,﹣3),
    ∴﹣3=k,即k=﹣3,
    ∴该正比例函数的解析式为:y=﹣3x.
    故选A.
    【点睛】
    此类题目需灵活运用待定系数法建立函数解析式,然后将点的坐标代入解析式,利用方程解决问题.
    11、C
    【解析】
    A、B是一元二次方程可以根据其判别式判断其根的情况;C是无理方程,容易看出没有实数根;D是分式方程,能使得分子为零,分母不为零的就是方程的根.
    【详解】
    A.中△=02﹣4×1×16=﹣64<0,方程无实数根;
    B.中△=(﹣1)2﹣4×1×1=﹣3<0,方程无实数根;
    C.x=﹣1是方程的根;
    D.当x=1时,分母x2-1=0,无实数根.
    故选:C.
    【点睛】
    本题考查了方程解得定义,能使方程左右两边相等的未知数的值叫做方程的解.解答本题的关键是针对不同的方程进行分类讨论.
    12、D
    【解析】
    根据二次根式有意义的条件即可求出答案.
    【详解】
    由题意可知:
    解得:m≤3且m≠0
    故选D.
    【点睛】
    本题考查二次根式有意义的条件,解题的关键是熟练运用二次根式有意义的条件,本题属于基础题型.

    二、填空题:(本大题共6个小题,每小题4分,共24分.)
    13、0
    【解析】
    分析:先计算乘方、零指数幂,再计算加减可得结果.
    详解:1-1=0
    故答案为0.
    点睛:零指数幂成立的条件是底数不为0.
    14、1.
    【解析】
    首先根据垂径定理得到OA=AB,结合等边三角形的性质即可求出∠AOC的度数.
    【详解】
    解:∵弦AC与半径OB互相平分,
    ∴OA=AB,
    ∵OA=OC,
    ∴△OAB是等边三角形,
    ∴∠AOB=60°,
    ∴∠AOC=1°,
    故答案为1.
    【点睛】
    本题主要考查了垂径定理的知识,解题的关键是证明△OAB是等边三角形,此题难度不大.
    15、π
    【解析】
    取的中点,取的中点,连接,,,则,故的轨迹为以为圆心,为半径的半圆弧,根据弧长公式即可得轨迹长.
    【详解】
    解:如图,取的中点,取的中点,连接,,,

    ∵在等腰中,,点在以斜边为直径的半圆上,
    ∴,
    ∵为的中位线,
    ∴,
    ∴当点沿半圆从点运动至点时,点的轨迹为以为圆心,为半径的半圆弧,
    ∴弧长,
    故答案为:.
    【点睛】
    本题考查了点的轨迹与等腰三角形的性质.解决动点问题的关键是在运动中,把握不变的等量关系(或函数关系),通过固定的等量关系(或函数关系),解决动点的轨迹或坐标问题.
    16、±3
    【解析】分析:本题是绝对值、平方根和有理数减法的综合试题,同时本题还渗透了分类讨论的数学思想.
    详解:因为|x|=1,所以x=±1.
    因为y2=16,所以y=±2.
    又因为xy<0,所以x、y异号,
    当x=1时,y=-2,所以x-y=3;
    当x=-1时,y=2,所以x-y=-3.
    故答案为:±3.
    点睛:本题是一道综合试题,本题中有分类的数学思想,求解时要注意分类讨论.
    17、6°
    【解析】
    ∠B=48°,∠ACB=90°,所以∠A=42°,DC是中线,所以∠BCD=∠B=48°,
    ∠DCA=∠A=48°,因为∠BCD=∠DCB’=48°,所以∠ACB′=48°-46°=6°.
    18、
    【解析】
    【分析】根据题意可得出阴影部分的面积等于扇形ABA′的面积加上半圆面积再减去半圆面积.
    【详解】∵S阴影=S扇形ABA′+S半圆-S半圆
    =S扇形ABA′
    =
    =,
    故答案为.
    【点睛】本题考查了扇形面积的计算以及旋转的性质,熟记扇形面积公式且能准确识图是解题的关键.

    三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.
    19、 (1) 方案1; B(5,0); ;(2) 3.2m.
    【解析】
    试题分析:(1)根据抛物线在坐标系的位置,可用待定系数法求抛物线的解析式.
    (2)把x=3代入抛物线的解析式,即可得到结论.
    试题解析:解:方案1:(1)点B的坐标为(5,0),设抛物线的解析式为:.由题意可以得到抛物线的顶点为(0,5),代入解析式可得:,∴抛物线的解析式为:;
    (2)由题意:把代入,解得:=3.2,∴水面上涨的高度为3.2m.
    方案2:(1)点B的坐标为(10,0).设抛物线的解析式为:.
    由题意可以得到抛物线的顶点为(5,5),代入解析式可得:,∴抛物线的解析式为:;
    (2)由题意:把代入解得:=3.2,∴水面上涨的高度为3.2m.
    方案3:(1)点B的坐标为(5, ),由题意可以得到抛物线的顶点为(0,0).
    设抛物线的解析式为:,把点B的坐标(5, ),代入解析式可得:,
    ∴抛物线的解析式为:;
    (2)由题意:把代入解得:=,∴水面上涨的高度为3.2m.
    20、 (1)证明见解析;(2).
    【解析】
    (1)先根据直角三角形斜边上中线的性质,得出DE=AB=AE,DF=AC=AF,再根据AB=AC,点E、F分别是AB、AC的中点,即可得到AE=AF=DE=DF,进而判定四边形AEDF是菱形;
    (2)根据等边三角形的性质得出EF=5,AD=5,进而得到菱形AEDF的面积S.
    【详解】
    解:(1)∵AD⊥BC,点E、F分别是AB、AC的中点,
    ∴Rt△ABD中,DE=AB=AE,
    Rt△ACD中,DF=AC=AF,
    又∵AB=AC,点E、F分别是AB、AC的中点,
    ∴AE=AF,
    ∴AE=AF=DE=DF,
    ∴四边形AEDF是菱形;
    (2)如图,

    ∵AB=AC=BC=10,
    ∴EF=5,AD=5,
    ∴菱形AEDF的面积S=EF•AD=×5×5=.
    【点睛】
    本题考查菱形的判定与性质的运用,解题时注意:四条边相等的四边形是菱形;菱形的面积等于对角线长乘积的一半.
    21、(1)30;;(2).
    【解析】
    试题分析:(1)根据题意列式求值,根据相应数据画图即可;
    (2)根据题意列表,然后根据表中数据求出概率即可.
    解:(1)6÷20%=30,(30﹣3﹣7﹣6﹣2)÷30×360=12÷30×26=144°,
    答:本次抽取的学生人数是30人;扇形统计图中的圆心角α等于144°;
    故答案为30,144°;
    补全统计图如图所示:
    (2)根据题意列表如下:
    设竖列为小红抽取的跑道,横排为小花抽取的跑道,

    记小红和小花抽在相邻两道这个事件为A,
    ∴.

    考点:列表法与树状图法;扇形统计图;利用频率估计概率.
    22、 (1)见解析;(2)见解析
    【解析】
    分析:(1)由两组对边分别平行的四边形是平行四边形,得到是平行四边形.
    再由平行线分线段成比例定理得到:, ,=,即可得到结论;
    (2)连接,与交于点.由菱形的性质得到⊥,进而得到 ,,即有,得到△∽△,由相似三角形的性质即可得到结论.
    详解:(1)∵ ∥∥,∴四边形是平行四边形.
    ∵∥,∴.
    同理 .
    得:=
    ∵,∴.
    ∴四边形是菱形.
    (2)连接,与交于点.
    ∵四边形是菱形,∴⊥.
    得 .同理.
    ∴.
    又∵是公共角,∴△∽△.
    ∴.
    ∴.

    点睛:本题主要考查了菱形的判定和性质以及相似三角形的判定与性质.灵活运用菱形的判定与性质是解题的关键.
    23、见解析.
    【解析】
    分别作线段CD的垂直平分线和∠AOB的角平分线,它们的交点即为点P.
    【详解】
    如图,点P为所作.

    【点睛】
    本题考查了作图−应用与设计作图,熟知角平分线的性质与线段垂直平分线的性质是解答此题的关键.
    24、 (1) 80、72;(2) 16人;(3) 50人
    【解析】
    (1) 用步行人数除以其所占的百分比即可得到样本总人数:810%=80(人);用总人数乘以开私家车的所占百分比即可求出m,即 m=8025%=20;用3600乘以骑自行车所占的百分比即可求出其所在扇形的圆心角:360(1-10%-25%-45%)=.
    (2) 根据扇形统计图算出骑自行车的所占百分比, 再用总人数乘以该百分比即可求出骑自行车的人数, 补全条形图即可.
    (3) 依题意设原来开私家车的人中有x人改为骑自行车, 用x分别表示改变出行方式后的骑自行车和开私家车的人数, 根据题意列出一元一次不等式, 解不等式即可.
    【详解】
    解:(1)样本中的总人数为8÷10%=80人,
    ∵骑自行车的百分比为1﹣(10%+25%+45%)=20%,
    ∴扇形统计十图中“骑自行车”所在扇形的圆心角为360°×20%=72°
    (2)骑自行车的人数为80×20%=16人,
    补全图形如下:

    (3)设原来开私家车的人中有x人改骑自行车,
    由题意,得:1000×(1﹣10%﹣25%﹣45%)+x≥1000×25%﹣x,
    解得:x≥50,
    ∴原来开私家车的人中至少有50人改为骑自行车,才能使骑自行车的人数不低于开私家车的人数.
    【点睛】
    本题主要考查统计图表和一元一次不等式的应用。
    25、(1)文具袋的单价为15元,圆规单价为3元;(2)①方案一总费用为元,
    方案二总费用为元;②方案一更合算.
    【解析】
    (1)设文具袋的单价为x元/个,圆规的单价为y元/个,根据“购买1个文具袋和2个圆规需21元;购买2个文具袋和3个圆规需39元”,即可得出关于x,y的二元一次方程组,解之即可得出结论;
    (2)根据总价=单价×数量结合两种优惠方案,设购买面规m个,分别求出选择方案一和选择方案二所需费用,然后代入m=100计算比较后即可得出结论.
    【详解】
    (1)设文具袋的单价为x元,圆规单价为y元。
    由题意得解得
    答:文具袋的单价为15元,圆规单价为3元。
    (2)①设圆规m个,则方案一总费用为:元
    方案二总费用元
    故答案为:元;
    ②买圆规100个时,方案一总费用:元,
    方案二总费用:元,
    ∴方案一更合算。
    【点睛】
    本题考查了二元一次方程组的应用,找准等量关系,正确列出二元一次方程组是解题的关键.
    26、(1)y=x+1. (2)点C为线段AP的中点. (3)存在点D,使四边形BCPD为菱形,点D(8,1)即为所求.
    【解析】
    试题分析:(1)由点A与点B关于y轴对称,可得AO=BO,再由A的坐标求得B点的坐标,从而求得点P的坐标,将P坐标代入反比例解析式求出m的值,即可确定出反比例解析式,将A与P坐标代入一次函数解析式求出k与b的值,确定出一次函数解析式;(2)由AO=BO,PB∥CO,即可证得结论 ;(3)假设存在这样的D点,使四边形BCPD为菱形,过点C作CD平行于x轴,交PB于点E,交反比例函数y= 的图象于点D,分别连结PD、BD,如图所示,即可得点D(8,1), BP⊥CD,易证PB与CD互相垂直平分,即可得四边形BCPD为菱形,从而得点D的坐标.
    试题解析:
    (1)∵点A与点B关于y轴对称,
    ∴AO=BO,
    ∵A(-4,0),
    ∴B(4,0),
    ∴P(4,2),
    把P(4,2)代入y=得m=8,
    ∴反比例函数的解析式:y=
    把A(-4,0),P(4,2)代入y=kx+b
    得:,解得:,
    所以一次函数的解析式:y=x+1.
    (2)∵点A与点B关于y轴对称,
    ∴OA=OB
    ∵PB丄x轴于点B,
    ∴∠PBA=90°,
    ∵∠COA=90°,
    ∴PB∥CO,
    ∴点C为线段AP的中点.
    (3)存在点D,使四边形BCPD为菱形
    ∵点C为线段AP的中点,
    ∴BC=,
    ∴BC和PC是菱形的两条边
    由y=x+1,可得点C(0,1),
    过点C作CD平行于x轴,交PB于点E,交反比例函数y=的图象于点D,
    分别连结PD、BD,

    ∴点D(8,1), BP⊥CD
    ∴PE=BE=1,
    ∴CE=DE=4,
    ∴PB与CD互相垂直平分,
    ∴四边形BCPD为菱形.
    ∴点D(8,1)即为所求.
    27、(1)y=x2+2x﹣3;(2)点P坐标为(﹣1,﹣2);(3)点M坐标为(﹣1,3)或(﹣1,2).
    【解析】
    (1)设平移后抛物线的表达式为y=a(x+3)(x-1).由题意可知平后抛物线的二次项系数与原抛物线的二次项系数相同,从而可求得a的值,于是可求得平移后抛物线的表达式;
    (2)先根据平移后抛物线解析式求得其对称轴,从而得出点C关于对称轴的对称点C′坐标,连接BC′,与对称轴交点即为所求点P,再求得直线BC′解析式,联立方程组求解可得;
    (3)先求得点D的坐标,由点O、B、E、D的坐标可求得OB、OE、DE、BD的长,从而可得到△EDO为等腰三角直角三角形,从而可得到∠MDO=∠BOD=135°,故此当或时,以M、O、D为顶点的三角形与△BOD相似.由比例式可求得MD的长,于是可求得点M的坐标.
    【详解】
    (1)设平移后抛物线的表达式为y=a(x+3)(x﹣1),
    ∵由平移的性质可知原抛物线与平移后抛物线的开口大小与方向都相同,
    ∴平移后抛物线的二次项系数与原抛物线的二次项系数相同,
    ∴平移后抛物线的二次项系数为1,即a=1,
    ∴平移后抛物线的表达式为y=(x+3)(x﹣1),
    整理得:y=x2+2x﹣3;
    (2)∵y=x2+2x﹣3=(x+1)2﹣4,
    ∴抛物线对称轴为直线x=﹣1,与y轴的交点C(0,﹣3),
    则点C关于直线x=﹣1的对称点C′(﹣2,﹣3),
    如图1,

    连接B,C′,与直线x=﹣1的交点即为所求点P,
    由B(1,0),C′(﹣2,﹣3)可得直线BC′解析式为y=x﹣1,
    则,
    解得,
    所以点P坐标为(﹣1,﹣2);
    (3)如图2,

    由得,即D(﹣1,1),
    则DE=OD=1,
    ∴△DOE为等腰直角三角形,
    ∴∠DOE=∠ODE=45°,∠BOD=135°,OD=,
    ∵BO=1,
    ∴BD=,
    ∵∠BOD=135°,
    ∴点M只能在点D上方,
    ∵∠BOD=∠ODM=135°,
    ∴当或时,以M、O、D为顶点的三角形△BOD相似,
    ①若,则,解得DM=2,
    此时点M坐标为(﹣1,3);
    ②若,则,解得DM=1,
    此时点M坐标为(﹣1,2);
    综上,点M坐标为(﹣1,3)或(﹣1,2).
    【点睛】
    本题主要考查的是二次函数的综合应用,解答本题主要应用了平移的性质、翻折的性质、二次函数的图象和性质、待定系数法求二次函数的解析式、等腰直角三角形的性质、相似三角形的判定,证得∠ODM=∠BOD=135°是解题的关键.

    相关试卷

    广东省珠海香洲区四校联考2022年中考考前最后一卷数学试卷含解析: 这是一份广东省珠海香洲区四校联考2022年中考考前最后一卷数学试卷含解析,共18页。试卷主要包含了答题时请按要求用笔等内容,欢迎下载使用。

    广东省香洲区四校联考2021-2022学年中考冲刺卷数学试题含解析: 这是一份广东省香洲区四校联考2021-2022学年中考冲刺卷数学试题含解析,共19页。试卷主要包含了sin45°的值等于,已知,定义等内容,欢迎下载使用。

    广东省珠海香洲区四校联考2022年中考数学模拟精编试卷含解析: 这是一份广东省珠海香洲区四校联考2022年中考数学模拟精编试卷含解析,共21页。试卷主要包含了考生必须保证答题卡的整洁等内容,欢迎下载使用。

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单

        欢迎来到教习网

        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        还可免费领教师专享福利「樊登读书VIP」

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        返回
        顶部
        Baidu
        map