人教A版 (2019)选择性必修 第一册3.1 椭圆同步测试题
展开
这是一份人教A版 (2019)选择性必修 第一册3.1 椭圆同步测试题,文件包含311椭圆及其标准方程精讲解析版docx、311椭圆及其标准方程精讲原卷版docx等2份试卷配套教学资源,其中试卷共43页, 欢迎下载使用。
3.1.1椭圆及其标准方程(精讲)目录第一部分:思维导图(总览全局)第二部分:知识点精准记忆第三部分:课前自我评估测试第四部分:典 型 例 题 剖 析重点题型一:求椭圆的标准方程角度1:待定系数法 角度2:定义法重点题型二:对椭圆标准方程的理解重点题型三:椭圆中的焦点三角形问题角度1:求焦点三角形的内角或边长角度2:求焦点三角形的面积角度3:几何最值问题重点题型四:与椭圆有关的轨迹问题第五部分:新定义问题第六部分:高考(模拟)题体验知识点一:椭圆的定义1、椭圆的定义:平面内一个动点到两个定点、的距离之和等于常数,这个动点的轨迹叫椭圆. 这两个定点(,)叫椭圆的焦点,两焦点的距离()叫作椭圆的焦距.说明:若,的轨迹为线段;若,的轨迹无图形2、定义的集合语言表述集合. 知识点二:椭圆的标准方程焦点位置焦点在轴上焦点在轴上标准方程()()图象焦点坐标,,的关系 特别说明:1、两种椭圆,()的相同点是:它们的形状、大小都相同,都有,;不同点是:两种椭圆的位置不同,它们的焦点坐标也不同.2、给出椭圆方程(,,),判断该方程所表示的椭圆的焦点位置的方法是:椭圆的焦点在轴上⇔标准方程中项的分母较大;椭圆的焦点在轴上⇔标准方程中项的分母较大,这是判断椭圆焦点所在坐标轴的重要方法.可简记作:焦点位置看大小,焦点跟着大的跑.1.(2022·全国·高二课时练习)判断正误(1)到平面内两个定点的距离之和等于定长的点的轨迹叫做椭圆.( )(2)到两定点和的距离之和为3的点M的轨迹为椭圆.( )2.(2022·全国·高二课时练习)到两定点和的距离之和为14的点P的轨迹是( )A.椭圆 B.线段 C.圆 D.以上都不对3.(2022·全国·高二课时练习)椭圆的焦点坐标为( )A. B. C. D.4.(2022·全国·高二课时练习)设P是椭圆上的任意一点,若是椭圆的两个焦点,则等于( )A.10 B.8 C.5 D.45.(2022·全国·高二课时练习)已知椭圆中,焦点在x轴上,则椭圆的标准方程为______.重点题型一:求椭圆的标准方程角度1:待定系数法典型例题例题1.(2022·四川·遂宁中学高二阶段练习(理))求适合下列条件的椭圆的标准方程:(1)焦点在轴上,长轴长为4,焦距为2;(2)一个焦点坐标为,短轴长为2. 例题2.(2022·江苏·高二课时练习)求适合下列条件的椭圆的标准方程:(1)中心在原点,焦点在轴上,长轴长、短轴长分别为8和6;(2)中心在原点,一个焦点坐标为,短轴长为4;(3)中心在原点,焦点在轴上,右焦点到短轴端点的距离为2,到右顶点的距离为1. 角度2:定义法典型例题例题1.(2022·浙江·高三专题练习)若动点始终满足关系式,则动点的轨迹方程为( )A. B. C. D.例题2.(2022·全国·高二专题练习)已知两圆:,:.动圆在圆内部且和圆相内切,和圆相外切,则动圆圆心的轨迹方程是( )A. B.C. D.例题3.(2022·全国·高二专题练习)已知定点、和动点.(1)再从条件①、条件②这两个条件中选择一个作为已知,求:动点的轨迹及其方程.条件①:条件②:(2),求:动点的轨迹及其方程. 同类题型归类练1.(2022·全国·高二专题练习)方程化简的结果是___________.2.(2022·湖南·高二期末)一动圆与圆外切,同时与圆内切,则动圆圆心的轨迹方程为___________.3.(2022·全国·高三专题练习)已知点满足条件,求点的轨迹的方程. 4.(2022·新疆·哈密市第一中学高二期末(理))求适合下列条件的椭圆的标准方程:(1)焦点在x轴上,且经过点和点;(2)焦点在y轴上,与y轴的一个交点为,P到距它较近的一个焦点的距离等于2. 5.(2022·全国·高二课时练习)分别根据下列条件,求椭圆的标准方程:(1),焦点在x轴上;(2),经过点,焦点在y轴上. 重点题型二:对椭圆标准方程的理解典型例题例题1.(2022·江西吉安·高二期末(文))“”是“方程表示椭圆”的( )A.必要不充分条件 B.充分不必要条件C.充要条件 D.不充分也不必要条件例题2.(2022·广西·南宁二中高三阶段练习(文))“”是方程“表示椭圆”的( ).A.必要不充分条件 B.充分不必要条件C.充要条件 D.既不充分又不必要条件例题3.(2022·全国·高二课时练习)已知椭圆的焦点在轴上,求实数的取值范围. 同类题型归类练1.(2022·安徽省芜湖市教育局模拟预测(文))已知命题p:“”,命题q:“方程表示椭圆”,则p是q的( )A.充要条件 B.充分不必要条件C.必要不充分条件 D.既不充分也不必要条件2.(2022·贵州·遵义航天高级中学高二阶段练习(理))已知a为实数,则“”是“方程表示的曲线为椭圆”的( )A.充分不必要条件 B.必要不充分条件C.充要条件 D.既不充分也不必要条件3.(2022·全国·高三专题练习)若方程表示椭圆,求的取值范围. 重点题型三:椭圆中的焦点三角形问题角度1:求焦点三角形的内角或周长典型例题例题1.(2022·全国·高三专题练习)已知椭圆的左右焦点分别为,,点为短轴的一个端点,则的周长为( )A.20 B.18 C.16 D.9例题2.(2022·四川眉山·高二期末(理))直线过椭圆的中心,交椭圆于,两点,是椭圆的一个焦点,则周长的最小值为( )A.14 B.16 C.18 D.20例题3.(2022·江苏·高二)已知椭圆的左、右焦点分别为,点在椭圆上,若,则( )A. B. C. D.例题4.(2022·全国·高二专题练习)设是椭圆上一点,、是椭圆的两个焦点,则的最小值是( )A. B. C. D. 角度2:求焦点三角形的面积典型例题例题1.(2022·四川内江·高二期末(理))已知是椭圆上的点,、分别是椭圆的左、右焦点,若,则的面积为( )A. B. C. D.9例题2.(2022·山西吕梁·高二期末)已知分别是椭圆的左,右焦点,点是椭圆上的一点,且的面积为1,则椭圆的短轴长为( )A.1 B.2 C. D.4例题3.(2022·全国·高三专题练习)设是椭圆的两个焦点,是椭圆上的点,且,则的面积为( )A. B. C.4 D.6 角度3:几何最值问题典型例题例题1.(2022·四川·遂宁中学高二阶段练习(理))点,是椭圆的左焦点,是椭圆上任意一点,则的取值范围是( )A. B. C. D.例题2.(2022·山东临沂·高二期末),分别为椭圆的左、右焦点,为椭圆上的动点,设点,则的最小值为( )A. B. C. D.例题3.(2022·宁夏六盘山高级中学高二阶段练习(理))已知为椭圆上的一个点,点分别为圆和圆上的动点,则的最小值为( )A.6 B.7 C.9 D.10 角度4:其他问题例题1.(2022·上海普陀·二模)设椭圆的左、右两焦点分别为,,是上的点,则使得是直角三角形的点的个数为_________.例题2.(2022·全国·高二专题练习)已知点在焦点为、的椭圆上,若,则的值为______. 同类题型归类练1.(2022·安徽亳州·高三期末(理))已知椭圆的左、右焦点分别为、,点在椭圆上,且满足.若椭圆的离心率为,则的余弦值为( )A. B. C. D.2.(2022·全国·高二专题练习)椭圆与双曲线有相同的焦点,,离心率互为倒数,为椭圆上任意一点,则角的最大值为( )A. B. C. D.3.(2022·全国·高二)已知有相同两焦点,的椭圆和双曲线,P是它们的一个交点,则的形状是( )A.锐角三角形 B.直角三角形C.钝角三角形 D.随,的变化而变化4.(2022·上海虹口·二模)已知椭圆:的左、右两个焦点分别为、,过的直线交椭圆于两点.若是等边三角形,则的值等于_________.5.(2022·全国·高二课时练习)已知、分别是椭圆的左、右焦点,P是椭圆上一点,若,则这样的点P有______个.6.(2022·全国·高二课时练习)设椭圆的焦点为,,点P在该椭圆上,如果线段的中点在y轴上,那么的值为______.7.(2022·全国·高三专题练习)已知椭圆的左焦点为是上关于原点对称的两点,且,则的周长为___________.8.(2022·全国·高三专题练习)已知椭圆的左焦点为,点P是椭圆上异于顶点的任意一点,O为坐标原点,若点M是线段的中点,则的周长为______.9.(2022·湖北·高二阶段练习)已知是椭圆:的左焦点,为上一点,,则的最小值为______.10.(2022·全国·高二专题练习)已知点是椭圆上一点,是其左右焦点,且,则三角形的面积为_________11.(2022·全国·高二课时练习)椭圆的左、右焦点分别为,,,的面积为,且,则椭圆方程为( )A. B.C. D.12.(2022·黑龙江·大庆市东风中学高二开学考试)已知、是椭圆:()的两个焦点,为椭圆上的一点,且.若的面积为,则( )A. B. C. D.13.(2022·全国·高二专题练习)已知点和,是椭圆上的动点,则最大值是( )A. B. C. D. 重点题型四:与椭圆有关的轨迹问题典型例题例题1.(2022·全国·高二专题练习)已知的周长为,顶点、的坐标分别为、,则点的轨迹方程为( )A. B.C. D.例题2.(2022·全国·高三专题练习)设圆的圆心为,点是圆内一定点,点为圆周上任一点,线段的垂直平分线与的连线交于点,则点的轨迹方程为( )A. B.C. D.例题3.(2022·全国·高二)动点在圆上移动,过点作轴的垂线段,为垂足,则线段中点的轨迹方程是.A. B. C. D.同类题型归类练1.(2022·全国·高三专题练习)已知定点,动点在圆O:上,的垂直平分线交直线OQ于点,若动点的轨迹是椭圆,则m的值可以是( )A. B.C. D.2.(2022·全国·高二专题练习)△ABC的两个顶点坐标A(-4,0),B(4,0),它的周长是18,则顶点C的轨迹方程是( )A. B.(y≠0)C. D.3.(2022·全国·高三专题练习)已知,分别在轴和轴上运动,为原点,,点的轨迹方程为A. B. C. D.1.(2022·北京市十一学校高二期末)在椭圆C:()中,其所有外切矩形的顶点在一个定圆:上,称此圆为该椭圆的蒙日圆.该图由法国数学家G-Monge(1746-1818)最先发现.若椭圆C的离心率为e,左、右焦点分别为、,P为椭圆C上一动点,过P和原点作直线l与蒙日圆相交于M,N,则( )A. B.1 C. D.以上答案均不正确2.(2022·重庆市清华中学校高二阶段练习)阿基米德(公元前287年公元前212年)不仅是著名的物理学家,也是著名的数学家,他利用“逼近法”得到椭圆的面积除以圆周率等于椭圆的长半轴与短半轴的乘积.若椭圆的对称轴为坐标轴,焦点在轴上,且椭圆的离心率为,面积为,则椭圆的方程为( )A. B.C. D.3.(2022·安徽·高二阶段练习)古希腊数学家阿波罗尼奥斯采用平面切割圆锥的方法来研究圆锥曲线,用垂直于圆锥轴的平面去截圆雉,得到的截面是圆;把平面再渐渐倾斜得到的截面是椭圆.若用面积为128的矩形截某圆锥得到椭圆,且与矩形的四边相切.设椭圆在平面直角坐标系中的方程为,下列选项中满足题意的方程为( )A. B. C. D.4.(2022·全国·高二专题练习)阿基米德既是古希腊著名的物理学家,也是著名的数学家,他利用“逼近”的方法得到椭圆的面积除以圆周率π等于椭圆的长半轴长与短半轴长的乘积.若椭圆C:的左,右焦点分别是,,P是C上一点,,,C的面积为12π,则C的标准方程为( )A. B. C. D.1.(2021·全国·高考真题)已知,是椭圆:的两个焦点,点在上,则的最大值为( )A.13 B.12 C.9 D.62.(2022·江西萍乡·三模(文))设为椭圆的焦点,若在椭圆上存在点,满足,则实数的取值范围为( )A. B.C. D.3.(2022·广西柳州·模拟预测(理))已知A(3,1),B(-3,0),P是椭圆上的一点,则的最大值为___.4.(2022·江苏·南京市天印高级中学模拟预测)已知椭圆的左、右焦点分别为,点P为椭圆C上一点,满足,的面积为,直线交椭圆C于另一点Q,且,则椭圆C的标准方程为________.9.(2022·上海黄浦·模拟预测)已知椭圆的左焦点为F,若A、B是椭圆上两动点,且垂直于x轴,则周长的最大值为___________.
相关试卷
这是一份高中数学人教A版 (2019)选择性必修 第一册3.1 椭圆精品习题,文件包含311椭圆及其标准方程精讲解析版docx、311椭圆及其标准方程精讲原卷版docx等2份试卷配套教学资源,其中试卷共57页, 欢迎下载使用。
这是一份人教A版 (2019)必修 第一册3.1 函数的概念及其表示同步训练题,文件包含311函数的概念精讲解析版docx、311函数的概念精讲原卷版docx等2份试卷配套教学资源,其中试卷共40页, 欢迎下载使用。
这是一份高中数学人教A版 (2019)必修 第一册3.1 函数的概念及其表示课堂检测,文件包含311函数的概念精练解析版docx、311函数的概念精练原卷版docx等2份试卷配套教学资源,其中试卷共13页, 欢迎下载使用。