|试卷下载
搜索
    上传资料 赚现金
    2021-2022学年广东省珠海香洲区四校联考毕业升学考试模拟卷数学卷含解析
    立即下载
    加入资料篮
    2021-2022学年广东省珠海香洲区四校联考毕业升学考试模拟卷数学卷含解析01
    2021-2022学年广东省珠海香洲区四校联考毕业升学考试模拟卷数学卷含解析02
    2021-2022学年广东省珠海香洲区四校联考毕业升学考试模拟卷数学卷含解析03
    还剩21页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    2021-2022学年广东省珠海香洲区四校联考毕业升学考试模拟卷数学卷含解析

    展开
    这是一份2021-2022学年广东省珠海香洲区四校联考毕业升学考试模拟卷数学卷含解析,共24页。试卷主要包含了计算3÷2的结果是,已知等内容,欢迎下载使用。

    2021-2022中考数学模拟试卷
    注意事项:
    1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。
    2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。
    3.考试结束后,将本试卷和答题卡一并交回。

    一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)
    1.我国古代数学家刘徽创立的“割圆术”可以估算圆周率π,理论上能把π的值计算到任意精度.祖冲之继承并发展了“割圆术”,将π的值精确到小数点后第七位,这一结果领先世界一千多年,“割圆术”的第一步是计算半径为1的圆内接正六边形的面积S6,则S6的值为(  )
    A. B.2 C. D.
    2.若等式x2+ax+19=(x﹣5)2﹣b成立,则 a+b的值为(  )
    A.16 B.﹣16 C.4 D.﹣4
    3.如图,AB是⊙O的直径,CD是⊙O的弦,∠ACD=30°,则∠BAD为( )

    A.30° B.50° C.60° D.70°
    4.下列分子结构模型的平面图中,既是轴对称图形又是中心对称图形的有(  )

    A.1个 B.2个 C.3个 D.4个
    5.计算(-ab2)3÷(-ab)2的结果是(  )
    A.ab4 B.-ab4 C.ab3 D.-ab3
    6.若方程x2﹣3x﹣4=0的两根分别为x1和x2,则+的值是(  )
    A.1 B.2 C.﹣ D.﹣
    7.如图,点ABC在⊙O上,OA∥BC,∠OAC=19°,则∠AOB的大小为(  )

    A.19° B.29° C.38° D.52°
    8.如图,在▱ABCD中,用直尺和圆规作∠BAD的平分线AG交BC于点E.若BF=8,AB=5,则AE的长为( )

    A.5 B.6 C.8 D.12
    9.如图1,点O为正六边形对角线的交点,机器人置于该正六边形的某顶点处,柱柱同学操控机器人以每秒1个单位长度的速度在图1中给出线段路径上运行,柱柱同学将机器人运行时间设为t秒,机器人到点A的距离设为y,得到函数图象如图2,通过观察函数图象,可以得到下列推断:①该正六边形的边长为1;②当t=3时,机器人一定位于点O;③机器人一定经过点D;④机器人一定经过点E;其中正确的有( )

    A.①④ B.①③ C.①②③ D.②③④
    10.已知:如图,在扇形中,,半径,将扇形沿过点的直线折叠,点恰好落在弧上的点处,折痕交于点,则弧的长为( )

    A. B. C. D.
    11.如图,▱ABCD对角线AC与BD交于点O,且AD=3,AB=5,在AB延长线上取一点E,使BE=AB,连接OE交BC于F,则BF的长为(  )

    A. B. C. D.1
    12.某工厂现在平均每天比原计划多生产50台机器,现在生产600台所需时间与原计划生产450台机器所需时间相同.设原计划平均每天生产x台机器,根据题意,下面所列方程正确的是(  )
    A.= B.=
    C.= D.=
    二、填空题:(本大题共6个小题,每小题4分,共24分.)
    13.甲、乙两名学生练习打字,甲打135个字所用时间与乙打180个字所用时间相同,已知甲平均每分钟比乙少打20个字,如果设甲平均每分钟打字的个数为x,那么符合题意的方程为:______.
    14.如图,直线与x轴、y轴分别交于点A、B;点Q是以C(0,﹣1)为圆心、1为半径的圆上一动点,过Q点的切线交线段AB于点P,则线段PQ的最小是______.

    15.当a,b互为相反数,则代数式a2+ab﹣2的值为_____.
    16.如图,在两个同心圆中,四条直径把大圆分成八等份,若往圆面投掷飞镖,则飞镖落在黑色区域的概率是_______.

    17.已知二次函数的图像与轴交点的横坐标是和,且,则________.
    18.如图,等腰△ABC中,AB=AC,∠BAC=50°,AB的垂直平分线MN交AC于点D,则∠DBC的度数是____________.

    三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.
    19.(6分)如图,某校自行车棚的人字架棚顶为等腰三角形,D是AB的中点,中柱CD=1米,∠A=27°,求跨度AB的长(精确到0.01米).

    20.(6分)十八大报告首次提出建设生态文明,建设美丽中国.十九大报告再次明确,到2035年美丽中国目标基本实现.森林是人类生存发展的重要生态保障,提高森林的数量和质量对生态文明建设非常关键.截止到2013年,我国已经进行了八次森林资源清查,其中全国和北京的森林面积和森林覆盖率情况如下:
    表1全国森林面积和森林覆盖率
    清查次数

    (1976年)

    (1981年)

    (1988年)

    (1993年)

    (1998年)

    (2003年)

    (2008年)

    (2013年)
    森林面积(万公顷)
    12200
    1150
    12500
    13400
    15894. 09
    17490.92
    19545.22
    20768.73
    森林覆盖率
    12.7%
    12%
    12.98%
    13.92%
    16.55%
    18.21%
    20.36%
    21.63%
    表2北京森林面积和森林覆盖率
    清查次数

    (1976年)

    (1981年)

    (1988年)

    (1993年)

    (1998年)

    (2003年)

    (2008年)

    (2013年)
    森林面积(万公顷)




    33.74
    37.88
    52.05
    58.81
    森林覆盖率
    11.2%
    8.1%
    12.08%
    14.99%
    18.93%
    21.26%
    31.72%
    35.84%
    (以上数据来源于中国林业网)
    请根据以上信息解答下列问题:
    (1)从第   次清查开始,北京的森林覆盖率超过全国的森林覆盖率;
    (2)补全以下北京森林覆盖率折线统计图,并在图中标明相应数据;

    (3)第八次清查的全国森林面积20768.73(万公顷)记为a,全国森林覆盖率21.63%记为b,到2018年第九次森林资源清查时,如果全国森林覆盖率达到27.15%,那么全国森林面积可以达到   万公顷(用含a和b的式子表示).
    21.(6分)如图,在△ABC中,BC=6,AB=AC,E,F分别为AB,AC上的点(E,F不与A重合),且EF∥BC.将△AEF沿着直线EF向下翻折,得到△A′EF,再展开.
    (1)请判断四边形AEA′F的形状,并说明理由;
    (2)当四边形AEA′F是正方形,且面积是△ABC的一半时,求AE的长.

    22.(8分) 如图,在平面直角坐标系中,抛物线y=﹣x2+bx+c(a≠0)与x轴交于A、B两点,与y轴交于点C,点A的坐标为(﹣1,0),抛物线的对称轴直线x=交x轴于点D.
    (1)求抛物线的解析式;
    (2)点E是线段BC上的一个动点,过点E作x轴的垂线与抛物线相交于点F,交x轴于点G,当点E运动到什么位置时,四边形CDBF的面积最大?求出四边形CDBF的最大面积及此时E点的坐标;
    (3)在(2)的条件下,将线段FG绕点G顺时针旋转一个角α(0°<α<90°),在旋转过程中,设线段FG与抛物线交于点N,在线段GB上是否存在点P,使得以P、N、G为顶点的三角形与△ABC相似?如果存在,请直接写出点P的坐标;如果不存在,请说明理由.

    23.(8分)已知:如图,在梯形ABCD中,AD∥BC,AB=DC,E是对角线AC上一点,且AC·CE=AD·BC.
    (1)求证:∠DCA=∠EBC;
    (2)延长BE交AD于F,求证:AB2=AF·AD.

    24.(10分)已知函数的图象与函数的图象交于点.
    (1)若,求的值和点P的坐标;
    (2)当时,结合函数图象,直接写出实数的取值范围.
    25.(10分)如图,梯形ABCD中,AD∥BC,AE⊥BC于E,∠ADC的平分线交AE于点O,以点O为圆心,OA为半径的圆经过点B,交BC于另一点F.
    (1)求证:CD与⊙O相切;
    (2)若BF=24,OE=5,求tan∠ABC的值.

    26.(12分)已如:⊙O与⊙O上的一点A
    (1)求作:⊙O的内接正六边形ABCDEF;( 要求:尺规作图,不写作法但保留作图痕迹)
    (2)连接CE,BF,判断四边形BCEF是否为矩形,并说明理由.

    27.(12分)商场某种商品平均每天可销售30件,每件盈利50元. 为了尽快减少库存,商场
    决定采取适当的降价措施. 经调查发现,每件商品每降价1元,商场平均每天可多售出 2
    件.设每件商品降价x元. 据此规律,请回答:
    (1)商场日销售量增加 ▲ 件,每件商品盈利 ▲ 元(用含x的代数式表示);
    (2)在上述条件不变、销售正常情况下,每件商品降价多少元时,商场日盈利可达到2100元?



    参考答案

    一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)
    1、C
    【解析】
    根据题意画出图形,结合图形求出单位圆的内接正六边形的面积.
    【详解】
    如图所示,

    单位圆的半径为1,则其内接正六边形ABCDEF中,
    △AOB是边长为1的正三角形,
    所以正六边形ABCDEF的面积为
    S6=6××1×1×sin60°=.
    故选C.
    【点睛】
    本题考查了已知圆的半径求其内接正六边形面积的应用问题,关键是根据正三角形的面积,正n边形的性质解答.
    2、D
    【解析】
    分析:已知等式利用完全平方公式整理后,利用多项式相等的条件求出a与b的值,即可求出a+b的值.
    详解:已知等式整理得:x2+ax+19=(x-5)2-b=x2-10x+25-b,
    可得a=-10,b=6,
    则a+b=-10+6=-4,
    故选D.
    点睛:此题考查了完全平方公式,熟练掌握完全平方公式是解本题的关键.
    3、C
    【解析】
    试题分析:连接BD,∵∠ACD=30°,∴∠ABD=30°,
    ∵AB为直径,∴∠ADB=90°,∴∠BAD=90°﹣∠ABD=60°.
    故选C.

    考点:圆周角定理
    4、C
    【解析】
    根据轴对称图形与中心对称图形的概念求解.
    【详解】
    解:A是轴对称图形,不是中心对称图形;B,C,D是轴对称图形,也是中心对称图形.
    故选:C.
    【点睛】
    掌握中心对称图形与轴对称图形的概念:轴对称图形:如果一个图形沿着一条直线对折后两部分完全重合,这样的图形叫做轴对称图形;中心对称图形:在同一平面内,如果把一个图形绕某一点旋转180°,旋转后的图形能和原图形完全重合,那么这个图形就叫做中心对称图形.
    5、B
    【解析】
    根据积的乘方的运算法则,先分别计算积的乘方,然后再根据单项式除法法则进行计算即可得,
    (-ab2)3÷(-ab)2
    =-a3b6÷a2b2
    =-ab4,
    故选B.
    6、C
    【解析】
    试题分析:找出一元二次方程的系数a,b及c的值,利用根与系数的关系求出两根之和与两根之积,然后利用异分母分式的变形,将求出的两根之和x1+x2=3与两根之积x1•x2=﹣4代入,即可求出=.
    故选C.
    考点:根与系数的关系
    7、C
    【解析】
    由AO∥BC,得到∠ACB=∠OAC=19°,根据圆周角定理得到∠AOB=2∠ACB=38°.
    【详解】
    ∵AO∥BC,
    ∴∠ACB=∠OAC,
    而∠OAC=19°,
    ∴∠ACB=19°,
    ∴∠AOB=2∠ACB=38°.
    故选:C.
    【点睛】
    本题考查了圆周角定理与平行线的性质.解题的关键是掌握在同圆或等圆中,同弧或等弧所对的圆周角等于这条弧所对的圆心角的一半定理的应用是解此题的关键.
    8、B
    【解析】
    试题分析:由基本作图得到AB=AF,AG平分∠BAD,故可得出四边形ABEF是菱形,由菱形的性质可知AE⊥BF,故可得出OB=4,再由勾股定理即可得出OA=3,进而得出AE=2AO=1.
    故选B.

    考点:1、作图﹣基本作图,2、平行四边形的性质,3、勾股定理,4、平行线的性质
    9、C
    【解析】
    根据图象起始位置猜想点B或F为起点,则可以判断①正确,④错误.结合图象判断3≤t≤4图象的对称性可以判断②正确.结合图象易得③正确.
    【详解】
    解:由图象可知,机器人距离点A1个单位长度,可能在F或B点,则正六边形边长为1.故①正确;
    观察图象t在3-4之间时,图象具有对称性则可知,机器人在OB或OF上,
    则当t=3时,机器人距离点A距离为1个单位长度,机器人一定位于点O,故②正确;
    所有点中,只有点D到A距离为2个单位,故③正确;
    因为机器人可能在F点或B点出发,当从B出发时,不经过点E,故④错误.
    故选:C.
    【点睛】
    本题为动点问题的函数图象探究题,解答时要注意动点到达临界前后时图象的变化趋势.
    10、D
    【解析】
    如图,连接OD.根据折叠的性质、圆的性质推知△ODB是等边三角形,则易求∠AOD=110°-∠DOB=50°;然后由弧长公式弧长的公式 来求 的长
    【详解】
    解:如图,连接OD.
    解:如图,连接OD.

    根据折叠的性质知,OB=DB.
    又∵OD=OB,
    ∴OD=OB=DB,即△ODB是等边三角形,
    ∴∠DOB=60°.
    ∵∠AOB=110°,
    ∴∠AOD=∠AOB-∠DOB=50°,
    ∴的长为 =5π.
    故选D.
    【点睛】
    本题考查了弧长的计算,翻折变换(折叠问题).折叠是一种对称变换,它属于轴对称,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等.所以由折叠的性质推知△ODB是等边三角形是解答此题的关键之处.
    11、A
    【解析】
    首先作辅助线:取AB的中点M,连接OM,由平行四边形的性质与三角形中位线的性质,即可求得:△EFB∽△EOM与OM的值,利用相似三角形的对应边成比例即可求得BF的值.
    【详解】
    取AB的中点M,连接OM,

    ∵四边形ABCD是平行四边形,
    ∴AD∥BC,OB=OD,
    ∴OM∥AD∥BC,OM=AD=×3=,
    ∴△EFB∽△EOM,
    ∴,
    ∵AB=5,BE=AB,
    ∴BE=2,BM=,
    ∴EM=+2=,
    ∴,
    ∴BF=,
    故选A.
    【点睛】
    此题考查了平行四边形的性质、相似三角形的判定与性质等知识.解此题的关键是准确作出辅助线,合理应用数形结合思想解题.
    12、B
    【解析】
    设原计划平均每天生产x台机器,则实际平均每天生产(x+50)台机器,根据题意可得:现在生产600台所需时间与原计划生产450台机器所需时间相同,据此列方程即可.
    【详解】
    设原计划平均每天生产x台机器,则实际平均每天生产(x+50)台机器,由题意得:.
    故选B.
    【点睛】
    本题考查了由实际问题抽象出分式方程,解答本题的关键是读懂题意,设出未知数,找出合适的等量关系,列方程.

    二、填空题:(本大题共6个小题,每小题4分,共24分.)
    13、
    【解析】
    设甲平均每分钟打x个字,则乙平均每分钟打(x+20)个字,根据工作时间=工作总量÷工作效率结合甲打135个字所用时间与乙打180个字所用时间相同,即可得出关于x的分式方程.
    【详解】
    ∵甲平均每分钟打x个字,
    ∴乙平均每分钟打(x+20)个字,
    根据题意得:,
    故答案为.
    【点睛】
    本题考查了分式方程的应用,找准等量关系,正确列出分式方程是解题的关键.
    14、
    【解析】
    解:过点C作CP⊥直线AB于点P,过点P作⊙C的切线PQ,切点为Q,此时PQ最小,连接CQ,如图所示.
    当x=0时,y=3,∴点B的坐标为(0,3);
    当y=0时,x=4,∴点A的坐标为(4,0),∴OA=4,OB=3,∴AB==5,∴sinB=.
    ∵C(0,﹣1),∴BC=3﹣(﹣1)=4,∴CP=BC•sinB=.
    ∵PQ为⊙C的切线,∴在Rt△CQP中,CQ=1,∠CQP=90°,∴PQ==.
    故答案为.

    15、﹣1.
    【解析】
    分析:
    由已知易得:a+b=0,再把代数式a1+ab-1化为为a(a+b)-1即可求得其值了.
    详解:
    ∵a与b互为相反数,
    ∴a+b=0,
    ∴a1+ab-1=a(a+b)-1=0-1=-1.
    故答案为:-1.
    点睛:知道“互为相反数的两数的和为0”及“能够把a1+ab-1化为为a(a+b)-1”是正确解答本题的关键.
    16、
    【解析】
    试题解析:∵两个同心圆被等分成八等份,飞镖落在每一个区域的机会是均等的,其中白色区域的面积占了其中的四等份,
    ∴P(飞镖落在白色区域)=.
    17、-12
    【解析】
    令y=0,得方程,和即为方程的两根,利用根与系数的关系求得和,利用完全平方式并结合即可求得k的值.
    【详解】
    解:∵二次函数的图像与轴交点的横坐标是和,
    令y=0,得方程,
    则和即为方程的两根,
    ∴,,
    ∵,
    两边平方得:,
    ∴,
    即,解得:,
    故答案为:.
    【点睛】
    本题考查了一元二次方程与二次函数的关系,函数与x轴的交点的横坐标就是方程的根,解题的关键是利用根与系数的关系,整体代入求解.
    18、15°
    【解析】
    分析:根据等腰三角形的性质得出∠ABC的度数,根据中垂线的性质得出∠ABD的度数,最后求出∠DBC的度数.
    详解:∵AB=AC,∠BAC=50°, ∴∠ABC=∠ACB=(180°-50°)=65°,
    ∵MN为AB的中垂线, ∴∠ABD=∠BAC=50°, ∴∠DBC=65°-50°=15°.
    点睛:本题主要考查的是等腰三角形的性质以及中垂线的性质定理,属于中等难度的题型.理解中垂线的性质是解决这个问题的关键.4

    三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.
    19、AB≈3.93m.
    【解析】
    想求得AB长,由等腰三角形的三线合一定理可知AB=2AD,求得AD即可,而AD可以利用∠A的三角函数可以求出.
    【详解】
    ∵AC=BC,D是AB的中点,
    ∴CD⊥AB,
    又∵CD=1米,∠A=27°,
    ∴AD=CD÷tan27°≈1.96,
    ∴AB=2AD,
    ∴AB≈3.93m.
    【点睛】
    本题考查了三角函数,直角三角形,等腰三角形等知识,关键利用了正切函数的定义求出AD,然后就可以求出AB.
    20、(1)四;(2)见解析;(3) .
    【解析】
    (1)比较两个折线统计图,找出满足题意的调查次数即可;
    (2)描出第四次与第五次北京森林覆盖率,补全折线统计图即可;
    (3)根据第八次全面森林面积除以森林覆盖率求出全国总面积,除以第九次的森林覆盖率,即可得到结果.
    【详解】
    解:(1)观察两折线统计图比较得:从第四次清查开始,北京的森林覆盖率超过全国的森林覆盖率;
    故答案为四;
    (2)补全折线统计图,如图所示:

    (3)根据题意得:×27.15%=,
    则全国森林面积可以达到万公顷,
    故答案为.
    【点睛】
    此题考查了折线统计图,弄清题中的数据是解本题的关键.
    21、(1)四边形AEA′F为菱形.理由见解析;(2)1.
    【解析】
    (1)先证明AE=AF,再根据折叠的性质得AE=A′E,AF=A′F,然后根据菱形的判定方法可判断四边形AEA′F为菱形;(2)四先利用四边形AEA′F是正方形得到∠A=90°,则AB=AC=BC=6,然后利用正方形AEA′F的面积是△ABC的一半得到AE2=••6•6,然后利用算术平方根的定义求AE即可.
    【详解】
    (1)四边形AEA′F为菱形.
    理由如下:
    ∵AB=AC,
    ∴∠B=∠C,
    ∵EF∥BC,
    ∴∠AEF=∠B,∠AFE=∠C,
    ∴∠AEF=∠AFE,
    ∴AE=AF,
    ∵△AEF沿着直线EF向下翻折,得到△A′EF,
    ∴AE=A′E,AF=A′F,
    ∴AE=A′E=AF=A′F,
    ∴四边形AEA′F为菱形;
    (2)∵四边形AEA′F是正方形,
    ∴∠A=90°,
    ∴△ABC为等腰直角三角形,
    ∴AB=AC=BC=×6=6,
    ∵正方形AEA′F的面积是△ABC的一半,
    ∴AE2=••6•6,
    ∴AE=1.
    【点睛】
    本题考查了折叠的性质:折叠是一种对称变换,它属于轴对称,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等.
    22、(1) ;(1) ,E(1,1);(3)存在,P点坐标可以为(1+,5)或(3,5).
    【解析】
    (1)设B(x1,5),由已知条件得 ,进而得到B(2,5).又由对称轴求得b.最终得到抛物线解析式.
    (1)先求出直线BC的解析式,再设E(m,=﹣m+1.),F(m,﹣m1+m+1.)
    求得FE的值,得到S△CBF﹣m1+2m.又由S四边形CDBF=S△CBF+S△CDB,得S四边形CDBF最大值, 最终得到E点坐标.
    (3)设N点为(n,﹣n1+n+1),1<n<2.过N作NO⊥x轴于点P,得PG=n﹣1.
    又由直角三角形的判定,得△ABC为直角三角形,由△ABC∽△GNP, 得n=1+或n=1﹣(舍去),求得P点坐标.又由△ABC∽△GNP,且时,
    得n=3或n=﹣2(舍去).求得P点坐标.
    【详解】
    解:(1)设B(x1,5).由A(﹣1,5),对称轴直线x= .

    解得,x1=2.
    ∴B(2,5).
    又∵
    ∴b=.
    ∴抛物线解析式为y= ,
    (1)如图1,

    ∵B(2,5),C(5,1).
    ∴直线BC的解析式为y=﹣x+1.
    由E在直线BC上,则设E(m,=﹣m+1.),F(m,﹣m1+m+1.)
    ∴FE=﹣m1+m+1﹣(﹣n+1)=﹣m1+1m.
    由S△CBF=EF•OB,
    ∴S△CBF=(﹣m1+1m)×2=﹣m1+2m.
    又∵S△CDB=BD•OC=×(2﹣)×1=
    ∴S四边形CDBF=S△CBF+S△CDB═﹣m1+2m+.
    化为顶点式得,S四边形CDBF=﹣(m﹣1)1+ .
    当m=1时,S四边形CDBF最大,为.
    此时,E点坐标为(1,1).
    (3)存在.
    如图1,

    由线段FG绕点G顺时针旋转一个角α(5°<α<95°),设N(n,﹣n1+n+1),1<n<2.
    过N作NO⊥x轴于点P(n,5).
    ∴NP=﹣n1+n+1,PG=n﹣1.
    又∵在Rt△AOC中,AC1=OA1+OC1=1+2=5,在Rt△BOC中,BC1=OB1+OC1=16+2=15.
    AB1=51=15.
    ∴AC1+BC1=AB1.
    ∴△ABC为直角三角形.
    当△ABC∽△GNP,且时,
    即,
    整理得,n1﹣1n﹣6=5.
    解得,n=1+ 或n=1﹣(舍去).
    此时P点坐标为(1+,5).
    当△ABC∽△GNP,且时,
    即,
    整理得,n1+n﹣11=5.
    解得,n=3或n=﹣2(舍去).
    此时P点坐标为(3,5).
    综上所述,满足题意的P点坐标可以为,(1+,5),(3,5).
    【点睛】
    本题考查求抛物线,三角形的性质和面积的求法,直角三角形的判定,以及三角形相似的性质,属于较难题.
    23、 (1)见解析;(2)见解析.
    【解析】
    (1)由AD∥BC得∠DAC=∠BCA, 又∵AC·CE=AD·BC∴,∴△ACD∽△CBE ,
    ∴∠DCA=∠EBC,
    (2)由题中条件易证得△ABF∽△DAC∴,又∵AB=DC,∴
    【详解】
    证明:

    (1)∵AD∥BC,
    ∴∠DAC=∠BCA,
    ∵AC·CE=AD·BC,
    ∴,
    ∴△ACD∽△CBE ,
    ∴∠DCA=∠EBC,
    (2)∵AD∥BC,
    ∴∠AFB=∠EBC,
    ∵∠DCA=∠EBC,
    ∴∠AFB=∠DCA,
    ∵AD∥BC,AB=DC,
    ∴∠BAD=∠ADC,
    ∴△ABF∽△DAC,
    ∴,
    ∵AB=DC,
    ∴.
    【点睛】
    本题重点考查了平行线的性质和三角形相似的判定,灵活运用所学知识是解题的关键.
    24、(1),,或;(2) .
    【解析】
    【分析】(1)将P(m,n)代入y=kx,再结合m=2n即可求得k的值,联立y=与y=kx组成方程组,解方程组即可求得点P的坐标;
    (2)画出两个函数的图象,观察函数的图象即可得.
    【详解】(1)∵函数的图象交于点,
    ∴n=mk,
    ∵m=2n,∴n=2nk,
    ∴k=,
    ∴直线解析式为:y=x,
    解方程组,得,,
    ∴交点P的坐标为:(,)或(-,-);
    (2)由题意画出函数的图象与函数的图象如图所示,
    ∵函数的图象与函数的交点P的坐标为(m,n),
    ∴当k=1时,P的坐标为(1,1)或(-1,-1),此时|m|=|n|,
    当k>1时,结合图象可知此时|m|<|n|,
    ∴当时,≥1.

    【点睛】本题考查了反比例函数与正比例函数的交点,待定系数法等,运用数形结合思想解题是关键.
    25、(1)证明见解析;(2)
    【解析】
    试题分析:(1)过点O作OG⊥DC,垂足为G.先证明∠OAD=90°,从而得到∠OAD=∠OGD=90°,然后利用AAS可证明△ADO≌△GDO,则OA=OG=r,则DC是⊙O的切线;
    (2)连接OF,依据垂径定理可知BE=EF=1,在Rt△OEF中,依据勾股定理可知求得OF=13,然后可得到AE的长,最后在Rt△ABE中,利用锐角三角函数的定义求解即可.
    试题解析:
    (1)证明:
    过点O作OG⊥DC,垂足为G.

    ∵AD∥BC,AE⊥BC于E,
    ∴OA⊥AD.
    ∴∠OAD=∠OGD=90°.
    在△ADO和△GDO中

    ∴△ADO≌△GDO.
    ∴OA=OG.
    ∴DC是⊙O的切线.
    (2)如图所示:连接OF.

    ∵OA⊥BC,
    ∴BE=EF= BF=1.
    在Rt△OEF中,OE=5,EF=1,
    ∴OF=,
    ∴AE=OA+OE=13+5=2.
    ∴tan∠ABC=.
    【点睛】本题主要考查的是切线的判定、垂径定理、勾股定理的应用、锐角三角函数的定义,掌握本题的辅助线的作法是解题的关键.
    26、(1)答案见解析;(2)证明见解析.
    【解析】
    (1)如图,在⊙O上依次截取六段弦,使它们都等于OA,从而得到正六边形ABCDEF;
    (2)连接BE,如图,利用正六边形的性质得AB=BC=CD=DE=EF=FA,,则判断BE为直径,所以∠BFE=∠BCE=90°,同理可得∠FBC=∠CEF=90°,然后判断四边形BCEF为矩形.
    【详解】
    解:(1)如图,正六边形ABCDEF为所作;

    (2)四边形BCEF为矩形.理由如下:
    连接BE,如图,
    ∵六边形ABCDEF为正六边形,
    ∴AB=BC=CD=DE=EF=FA,
    ∴,
    ∴,
    ∴,
    ∴BE为直径,
    ∴∠BFE=∠BCE=90°,
    同理可得∠FBC=∠CEF=90°,
    ∴四边形BCEF为矩形.
    【点睛】
    本题考查了作图-复杂作图:复杂作图是在五种基本作图的基础上进行作图,一般是结合了几何图形的性质和基本作图方法.解决此类题目的关键是熟悉基本几何图形的性质,结合几何图形的基本性质把复杂作图拆解成基本作图,逐步操作.也考查了矩形的判定与正六边形的性质.
    27、(1) 2x 50-x
    (2)每件商品降价20元,商场日盈利可达2100元.
    【解析】
    (1) 2x 50-x.
    (2)解:由题意,得(30+2x)(50-x)=2 100
    解之得x1=15,x2=20.
    ∵该商场为尽快减少库存,降价越多越吸引顾客.
    ∴x=20.
    答:每件商品降价20元,商场日盈利可达2 100元.

    相关试卷

    四川省巴中巴州区七校联考2021-2022学年毕业升学考试模拟卷数学卷含解析: 这是一份四川省巴中巴州区七校联考2021-2022学年毕业升学考试模拟卷数学卷含解析,共18页。试卷主要包含了我市连续7天的最高气温为,估算的值在等内容,欢迎下载使用。

    2022年江苏省南京溧水区四校联考毕业升学考试模拟卷数学卷含解析: 这是一份2022年江苏省南京溧水区四校联考毕业升学考试模拟卷数学卷含解析,共21页。

    2021-2022学年海南东坡校毕业升学考试模拟卷数学卷含解析: 这是一份2021-2022学年海南东坡校毕业升学考试模拟卷数学卷含解析,共24页。试卷主要包含了考生要认真填写考场号和座位序号,如图,能判定EB∥AC的条件是,计算-5x2-3x2的结果是,若,则的值为,化简的结果是,估计的值在等内容,欢迎下载使用。

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单

        欢迎来到教习网

        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        还可免费领教师专享福利「樊登读书VIP」

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        返回
        顶部
        Baidu
        map