终身会员
搜索
    上传资料 赚现金

    广东省深圳市罗芳中学2022年中考数学仿真试卷含解析

    立即下载
    加入资料篮
    广东省深圳市罗芳中学2022年中考数学仿真试卷含解析第1页
    广东省深圳市罗芳中学2022年中考数学仿真试卷含解析第2页
    广东省深圳市罗芳中学2022年中考数学仿真试卷含解析第3页
    还剩21页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    广东省深圳市罗芳中学2022年中考数学仿真试卷含解析

    展开

    这是一份广东省深圳市罗芳中学2022年中考数学仿真试卷含解析,共24页。试卷主要包含了考生必须保证答题卡的整洁,一、单选题,下列命题是假命题的是等内容,欢迎下载使用。


    2021-2022中考数学模拟试卷
    考生请注意:
    1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。
    2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。
    3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。

    一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)
    1.如图,等腰直角三角板ABC的斜边AB与量角器的直径重合,点D是量角器上60°刻度线的外端点,连接CD交AB于点E,则∠CEB的度数为( )

    A.60° B.65° C.70° D.75°
    2.据统计, 2015年广州地铁日均客运量均为人次,将用科学记数法表示为( )
    A. B. C. D.
    3.估计﹣2的值应该在(  )
    A.﹣1﹣0之间 B.0﹣1之间 C.1﹣2之间 D.2﹣3之间
    4.小明在九年级进行的六次数学测验成绩如下(单位:分):76、82、91、85、84、85,则这次数学测验成绩的众数和中位数分别为(  )
    A.91,88 B.85,88 C.85,85 D.85,84.5
    5.一、单选题
    如图: 在中,平分,平分,且交于,若,则等于( )

    A.75 B.100 C.120 D.125
    6.如图,在中,,,,将折叠,使点与的中点重合,折痕为,则线段的长为( )

    A. B. C. D.
    7.下列命题是假命题的是(  )
    A.有一个外角是120°的等腰三角形是等边三角形
    B.等边三角形有3条对称轴
    C.有两边和一角对应相等的两个三角形全等
    D.有一边对应相等的两个等边三角形全等
    8.如图,在中,、分别为、边上的点,,与相交于点,则下列结论一定正确的是( )

    A. B.
    C. D.
    9.对于实数x,我们规定表示不大于x的最大整数,例如,,,若,则x的取值可以是( )
    A.40 B.45 C.51 D.56
    10.在直角坐标系中,设一质点M自P0(1,0)处向上运动一个单位至P1(1,1),然后向左运动2个单位至P2处,再向下运动3个单位至P3处,再向右运动4个单位至P4处,再向上运动5个单位至P5处……,如此继续运动下去,设Pn(xn,yn),n=1,2,3,……,则x1+x2+……+x2018+x2019的值为(  )

    A.1 B.3 C.﹣1 D.2019
    11.某学校举行一场知识竞赛活动,竞赛共有4小题,每小题5分,答对给5分,答错或不答给0分,在该学校随机抽取若干同学参加比赛,成绩被制成不完整的统计表如下.
    成绩
    人数(频数)
    百分比(频率)
    0


    5

    0.2
    10
    5

    15

    0.4
    20
    5
    0.1
    根据表中已有的信息,下列结论正确的是(  )
    A.共有40名同学参加知识竞赛
    B.抽到的同学参加知识竞赛的平均成绩为10分
    C.已知该校共有800名学生,若都参加竞赛,得0分的估计有100人
    D.抽到同学参加知识竞赛成绩的中位数为15分
    12.如图,AB是⊙O的直径,CD是⊙O的弦,∠ACD=30°,则∠BAD为( )

    A.30° B.50° C.60° D.70°
    二、填空题:(本大题共6个小题,每小题4分,共24分.)
    13.以矩形ABCD两条对角线的交点O为坐标原点,以平行于两边的方向为坐标轴,建立如图所示的平面直角坐标系,BE⊥AC,垂足为E.若双曲线y=(x>0)经过点D,则OB•BE的值为_____.

    14.若a:b=1:3,b:c=2:5,则a:c=_____.
    15.如图,为了测量铁塔AB高度,在离铁塔底部(点B)60米的C处,测得塔顶A的仰角为30°,那么铁塔的高度AB=________米.

    16.分解因式:2x2﹣8=_____________
    17.如图,边长为6的菱形ABCD中,AC是其对角线,∠B=60°,点P在CD上,CP=2,点M在AD上,点N在AC上,则△PMN的周长的最小值为_____________ .

    18.定义:在平面直角坐标系xOy中,把从点P出发沿纵或横方向到达点至多拐一次弯的路径长称为P,Q的“实际距离”如图,若,,则P,Q的“实际距离”为5,即或环保低碳的共享单车,正式成为市民出行喜欢的交通工具设A,B两个小区的坐标分别为,,若点表示单车停放点,且满足M到A,B的“实际距离”相等,则______.

    三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.
    19.(6分)吴京同学根据学习函数的经验,对一个新函数y=的图象和性质进行了如下探究,请帮他把探究过程补充完整该函数的自变量x的取值范围是   .列表:
    x

    ﹣2
    ﹣1
    0
    1
    2
    3
    4
    5
    6

    y


    m
    ﹣1

    ﹣5
    n
    ﹣1



    表中m=   ,n=   .描点、连线
    在下面的格点图中,建立适当的平面直角坐标系xOy中,描出上表中各对对应值为坐标的点(其中x为横坐标,y为纵坐标),并根据描出的点画出该函数的图象:
    观察所画出的函数图象,写出该函数的两条性质:
    ①   ;
    ②   .
    20.(6分)如图,在平面直角坐标系中,正方形的边长为,顶点、分别在轴、轴的正半轴,抛物线经过、两点,点为抛物线的顶点,连接、、.

    求此抛物线的解析式.
    求此抛物线顶点的坐标和四边形的面积.
    21.(6分)如图,一座钢结构桥梁的框架是△ABC,水平横梁BC长18米,中柱AD高6米,其中D是BC的中点,且AD⊥BC.
    (1)求sinB的值;
    (2)现需要加装支架DE、EF,其中点E在AB上,BE=2AE,且EF⊥BC,垂足为点F,求支架DE的长.

    22.(8分)为了解某市市民上班时常用交通工具的状况,某课题小组随机调查了部分市民(问卷调查表如表所示),并根据调查结果绘制了如图所示的尚不完整的统计图:

    根据以上统计图,解答下列问题:本次接受调查的市民共有  人;扇形统计图中,扇形B的圆心角度数是  ;请补全条形统计图;若该市“上班族”约有15万人,请估计乘公交车上班的人数.
    23.(8分)化简:.
    24.(10分)如图,一根电线杆PQ直立在山坡上,从地面的点A看,测得杆顶端点P的仰角为45°,向前走6m到达点B,又测得杆顶端点P和杆底端点Q的仰角分别为60°和30°,求电线杆PQ的高度.(结果保留根号).

    25.(10分)如图,已知抛物线y=ax2+bx+1经过A(﹣1,0),B(1,1)两点.
    (1)求该抛物线的解析式;
    (2)阅读理解:
    在同一平面直角坐标系中,直线l1:y=k1x+b1(k1,b1为常数,且k1≠0),直线l2:y=k2x+b2(k2,b2为常数,且k2≠0),若l1⊥l2,则k1•k2=﹣1.
    解决问题:
    ①若直线y=2x﹣1与直线y=mx+2互相垂直,则m的值是____;
    ②抛物线上是否存在点P,使得△PAB是以AB为直角边的直角三角形?若存在,请求出点P的坐标;若不存在,请说明理由;
    (3)M是抛物线上一动点,且在直线AB的上方(不与A,B重合),求点M到直线AB的距离的最大值.

    26.(12分)如图,已知等边△ABC,AB=4,以AB为直径的半圆与BC边交于点D,过点D作DE⊥AC,垂足为E,过点E作EF⊥AB,垂足为F,连接FD.
    (1)求证:DE是⊙O的切线;
    (2)求EF的长.

    27.(12分) 某品牌牛奶供应商提供A,B,C,D四种不同口味的牛奶供学生饮用.某校为了了解学生对不同口味的牛奶的喜好,对全校订牛奶的学生进行了随机调查,并根据调查结果绘制了如下两幅不完整的统计图.
    根据统计图的信息解决下列问题:
    本次调查的学生有多少人?补全上面的条形统计图;扇形统计图中C对应的中心角度数是   ;若该校有600名学生订了该品牌的牛奶,每名学生每天只订一盒牛奶,要使学生能喝到自己喜欢的牛奶,则该牛奶供应商送往该校的牛奶中,A,B口味的牛奶共约多少盒?



    参考答案

    一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)
    1、D
    【解析】
    解:连接OD
    ∵∠AOD=60°,
    ∴ACD=30°.
    ∵∠CEB是△ACE的外角,
    ∴△CEB=∠ACD+∠CAO=30°+45°=75°
    故选:D

    2、D
    【解析】
    科学记数法就是将一个数字表示成(a×10的n次幂的形式),其中1≤|a|<10,n表示整数.n为整数位数减1,即从左边第一位开始,在首位非零的后面加上小数点,再乘以10的n次幂.
    【详解】
    解:6 590 000=6.59×1.
    故选:D.
    【点睛】
    本题考查学生对科学记数法的掌握,一定要注意a的形式,以及指数n的确定方法.
    3、A
    【解析】
    直接利用已知无理数得出的取值范围,进而得出答案.
    【详解】
    解:∵1<<2,
    ∴1-2<﹣2<2-2,
    ∴-1<﹣2<0
    即-2在-1和0之间.
    故选A.
    【点睛】
    此题主要考查了估算无理数大小,正确得出的取值范围是解题关键.
    4、D
    【解析】
    试题分析:根据众数的定义:出现次数最多的数,中位数定义:把所有的数从小到大排列,位置处于中间的数,即可得到答案.众数出现次数最多的数,85出现了2次,次数最多,所以众数是:85,
    把所有的数从小到大排列:76,82,84,85,85,91,位置处于中间的数是:84,85,因此中位数是:(85+84)÷2=84.5,故选D.
    考点:众数,中位数
    点评:此题主要考查了众数与中位数的意义,关键是正确把握两种数的定义,即可解决问题
    5、B
    【解析】
    根据角平分线的定义推出△ECF为直角三角形,然后根据勾股定理即可求得CE2+CF2=EF2,进而可求出CE2+CF2的值.
    【详解】
    解:∵CE平分∠ACB,CF平分∠ACD,
    ∴∠ACE=∠ACB,∠ACF=∠ACD,即∠ECF=(∠ACB+∠ACD)=90°,
    ∴△EFC为直角三角形,
    又∵EF∥BC,CE平分∠ACB,CF平分∠ACD,
    ∴∠ECB=∠MEC=∠ECM,∠DCF=∠CFM=∠MCF,
    ∴CM=EM=MF=5,EF=10,
    由勾股定理可知CE2+CF2=EF2=1.
    故选:B.
    【点睛】
    本题考查角平分线的定义(从一个角的顶点引出一条射线,把这个角分成两个完全相同的角,这条射线叫做这个角的角平分线),直角三角形的判定(有一个角为90°的三角形是直角三角形)以及勾股定理的运用,解题的关键是首先证明出△ECF为直角三角形.
    6、C
    【解析】
    设BN=x,则由折叠的性质可得DN=AN=9-x,根据中点的定义可得BD=3,在Rt△BND中,根据勾股定理可得关于x的方程,解方程即可求解.
    【详解】
    设,则.
    由折叠的性质,得.
    因为点是的中点,
    所以.
    在中,
    由勾股定理,得,
    即,
    解得,
    故线段的长为4.
    故选C.
    【点睛】
    此题考查了折叠的性质,勾股定理,中点的定义以及方程思想,熟练掌握折叠的性质及勾股定理是解答本题的关键.
    7、C
    【解析】
    解:A. 外角为120°,则相邻的内角为60°,根据有一个角为60°的等腰三角形是等边三角形可以判断,故A选项正确;
    B. 等边三角形有3条对称轴,故B选项正确;
    C.当两个三角形中两边及一角对应相等时,其中如果角是这两边的夹角时,可用SAS来判定两个三角形全等,如果角是其中一边的对角时,则可不能判定这两个三角形全等,故此选项错误;
    D.利用SSS.可以判定三角形全等.故D选项正确;
    故选C.
    8、A
    【解析】
    根据平行线分线段成比例定理逐项分析即可.
    【详解】
    A.∵,
    ∴,,
    ∴,故A正确;
    B. ∵,
    ∴,故B不正确;
    C. ∵,
    ∴ ,故C不正确;
    D. ∵,
    ∴,故D不正确;
    故选A.
    【点睛】
    本题考查了平行线分线段成比例定理,平行线分线段成比例定理指的是两条直线被一组平行线所截,截得的对应线段的长度成比例.推论:平行于三角形一边,并且和其他两边相交的直线,所截得的三角形的三边与原三角形的三边对应成比例.
    9、C
    【解析】
    解:根据定义,得

    解得:.
    故选C.
    10、C
    【解析】
    根据各点横坐标数据得出规律,进而得出x +x +…+x ;经过观察分析可得每4个数的和为2,把2019个数分为505组,即可得到相应结果.
    【详解】
    解:根据平面坐标系结合各点横坐标得出:x1、x2、x3、x4、x5、x6、x7、x8的值分别为:1,﹣1,﹣1,3,3,﹣3,﹣3,5;
    ∴x1+x2+…+x7=﹣1
    ∵x1+x2+x3+x4=1﹣1﹣1+3=2;
    x5+x6+x7+x8=3﹣3﹣3+5=2;

    x97+x98+x99+x100=2…
    ∴x1+x2+…+x2016=2×(2016÷4)=1.
    而x2017、x2018、x2019的值分别为:1009、﹣1009、﹣1009,
    ∴x2017+x2018+x2019=﹣1009,
    ∴x1+x2+…+x2018+x2019=1﹣1009=﹣1,
    故选C.
    【点睛】
    此题主要考查规律型:点的坐标,解题关键在于找到其规律
    11、B
    【解析】
    根据频数÷频率=总数可求出参加人数,根据分别求出5分、15分、0分的人数,即可求出平均分,根据0分的频率即可求出800人中0分的人数,根据中位数的定义求出中位数,对选项进行判断即可.
    【详解】
    ∵5÷0.1=50(名),有50名同学参加知识竞赛,故选项A错误;
    ∵成绩5分、15分、0分的同学分别有:50×0.2=10(名),50×0.4=20(名),50﹣10﹣5﹣20﹣5=10(名)
    ∴抽到的同学参加知识竞赛的平均成绩为:=10,故选项B正确;
    ∵0分同学10人,其频率为0.2,
    ∴800名学生,得0分的估计有800×0.2=160(人),故选项C错误;
    ∵第25、26名同学的成绩为10分、15分,
    ∴抽到同学参加知识竞赛成绩的中位数为12.5分,故选项D错误.
    故选:B.
    【点睛】
    本题考查利用频率估算概率,平均数及中位数的定义,熟练掌握相关知识是解题关键.
    12、C
    【解析】
    试题分析:连接BD,∵∠ACD=30°,∴∠ABD=30°,
    ∵AB为直径,∴∠ADB=90°,∴∠BAD=90°﹣∠ABD=60°.
    故选C.

    考点:圆周角定理

    二、填空题:(本大题共6个小题,每小题4分,共24分.)
    13、1
    【解析】
    由双曲线y=(x>0)经过点D知S△ODF=k=,由矩形性质知S△AOB=2S△ODF=,据此可得OA•BE=1,根据OA=OB可得答案.
    【详解】
    如图,

    ∵双曲线y=(x>0)经过点D,
    ∴S△ODF=k=,
    则S△AOB=2S△ODF=,即OA•BE=,
    ∴OA•BE=1,
    ∵四边形ABCD是矩形,
    ∴OA=OB,
    ∴OB•BE=1,
    故答案为:1.
    【点睛】
    本题主要考查反比例函数图象上的点的坐标特征,解题的关键是掌握反比例函数系数k的几何意义及矩形的性质.
    14、2∶1
    【解析】
    分析:已知a、b两数的比为1:3,根据比的基本性质,a、b两数的比1:3=(1×2):(3×2)=2:6;而b、c的比为:2:5=(2×3):(5×3)=6:1;,所以a、c两数的比为2:1.
    详解:a:b=1:3=(1×2):(3×2)=2:6;
    b:c=2:5=(2×3):(5×3)=6:1;,
    所以a:c=2:1;
    故答案为2:1.
    点睛:本题主要考查比的基本性质的实际应用,如果已知甲乙、乙丙两数的比,那么可以根据比的基本性质求出任意两数的比.
    15、20
    【解析】
    在Rt△ABC中,直接利用tan∠ACB=tan30°==即可.
    【详解】
    在Rt△ABC中,tan∠ACB=tan30°==,BC=60,解得AB=20.
    故答案为20.
    【点睛】
    本题考查的知识点是解三角形的实际应用,解题的关键是熟练的掌握解三角形的实际应用.
    16、2(x+2)(x﹣2)
    【解析】
    先提公因式,再运用平方差公式.
    【详解】
    2x2﹣8,
    =2(x2﹣4),
    =2(x+2)(x﹣2).
    【点睛】
    考核知识点:因式分解.掌握基本方法是关键.
    17、2
    【解析】
    过P作关于AC和AD的对称点,连接和,过P作, 和,M,N共线时最短,根据对称性得知△PMN的周长的最小值为.因为四边形ABCD是菱形,AD是对角线,可以求得,根据特殊三角形函数值求得,,再根据线段相加勾股定理即可求解.
    【详解】
    过P作关于AC和AD的对称点,连接和,过P作,

    四边形ABCD是菱形,AD是对角线,





    ,

    又由题意得



    【点睛】
    本题主要考查对称性质,菱形性质,内角和定理和勾股定理,熟悉掌握定理是关键.
    18、1.
    【解析】
    根据两点间的距离公式可求m的值.
    【详解】
    依题意有,
    解得,
    故答案为:1.
    【点睛】
    考查了坐标确定位置,正确理解实际距离的定义是解题关键.

    三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.
    19、(1)一切实数(2)-,- (3)见解析(4)该函数有最小值没有最大值;该函数图象关于直线x=2对称
    【解析】
    (1)分式的分母不等于零;
    (2)把自变量的值代入即可求解;
    (3)根据题意描点、连线即可;
    (4)观察图象即可得出该函数的其他性质.
    【详解】
    (1)由y=知,x2﹣4x+5≠0,所以变量x的取值范围是一切实数.
    故答案为:一切实数;
    (2)m=,n=,
    故答案为:-,-;
    (3)建立适当的直角坐标系,描点画出图形,如下图所示:

    (4)观察所画出的函数图象,有如下性质:①该函数有最小值没有最大值;②该函数图象关于直线x=2对称.
    故答案为:该函数有最小值没有最大值;该函数图象关于直线x=2对称
    【点睛】
    本题综合考查了二次函数的图象和性质,根据图表画出函数的图象是解题的关键.
    20、 ;.
    【解析】
    (1)由正方形的性质可求得B、C的坐标,代入抛物线解析式可求得b、c的值,则可求得抛物线的解析式;
    (2)把抛物线解析式化为顶点式可求得D点坐标,再由S四边形ABDC=S△ABC+S△BCD可求得四边形ABDC的面积.
    【详解】
    由已知得:,,
    把与坐标代入得:

    解得:,,
    则解析式为;
    ∵,
    ∴抛物线顶点坐标为,
    则.
    【点睛】
    二次函数的综合应用.解题的关键是:在(1)中确定出B、C的坐标是解题的关键,在(2)中把四边形转化成两个三角形.
    21、(1)sinB=;(2)DE=1.
    【解析】
    (1)在Rt△ABD中,利用勾股定理求出AB,再根据sinB=计算即可;
    (2)由EF∥AD,BE=2AE,可得,求出EF、DF即可利用勾股定理解决问题;
    【详解】
    (1)在Rt△ABD中,∵BD=DC=9,AD=6,
    ∴AB==3,∴sinB==.
    (2)∵EF∥AD,BE=2AE,∴,∴,∴EF=4,BF=6,
    ∴DF=3,在Rt△DEF中,DE==1.

    考点:1.解直角三角形的应用;2.平行线分线段成比例定理.
    22、(1)1;(2)43.2°;(3)条形统计图如图所示:见解析;(4)估计乘公交车上班的人数为6万人.
    【解析】
    (1)根据D组人数以及百分比计算即可.
    (2)根据圆心角度数=360°×百分比计算即可.
    (3)求出A,C两组人数画出条形图即可.
    (4)利用样本估计总体的思想解决问题即可.
    【详解】
    (1)本次接受调查的市民共有:50÷25%=1(人),
    故答案为1.
    (2)扇形统计图中,扇形B的圆心角度数=360°×=43.2°;
    故答案为:43.2°
    (3)C组人数=1×40%=80(人),A组人数=1﹣24﹣80﹣50﹣16=30(人).
    条形统计图如图所示:

    (4)15×40%=6(万人).
    答:估计乘公交车上班的人数为6万人.
    【点睛】
    本题考查条形统计图,扇形统计图,样本估计总体等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.
    23、
    【解析】
    原式第一项利用完全平方公式化简,第二项利用单项式乘多项式法则计算,去括号合并即可得到结果.
    【详解】
    解:原式.
    24、(6+)米
    【解析】
    根据已知的边和角,设CQ=x,BC=QC=x,PC=BC=3x,根据PQ=BQ列出方程求解即可.
    【详解】
    解:延长PQ交地面与点C,

    由题意可得:AB=6m,∠PCA=90°,∠PAC=45°,∠PBC=60°,∠QBC=30°,设CQ=x,则在Rt△BQC中,BC=QC=x,∴在Rt△PBC中PC=BC=3x,∵在Rt△PAC中,∠PAC=45°,则PC=AC,∴,3x=6+x,解得x==3+,∴PQ=PC-CQ=3x-x=2x=6+,则电线杆PQ高为(6+)米.
    【点睛】
    此题重点考察学生对解直角三角形的理解,掌握解直角三角形的方法是解题的关键.
    25、(1)y=﹣x2+x+1;(2)①-;②点P的坐标(6,﹣14)(4,﹣5);(3).
    【解析】
    (1)根据待定系数法,可得函数解析式;
    (2)根据垂线间的关系,可得PA,PB的解析式,根据解方程组,可得P点坐标;
    (3)根据垂直于x的直线上两点间的距离是较大的纵坐标减较小的纵坐标,可得MQ,根据三角形的面积,可得二次函数,根据二次函数的性质,可得面积的最大值,根据三角形的底一定时面积与高成正比,可得三角形高的最大值
    【详解】
    解:(1)将A,B点坐标代入,得

    解得,
    抛物线的解析式为y=;
    (2)①由直线y=2x﹣1与直线y=mx+2互相垂直,得
    2m=﹣1,
    即m=﹣;
    故答案为﹣;
    ②AB的解析式为
    当PA⊥AB时,PA的解析式为y=﹣2x﹣2,
    联立PA与抛物线,得,
    解得(舍),,
    即P(6,﹣14);
    当PB⊥AB时,PB的解析式为y=﹣2x+3,
    联立PB与抛物线,得,
    解得(舍),
    即P(4,﹣5),
    综上所述:△PAB是以AB为直角边的直角三角形,点P的坐标(6,﹣14)(4,﹣5);
    (3)如图:

    ∵M(t,﹣t2+t+1),Q(t, t+),
    ∴MQ=﹣t2+
    S△MAB=MQ|xB﹣xA|
    =(﹣t2+)×2
    =﹣t2+,
    当t=0时,S取最大值,即M(0,1).
    由勾股定理,得
    AB==,
    设M到AB的距离为h,由三角形的面积,得
    h==.
    点M到直线AB的距离的最大值是.
    【点睛】
    本题考查了二次函数综合题,涉及到抛物线的解析式求法,两直线垂直,解一元二次方程组,及点到直线的最大距离,需要注意的是必要的辅助线法是解题的关键
    26、 (1)见解析;(2) .
    【解析】
    (1)连接OD,根据切线的判定方法即可求出答案;
    (2)由于OD∥AC,点O是AB的中点,从而可知OD为△ABC的中位线,在Rt△CDE中,∠C=60°,CE=CD=1,所以AE=AC−CE=4−1=3,在Rt△AEF中,所以EF=AE•sinA=3×sin60°=.
    【详解】
    (1)连接OD,

    ∵△ABC是等边三角形,
    ∴∠C=∠A=∠B=60°,
    ∵OD=OB,
    ∴△ODB是等边三角形,
    ∴∠ODB=60°
    ∴∠ODB=∠C,
    ∴OD∥AC,
    ∴DE⊥AC
    ∴OD⊥DE,
    ∴DE是⊙O的切线
    (2)∵OD∥AC,点O是AB的中点,
    ∴OD为△ABC的中位线,
    ∴BD=CD=2
    在Rt△CDE中,
    ∠C=60°,
    ∴∠CDE=30°,
    ∴CE=CD=1
    ∴AE=AC﹣CE=4﹣1=3
    在Rt△AEF中,
    ∠A=60°,
    ∴EF=AE•sinA=3×sin60°=
    【点睛】
    本题考查圆的综合问题,涉及切线的判定,锐角三角函数,含30度角的直角三角形的性质,等边三角形的性质,本题属于中等题型.
    27、(1)150人;(2)补图见解析;(3)144°;(4)300盒.
    【解析】
    (1)根据喜好A口味的牛奶的学生人数和所占百分比,即可求出本次调查的学生数.
    (2)用调查总人数减去A、B、D三种喜好不同口味牛奶的人数,求出喜好C口味牛奶的人数,补全统计图.再用360°乘以喜好C口味的牛奶人数所占百分比求出对应中心角度数.
    (3)用总人数乘以A、B口味牛奶喜欢人数所占的百分比得出答案.
    【详解】
    解:(1)本次调查的学生有30÷20%=150人;
    (2)C类别人数为150﹣(30+45+15)=60人,
    补全条形图如下:

    (3)扇形统计图中C对应的中心角度数是360°×=144°
    故答案为144°
    (4)600×()=300(人),
    答:该牛奶供应商送往该校的牛奶中,A,B口味的牛奶共约300盒.
    【点睛】
    本题考查了条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得出必要的信息是解题的关键.

    相关试卷

    广东省深圳市罗芳中学2023-2024学年八上数学期末统考模拟试题含答案:

    这是一份广东省深圳市罗芳中学2023-2024学年八上数学期末统考模拟试题含答案,共6页。试卷主要包含了考生要认真填写考场号和座位序号,计算 的结果是,下列各式不能分解因式的是,下列计算正确的是等内容,欢迎下载使用。

    广东省深圳市罗湖区罗芳中学2021-2022学年九年级上学期期中数学【试卷+答案】:

    这是一份广东省深圳市罗湖区罗芳中学2021-2022学年九年级上学期期中数学【试卷+答案】,共23页。试卷主要包含了单选题,填空题,解答题等内容,欢迎下载使用。

    2022-2023学年广东省深圳市罗芳中学数学七下期末达标检测试题含答案:

    这是一份2022-2023学年广东省深圳市罗芳中学数学七下期末达标检测试题含答案,共7页。

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单
        欢迎来到教习网
        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        使用学贝下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        返回
        顶部
        Baidu
        map