广西百色市重点达标名校2021-2022学年中考数学押题试卷含解析
展开2021-2022中考数学模拟试卷
考生请注意:
1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。
2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。
3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。
一、选择题(每小题只有一个正确答案,每小题3分,满分30分)
1.不等式组的解在数轴上表示为( )
A. B. C. D.
2.二次函数y=ax2+bx+c(a≠0)的图象如图,则反比例函数y=与一次函数y=bx﹣c在同一坐标系内的图象大致是( )
A. B. C. D.
3.在Rt△ABC中,∠C=90°,那么sin∠B等于( )
A. B. C. D.
4.据史料记载,雎水太平桥建于清嘉庆年间,已有200余年历史.桥身为一巨型单孔圆弧,既没有用钢筋,也没有用水泥,全部由石块砌成,犹如一道彩虹横卧河面上,桥拱半径OC为13m,河面宽AB为24m,则桥高CD为( )
A.15m B.17m C.18m D.20m
5.若函数与y=﹣2x﹣4的图象的交点坐标为(a,b),则的值是( )
A.﹣4 B.﹣2 C.1 D.2
6.在中国集邮总公司设计的2017年纪特邮票首日纪念截图案中,可以看作中心对称图形的是( )
A.千里江山图
B.京津冀协同发展
C.内蒙古自治区成立七十周年
D.河北雄安新区建立纪念
7.据媒体报道,我国最新研制的“察打一体”无人机的速度极快,经测试最高速度可达204000米/分,这个数用科学记数法表示,正确的是( )
A.204×103 B.20.4×104 C.2.04×105 D.2.04×106
8.如图,由两个相同的正方体和一个圆锥体组成一个立体图形,其俯视图是
A. B. C. D.
9.点A(-2,5)关于原点对称的点的坐标是 ( )
A.(2,5) B.(2,-5) C.(-2,-5) D.(-5,-2)
10.比较4,,的大小,正确的是( )
A.4<< B.4<<
C.<4< D.<<4
二、填空题(共7小题,每小题3分,满分21分)
11.已知关于x的一元二次方程kx2+3x﹣4k+6=0有两个相等的实数根,则该实数根是_____.
12.因式分解:_______________.
13.若分式的值为正,则实数的取值范围是__________________.
14.如图,四边形ABCD为矩形,H、F分别为AD、BC边的中点,四边形EFGH为矩形,E、G分别在AB、CD边上,则图中四个直角三角形面积之和与矩形EFGH的面积之比为_____.
15.计算:(3+1)(3﹣1)= .
16.用半径为6cm,圆心角为120°的扇形围成一个圆锥,则圆锥的底面圆半径为_______cm.
17.计算:+=______.
三、解答题(共7小题,满分69分)
18.(10分)九(1)班同学分成甲、乙两组,开展“四个城市建设”知识竞赛,满分得5分,得分均为整数.小马虎根据竞赛成绩,绘制了如图所示的统计图.经确认,扇形统计图是正确的,条形统计图也只有乙组成绩统计有一处错误.
(1)指出条形统计图中存在的错误,并求出正确值;
(2)若成绩达到3分及以上为合格,该校九年级有800名学生,请估计成绩未达到合格的有多少名?
(3)九(1)班张明、李刚两位成绩优秀的同学被选中参加市里组织的“四个城市建设”知识竞赛.预赛分为A、B、C、D四组进行,选手由抽签确定.张明、李刚两名同学恰好分在同一组的概率是多少?
19.(5分)为加快城乡对接,建设全域美丽乡村,某地区对A、B两地间的公路进行改建.如图,A、B两地之间有一座山,汽车原来从A地到B地需途径C地沿折线ACB行驶,现开通隧道后,汽车可直接沿直线AB行驶.已知BC=80千米,∠A=45°,∠B=30°.开通隧道前,汽车从A地到B地大约要走多少千米?开通隧道后,汽车从A地到B地大约可以少走多少千米?(结果精确到0.1千米)(参考数据:≈1.41,≈1.73)
20.(8分)如图,要修一个育苗棚,棚的横截面是,棚高,长,棚顶与地面的夹角为.求覆盖在顶上的塑料薄膜需多少平方米(结果保留小数点后一位).(参考数据:,,)
21.(10分)如图,在正方形ABCD的外部,分别以CD,AD为底作等腰Rt△CDE、等腰Rt△DAF,连接AE、CF,交点为O.
(1)求证:△CDF≌△ADE;
(2)若AF=1,求四边形ABCO的周长.
22.(10分)解方程组:
23.(12分)已知:如图,在梯形ABCD中,AB∥CD,∠D=90°,AD=CD=2,点E在边AD上(不与点A、D重合),∠CEB=45°,EB与对角线AC相交于点F,设DE=x.
(1)用含x的代数式表示线段CF的长;
(2)如果把△CAE的周长记作C△CAE,△BAF的周长记作C△BAF,设=y,求y关于x的函数关系式,并写出它的定义域;
(3)当∠ABE的正切值是 时,求AB的长.
24.(14分)解不等式组并在数轴上表示解集.
参考答案
一、选择题(每小题只有一个正确答案,每小题3分,满分30分)
1、C
【解析】
先解每一个不等式,再根据结果判断数轴表示的正确方法.
【详解】
解:由不等式①,得3x>5-2,解得x>1,
由不等式②,得-2x≥1-5,解得x≤2,
∴数轴表示的正确方法为C.
故选C.
【点睛】
考核知识点:解不等式组.
2、C
【解析】
根据二次函数的图象找出a、b、c的正负,再结合反比例函数、一次函数系数与图象的关系即可得出结论.
【详解】
解:观察二次函数图象可知:
开口向上,a>1;对称轴大于1,>1,b<1;二次函数图象与y轴交点在y轴的正半轴,c>1.
∵反比例函数中k=﹣a<1,
∴反比例函数图象在第二、四象限内;
∵一次函数y=bx﹣c中,b<1,﹣c<1,
∴一次函数图象经过第二、三、四象限.
故选C.
【点睛】
本题考查了二次函数的图象、反比例函数的图象以及一次函数的图象,解题的关键是根据二次函数的图象找出a、b、c的正负.本题属于基础题,难度不大,解决该题型题目时,根据二次函数图象找出a、b、c的正负,再结合反比例函数、一次函数系数与图象的关系即可得出结论.
3、A
【解析】
根据锐角三角函数的定义得出sinB等于∠B的对边除以斜边,即可得出答案.
【详解】
根据在△ABC中,∠C=90°,
那么sinB= =,
故答案选A.
【点睛】
本题考查的知识点是锐角三角函数的定义,解题的关键是熟练的掌握锐角三角函数的定义.
4、C
【解析】
连结OA,如图所示:
∵CD⊥AB,
∴AD=BD=AB=12m.
在Rt△OAD中,OA=13,OD=,
所以CD=OC+OD=13+5=18m.
故选C.
5、B
【解析】
求出两函数组成的方程组的解,即可得出a、b的值,再代入求值即可.
【详解】
解方程组,
把①代入②得:=﹣2x﹣4,
整理得:x2+2x+1=0,
解得:x=﹣1,
∴y=﹣2,
交点坐标是(﹣1,﹣2),
∴a=﹣1,b=﹣2,
∴=﹣1﹣1=﹣2,
故选B.
【点睛】
本题考查了一次函数与反比例函数的交点问题和解方程组等知识点,关键是求出a、b的值.
6、C
【解析】
根据中心对称图形的概念求解.
【详解】
解:A选项是轴对称图形,不是中心对称图形,故本选项错误;
B选项不是中心对称图形,故本选项错误;
C选项为中心对称图形,故本选项正确;
D选项不是中心对称图形,故本选项错误.
故选C.
【点睛】
本题主要考查了中心对称图形的概念:关键是找到相关图形的对称中心,旋转180度后与原图重合.
7、C
【解析】试题分析:204000米/分,这个数用科学记数法表示2.04×105,故选C.
考点:科学记数法—表示较大的数.
8、D
【解析】
由圆锥的俯视图可快速得出答案.
【详解】
找到从上面看所得到的图形即可,注意所有的看到的棱都应表现在俯视图中,从几何体的上面看:可以得到两个正方形,右边的正方形里面有一个内接圆.故选D.
【点睛】
本题考查立体图形的三视图,熟记基本立体图的三视图是解题的关键.
9、B
【解析】
根据平面直角坐标系中任意一点P(x,y),关于原点的对称点是(-x,-y).
【详解】
根据中心对称的性质,得点P(−2,5)关于原点对称点的点的坐标是(2, −5).
故选:B.
【点睛】
考查关于原点对称的点的坐标特征,平面直角坐标系中任意一点P(x,y),关于原点的对称点是(-x,-y).
10、C
【解析】
根据4=<且4=>进行比较
【详解】
解:易得:4=<且4=>,
所以<4<
故选C.
【点睛】
本题主要考查开平方开立方运算。
二、填空题(共7小题,每小题3分,满分21分)
11、﹣1
【解析】
根据二次项系数非零结合根的判别式△=0,即可得出关于k的一元一次不等式及一元二次方程,解之即可得出k值,将其代入原方程中解之即可得出原方程的解.
【详解】
解:∵关于x的一元二次方程kx1+3x-4k+6=0有两个相等的实数根,
∴,
解得:k=,
∴原方程为x1+4x+4=0,即(x+1)1=0,
解得:x=-1.
故答案为:-1.
【点睛】
本题考查根的判别式、一元二次方程的定义以及配方法解一元二次方程,牢记“当△=0时,方程有两个相等的实数根”是解题的关键.
12、x3(y+1)(y-1)
【解析】
先提取公因式x3,再利用平方差公式分解可得.
【详解】
解:原式=x3(y2-1)=x3(y+1)(y-1),
故答案为x3(y+1)(y-1).
【点睛】
本题主要考查提公因式法与公式法的综合运用,解题的关键是熟练掌握一般整式的因式分解的步骤--先提取公因式,再利用公式法分解.
13、x>0
【解析】
【分析】分式值为正,则分子与分母同号,据此进行讨论即可得.
【详解】∵分式的值为正,
∴x与x2+2的符号同号,
∵x2+2>0,
∴x>0,
故答案为x>0.
【点睛】本题考查了分式值为正的情况,熟知分式值为正时,分子分母同号是解题的关键.
14、1:1
【解析】
根据矩形性质得出AD=BC,AD∥BC,∠D=90°,求出四边形HFCD是矩形,得出△HFG的面积是CD×DH=S矩形HFCD,推出S△HFG=S△DHG+S△CFG,同理S△HEF=S△BEF+S△AEH,即可得出答案.
【详解】
连接HF,
∵四边形ABCD为矩形,
∴AD=BC,AD∥BC,∠D=90°
∵H、F分别为AD、BC边的中点,
∴DH=CF,DH∥CF,
∵∠D=90°,
∴四边形HFCD是矩形,
∴△HFG的面积是CD×DH=S矩形HFCD,
即S△HFG=S△DHG+S△CFG,
同理S△HEF=S△BEF+S△AEH,
∴图中四个直角三角形面积之和与矩形EFGH的面积之比是1:1,
故答案为1:1.
【点睛】
本题考查了矩形的性质和判定,三角形的面积,主要考查学生的推理能力.
15、1.
【解析】
根据平方差公式计算即可.
【详解】
原式=(3)2-12
=18-1
=1
故答案为1.
【点睛】
本题考查的是二次根式的混合运算,掌握平方差公式、二次根式的性质是解题的关键.
16、1.
【解析】
解:设圆锥的底面圆半径为r,
根据题意得1πr=,
解得r=1,
即圆锥的底面圆半径为1cm.
故答案为:1.
【点睛】
本题考查圆锥的计算,掌握公式正确计算是解题关键.
17、1.
【解析】
利用同分母分式加法法则进行计算,分母不变,分子相加.
【详解】
解:原式=.
【点睛】
本题考查同分母分式的加法,掌握法则正确计算是本题的解题关键.
三、解答题(共7小题,满分69分)
18、(1)见解析;(2)140人;(1).
【解析】
(1)分别利用条形统计图和扇形统计图得出总人数,进而得出错误的哪组;
(2)求出1分以下所占的百分比即可估计成绩未达到合格的有多少名学生;
(1)根据题意可以画出相应的树状图,从而可以求得张明、李刚两名同恰好分在同一组的概率.
【详解】
(1)由统计图可得:
| (1分) | (2分) |
| (4分) | (5分) |
甲(人) | 0 | 1 | 7 | 6 | 4 |
乙(人) | 2 | 2 | 5 | 8 | 4 |
全体(%) | 5 | 12.5 | 10 | 15 | 17.5 |
乙组得分的人数统计有误,
理由:由条形统计图和扇形统计图的对应可得,
2÷5%=40,(1+2)÷12.5%=40,
(7+5)÷10%=40,(6+8)÷15%=40,(4+4)÷17.5%≠40,
故乙组得5分的人数统计有误,
正确人数应为:40×17.5%﹣4=1.
(2)800×(5%+12.5%)=140(人);
(1)如图得:
∵共有16种等可能的结果,所选两人正好分在一组的有4种情况,
∴所选两人正好分在一组的概率是:.
【点睛】
本题考查列表法与树状图法、用样本估计总体、条形统计图、扇形统计图,解答本题的关键是明确题意,找出所求问题需要的条件.
19、(1)开通隧道前,汽车从A地到B地大约要走136.4千米;(2)汽车从A地到B地比原来少走的路程为27.2千米
【解析】
(1)过点C作AB的垂线CD,垂足为D,在直角△ACD中,解直角三角形求出CD,进而解答即可;
(2)在直角△CBD中,解直角三角形求出BD,再求出AD,进而求出汽车从A地到B地比原来少走多少路程.
【详解】
解:(1)过点C作AB的垂线CD,垂足为D,
∵AB⊥CD,sin30°=,BC=80千米,
∴CD=BC•sin30°=80×(千米),
AC=(千米),
AC+BC=80+40≈40×1.41+80=136.4(千米),
答:开通隧道前,汽车从A地到B地大约要走136.4千米;
(2)∵cos30°=,BC=80(千米),
∴BD=BC•cos30°=80×(千米),
∵tan45°=,CD=40(千米),
∴AD=(千米),
∴AB=AD+BD=40+40≈40+40×1.73=109.2(千米),
∴汽车从A地到B地比原来少走多少路程为:AC+BC﹣AB=136.4﹣109.2=27.2(千米).
答:汽车从A地到B地比原来少走的路程为27.2千米.
【点睛】
本题考查了勾股定理的运用以及解一般三角形,求三角形的边或高的问题一般可以转化为解直角三角形的问题,解决的方法就是作高线.
20、33.3
【解析】
根据解直角三角形的知识先求出AC的值,再根据矩形的面积计算方法求解即可.
【详解】
解:∵AC= ===
∴矩形面积=10≈33.3(平方米)
答:覆盖在顶上的塑料薄膜需33.3平方米
【点睛】
本题考查了解直角三角形的应用,掌握正弦的定义是解题的关键.
21、(1)详见解析;(2)
【解析】
(1)根据正方形的性质和等腰直角三角形的性质以及全等三角形的判定得出△CDF≌△ADE;
(2)连接AC,利用正方形的性质和四边形周长解答即可.
【详解】
(1)证明:∵四边形ABCD是正方形
∴CD=AD,∠ADC=90°,
∵△CDE和△DAF都是等腰直角三角形,
∴FD= AD,DE=CD,∠ADF=∠CDE=45°,
∴∠CDF=∠ADE=135°,FD=DE,
∴△CDF≌△ADE(SAS);
(2)如图,连接AC.
∵四边形ABCD是正方形,
∴∠ACD=∠DAC=45°,
∵△CDF≌△ADE,
∴∠DCF=∠DAE,
∴∠OAC=∠OCA,
∴OA=OC,
∵∠DCE=45°,
∴∠ACE=90°,
∴∠OCE=∠OEC,
∴OC=OE,
∵AF=FD=1,
∴AD=AB=BC=,
∴AC=2,
∴OA+OC=OA+OE=AE= ,
∴四边形ABCO的周长AB+BC+OA+OC= .
【点睛】
本题考查了正方形的性质,全等三角形的判定与性质,等腰直角三角形的性质,难点在于(2)作辅助线构造出全等三角形.
22、
【解析】
设=a, =b,则原方程组化为,求出方程组的解,再求出原方程组的解即可.
【详解】
设=a, =b,
则原方程组化为:,
①+②得:4a=4,
解得:a=1,
把a=1代入①得:1+b=3,
解得:b=2,
即,
解得:,
经检验是原方程组的解,
所以原方程组的解是.
【点睛】
此题考查利用换元法解方程组,注意要根据方程组的特点灵活选用合适的方法. 解数学题时,把某个式子看成一个整体,用一个变量去代替它,从而使问题得到简化,这叫换元法.换元的实质是转化,关键是构造元和设元,理论依据是等量代换,目的是变换研究对象,将问题移至新对象的知识背景中去研究,从而使非标准型问题标准化、复杂问题简单化,变得容易处理.
23、(1)CF=;(2)y=(0<x<2);(3)AB=2.5.
【解析】
试题分析:(1)根据等腰直角三角形的性质,求得∠DAC=∠ACD=45°,进而根据两角对应相等的两三角形相似,可得△CEF∽△CAE,然后根据相似三角形的性质和勾股定理可求解;
(2)根据相似三角形的判定与性质,由三角形的周长比可求解;
(3)由(2)中的相似三角形的对应边成比例,可求出AB的关系,然后可由∠ABE的正切值求解.
试题解析:(1)∵AD=CD.
∴∠DAC=∠ACD=45°,
∵∠CEB=45°,
∴∠DAC=∠CEB,
∵∠ECA=∠ECA,
∴△CEF∽△CAE,
∴,
在Rt△CDE中,根据勾股定理得,CE= ,
∵CA=,
∴,
∴CF=;
(2)∵∠CFE=∠BFA,∠CEB=∠CAB,
∴∠ECA=180°﹣∠CEB﹣∠CFE=180°﹣∠CAB﹣∠BFA,
∵∠ABF=180°﹣∠CAB﹣∠AFB,
∴∠ECA=∠ABF,
∵∠CAE=∠ABF=45°,
∴△CEA∽△BFA,
∴(0<x<2),
(3)由(2)知,△CEA∽△BFA,
∴,
∴,
∴AB=x+2,
∵∠ABE的正切值是,
∴tan∠ABE=,
∴x=,
∴AB=x+2=.
24、﹣<x≤0,不等式组的解集表示在数轴上见解析.
【解析】
先求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小无解了确定不等式组的解集.
【详解】
解不等式2x+1>0,得:x>﹣,
解不等式,得:x≤0,
则不等式组的解集为﹣<x≤0,
将不等式组的解集表示在数轴上如下:
【点睛】
本题考查了解一元一次不等式组,解题的关键是掌握“同大取大;同小取小;大小小大中间找;大大小小找不到”.
云南省曲靖市重点达标名校2021-2022学年中考数学押题试卷含解析: 这是一份云南省曲靖市重点达标名校2021-2022学年中考数学押题试卷含解析,共18页。试卷主要包含了答题时请按要求用笔等内容,欢迎下载使用。
2022届山东省冠县重点达标名校中考数学押题试卷含解析: 这是一份2022届山东省冠县重点达标名校中考数学押题试卷含解析,共17页。试卷主要包含了答题时请按要求用笔,一、单选题等内容,欢迎下载使用。
2022届广西百色市重点达标名校中考四模数学试题含解析: 这是一份2022届广西百色市重点达标名校中考四模数学试题含解析,共23页。试卷主要包含了如图所示等内容,欢迎下载使用。