初中数学9上2017-2018学年福建省三明市大田县上期末模拟数学试卷含答案含答案
展开1.在一个不透明的袋子中,装有红球、黄球、篮球、白球各1个,这些球除颜色外无其他差别,从袋中随机取出一个球,取出红球的概率为( )
A. B. C. D. 1
2.如图,若AB是⊙O的直径,CD是⊙O的弦,∠ABD=58°,则∠C的度数为( )
A. 116° B. 58° C. 42° D. 32°
3.如图,把边长为3的正三角形绕着它的中心旋转80°后,则新图形与原图形重叠部分的面积为( )
A. B. C. D.
4.已知函数y=, 则使y=k成立的x值恰好有三个,则k的值为( )
A. 0 B. 1 C. 2 D. 3
5.已知一个函数图象经过(1,﹣4),(2,﹣2)两点,在自变量x的某个取值范围内,都有函数值y随x的增大而减小,则符合上述条件的函数可能是( )
A. 正比例函数 B. 一次函数 C. 反比例函数 D. 二次函数
6.在一个不透明的袋子中装有5个除颜色外完全相同的小球,其中黄球2个,红球1个,白球2个,“从中任意摸出3个球,它们的颜色相同”,这一事件是( )
A. 必然事件 B. 不可能事件 C. 随机事件 D. 确定事件
7.已知关于x的一元二次方程x2+2x﹣(m﹣2)=0有实数根,则m的取值范围是( )
A. m>1 B. m<1 C. m≥1 D. m≤1
8.在一个暗箱里放有a个除颜色外其他完全相同的球,这a个球中红球有4个,每次将球搅拌均匀后,任意摸出一个球记下颜色再放回暗箱,通过大量重复摸球实验后发现,摸到红球的频率稳定在0.25,那么可以推算出a大约是( )
A. 3 B. 4 C. 12 D. 16
9.已知a、b、c为常数,点P(a,c)在第二象限,则关于x的方程ax2+bx+c=0根的情况是( )
A. 有两个相等的实数根 B. 有两个不相等的实数根 C. 没有实数根 D. 无法判断
10.⊙O的内接正三角形的边长等于3, 则⊙O的面积等于( )
A. 27π B. π C. 9π D. π
二、填空题(共8题;共24分)
11.判断下面的说法:如果一件事发生的可能性为百万分之一,那么它就不可能发生 ________(填“正确”或“错误”)
12.如图,依次以三角形、四边形、…、n边形的各顶点为圆心画半径为1的圆,且圆与圆之间两两不相交.把三角形与各圆重叠部分面积之和记为S3 , 四边形与各圆重叠部分面积之和记为S4 , ….n边形与各圆重叠部分面积之和记为Sn . 则S2017的值为________.(结果保留π)
13.如图,四边形ABCD是圆内接四边形,E是BC延长线上一点,若∠BAD=105°,则∠DCE的大小是________.
14.二次函数y=x2+4x+5(﹣3≤x≤0)的最大值和最小值分别是________.
15.将抛物线y=(x+1)2向下平移2个单位,得到新抛物线的函数解析式是________
16.如图,⊙O的半径OA⊥弦BC,且∠AOB=60°,D是⊙O上另一点,AD与BC相交于点E,若DC=DE,则正确结论的序号是________ (多填或错填得0分,少填酌情给分).
①弧AB=弧AC; ②∠ACD=105°; ③AB
18.把△ABC绕点A按逆时针方向旋转θ度,并使各边长变为原来的n倍,得到△AB′C′,即如图,∠BAB′=θ, = = =n,我们将这种变换记为[θ,n].△ABC中,AB=AC,∠BAC=36°,BC=1,对△ABC作变换[θ,n]得△AB′C′,使点B、C、B′在同一直线上,且四边形ABB′C′为平行四边形,那么θ=________,n=________.
三、解答题(共6题;共36分)
19.解方程组 .
20.在平面直角坐标系xOy中,过点(0,2)且平行于x轴的直线,与直线y=x﹣1交于点A,点A关于直线x=1的对称点为B,抛物线C1:y=x2+bx+c经过点A,B.
(1)求点A,B的坐标;
(2)求抛物线C1的表达式及顶点坐标;
(3)若抛物线C2:y=ax2(a≠0)与线段AB恰有一个公共点,结合函数的图象,求a的取值范围.
21.如图,⊙O的直径AB垂直弦CD于点E,点F在AB的延长线上,且∠BCF=∠A.
(1)求证:直线CF是⊙O的切线;
(2)若⊙O的半径为5,DB=4.求sin∠D的值.
22.如图,在平面直角坐标系中,点0为坐标原点,抛物线y=ax2+bx+4与y轴交于点A,与x轴交于点B、C(点B在点C左侧),且OA=OC=4OB.
(1)求a,b的值;
(2)连接AB、AC,点P是抛物线上第一象限内一动点,且点P位于对称轴右侧,
过点P作PD⊥AC于点E,分别交x、y轴于点D、H,过点P作PG∥AB交AC于点F,交x轴于点G,设P(x,y),线段DG的长为d,求d与x之间的函数关系(不要求写出自变量x的取值范围);
(3)在(2)的条件下,当时,连接AP并延长至点M,连接HM交AC于点S,点R是抛物线上一动点,当△ARS为等腰直角三角形时.求点R的坐标和线段AM的长.
23.阅读下面的材料,回答问题:
解方程x4﹣5x2+4=0,这是一个一元四次方程,根据该方程的特点,它的解法通常是:
设x2=y,那么x4=y2 , 于是原方程可变为y2﹣5y+4=0 ①,解得y1=1,y2=4.
当y=1时,x2=1,∴x=±1;当y=4时,x2=4,∴x=±2;
∴原方程有四个根:x1=1,x2=﹣1,x3=2,x4=﹣2.
(1)在由原方程得到方程①的过程中,利用什么法达到降次的目的,体现了数学的转化思想.
(2)解方程:(x2+3x)2+5(x2+3x)﹣6=0.
24.小东在学习了=后,认为=也成立,因此他认为一个化简过程:是正确的.你认为他的化简对吗?说说理由.
四、综合题(共10分)
25.如图,已知直线PA交⊙O于A、B两点,AE是⊙O的直径,点C为⊙O上一点,且AC平分∠PAE,过C作CD⊥PA,垂足为D.
(1)求证:CD为⊙O的切线;
(2)若DC+DA=6,⊙O的直径为10,求AB的长度.
参考答案
一、单选题
1. C 2. D 3. A 4. D 5. D 6. B 7. C 8. D 9. B 10. C
二、填空题
11.错误 12. 1007.5π 13. 105° 14. 5,1
15. y=(x+1)2﹣2 16.①、②、④ 17.π 18. 72°;
三、解答题
19.解:将两式联立消去x得:
9(y+2)2﹣4y2=36,
即5y2+36y=0,
解得:y=0或﹣ ,
当y=0时,x=2,
y=﹣ 时,x=﹣ ;
原方程组的解为 或 .
20.解:(1)当y=2时,则2=x﹣1,
解得:x=3,
∴A(3,2),
∵点A关于直线x=1的对称点为B,
∴B(﹣1,2).
(2)把(3,2),(﹣2,2)代入抛物线C1:y=x2+bx+c得:
解得:
∴y=x2﹣2x﹣1.
顶点坐标为(1,﹣2).
(3)如图,当C2过A点,B点时为临界,
代入A(3,2)则9a=2,
解得:a=,
代入B(﹣1,2),则a(﹣1)2=2,
解得:a=2,
∴a<2.
21.解:(1)连接OC,
∵OA=OC,
∴∠ACO=∠A,
又∵∠FCB=∠A
∴∠ACO=∠FCB,
又∵AB是⊙O的直径
∴∠ACO+∠OCB=90°,∠FCB+∠OCB=90°
∴直线CF为⊙O的切线,
(2)∵AB是⊙O 直径
∴∠ACB=90°
∵DC⊥AB
∴BC=BD
∴BC=BD,∠A=∠D
∴
22.解:(1)y=ax2+bx+4,当x=0时,y=4,
∴A(0,4)
∵OC=OA=4OB,
∴OC=4,OB=1,
∴C(4,0),B(﹣1,0)
将C(4,0),B(﹣1,0)代入抛物线y=ax2+bx+4
得:,解得:
∴a=﹣1 b=3.
(2)如图1,作PK⊥x轴于点K.
∵a=﹣1 b=3.
∴抛物线的解析式为y=﹣x2+3x+4.
设点P的坐标为(x,y)
∵OA=OC,∠AOC=90°,
∴∠ACO=45°,
∵AC⊥PD,
∴∠EDC=45°,
∵PK⊥x轴,
∴△PDK为等腰直角三角形,
∴PK=DK=y,
∵AB∥PG,
∴∠ABO=∠PGK,
∵tan∠ABO==4,
∴tan∠PGK==4
∴GK=PK=y
∴d=DK﹣GK=y﹣y=y,
将y=﹣x2+3x+4代入得:d=(﹣x2+3x+4)=-.
(3)如图2所示:过点P作PK⊥x轴,垂足为K,PK交于AC与N.
∵
∴.
设点P的坐标为(x,y).
∵CK=NK=4﹣x
∴PN=y﹣4+x
∴PE=PN=(y-4+x),PD=PK=y
∴,.
将y=﹣x2+3x+4代入得:.
整理得:x2﹣7x+12=0.
解得:x1=3,x2=4(舍去).
∴P(3,4)
∵DK=PK=4,
∴D(﹣1,0).
∴点D、B重合.
∵△BOH为等腰直角三角形,
∴OH=OB=1.
∴AH=3.
如图3所示:∠RAS=90°时.
设点R(a,﹣a2+3a+4)
∵△ARS为等腰直角三角形
∴∠RAS=90°,∠ARS=45°
∵AP∥x轴
∴∠PAC=∠ACO=45°.
∴∠RAP=45°.
∴RS⊥AM.
∴AL=LS,AL=LR.
∴a=﹣a2+3a+4﹣4.
∴a=2.
∴R(2,6).
在Rt△LMS中tan∠M=,在Rt△AHM中tan∠M=
∴=.
∴
∴LM=4
∴AM=6.
当∠ARS=90°和∠ASR=90°时,△ARS不能构成等腰直角三角形.
综上所述,AM的长为6.
23.解:(1)在由原方程得到方程①的过程中,利用换元法达到降次的目的,体现了转化的数学思想.
故答案是:换元;
(2)设x2+3x=y,原方程可化为y2+5y﹣6=0,
解得y1=1,y2=﹣6.
由x2+3x=1,得x1=,x2=.
由x2+3x=﹣6,得方程x2+3x+6=0,
△=9﹣4×6=﹣15<0,此方程无解.
所以原方程的解为x1=x1=,x2=.
24.解:错误,原因是被开方数应该为非负数.
====2.
四、综合题
25.(1)证明:连接OC,
∵OA=OC,
∴∠OCA=∠OAC,
∵AC平分∠PAE,
∴∠DAC=∠CAO,
∴∠DAC=∠OCA,
∴PB∥OC,
∵CD⊥PA,
∴CD⊥OC,CO为⊙O半径,
∴CD为⊙O的切线
(2)解:过O作OF⊥AB,垂足为F,
∴∠OCD=∠CDA=∠OFD=90°,
∴四边形DCOF为矩形,
∴OC=FD,OF=CD.
∵DC+DA=6,
设AD=x,则OF=CD=6﹣x,
∵⊙O的直径为10,
∴DF=OC=5,
∴AF=5﹣x,
在Rt△AOF中,由勾股定理得AF2+OF2=OA2 .
即(5﹣x)2+(6﹣x)2=25,
化简得x2﹣11x+18=0,
解得x1=2,x2=9.
∵CD=6﹣x大于0,故x=9舍去,
∴x=2,
从而AD=2,AF=5﹣2=3,
∵OF⊥AB,由垂径定理知,F为AB的中点,
∴AB=2AF=6.
初中数学9上2017-2018学年山东省临沂市莒南县上期中数学试卷含答案解析含答案: 这是一份初中数学9上2017-2018学年山东省临沂市莒南县上期中数学试卷含答案解析含答案,共24页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
初中数学9上2017-2018学年湖南省长沙市宁乡县上期末模拟数学试卷含答案解析含答案: 这是一份初中数学9上2017-2018学年湖南省长沙市宁乡县上期末模拟数学试卷含答案解析含答案,共17页。试卷主要包含了计算等内容,欢迎下载使用。
初中数学9上2017-2018学年河南省濮阳市濮阳县上期末模拟数学试卷含答案解析含答案: 这是一份初中数学9上2017-2018学年河南省濮阳市濮阳县上期末模拟数学试卷含答案解析含答案,共17页。试卷主要包含了单选题,填空题,解答题,综合题等内容,欢迎下载使用。