年终活动
搜索
    上传资料 赚现金
    英语朗读宝

    福建省福安市环城区片区2022年中考押题数学预测卷含解析

    福建省福安市环城区片区2022年中考押题数学预测卷含解析第1页
    福建省福安市环城区片区2022年中考押题数学预测卷含解析第2页
    福建省福安市环城区片区2022年中考押题数学预测卷含解析第3页
    还剩15页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    福建省福安市环城区片区2022年中考押题数学预测卷含解析

    展开

    这是一份福建省福安市环城区片区2022年中考押题数学预测卷含解析,共18页。试卷主要包含了下面说法正确的个数有,已知等内容,欢迎下载使用。
    2021-2022中考数学模拟试卷
    请考生注意:
    1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。
    2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。

    一、选择题(共10小题,每小题3分,共30分)
    1.如图,在菱形ABCD中,∠A=60°,E是AB边上一动点(不与A、B重合),且∠EDF=∠A,则下列结论错误的是(  )

    A.AE=BF B.∠ADE=∠BEF
    C.△DEF是等边三角形 D.△BEF是等腰三角形
    2.如图,双曲线y=(k>0)经过矩形OABC的边BC的中点E,交AB于点D,若四边形ODBC的面积为3,则k的值为( )

    A.1 B.2 C.3 D.6
    3.甲、乙两人加工一批零件,甲完成240个零件与乙完成200个零件所用的时间相同,已知甲比乙每天多完成8个零件.设乙每天完成x个零件,依题意下面所列方程正确的是(  )
    A. B.
    C. D.
    4.如图,甲从A点出发向北偏东70°方向走到点B,乙从点A出发向南偏西15°方向走到点C,则∠BAC的度数是(  )

    A.85° B.105° C.125° D.160°
    5.下面说法正确的个数有(  )
    ①如果三角形三个内角的比是1∶2∶3,那么这个三角形是直角三角形;
    ②如果三角形的一个外角等于与它相邻的一个内角,则这么三角形是直角三角形;
    ③如果一个三角形的三条高的交点恰好是三角形的一个顶点,那么这个三角形是直角三角形;
    ④如果∠A=∠B=∠C,那么△ABC是直角三角形;
    ⑤若三角形的一个内角等于另两个内角之差,那么这个三角形是直角三角形;
    ⑥在△ABC中,若∠A+∠B=∠C,则此三角形是直角三角形.
    A.3个 B.4个 C.5个 D.6个
    6.数据”1,2,1,3,1”的众数是( )
    A.1 B.1.5 C.1.6 D.3
    7.函数与在同一坐标系中的大致图象是( )
    A、  B、 C、 D、
    8.如图,将△ABC沿BC边上的中线AD平移到△A'B'C'的位置,已知△ABC的面积为9,阴影部分三角形的面积为1.若AA'=1,则A'D等于(  )

    A.2 B.3 C. D.
    9.已知:如图,在扇形中,,半径,将扇形沿过点的直线折叠,点恰好落在弧上的点处,折痕交于点,则弧的长为( )

    A. B. C. D.
    10.在,0,-1,这四个数中,最小的数是( )
    A. B.0 C. D.-1
    二、填空题(本大题共6个小题,每小题3分,共18分)
    11.如果两个相似三角形对应边上的高的比为1:4,那么这两个三角形的周长比是___.
    12.如图,扇形的半径为,圆心角为120°,用这个扇形围成一个圆锥的侧面,所得的圆锥的高为 ______ .

    13.A.如果一个正多边形的一个外角是45°,那么这个正多边形对角线的条数一共有_____条.
    B.用计算器计算:•tan63°27′≈_____(精确到0.01).
    14.计算:(﹣)﹣2﹣2cos60°=_____.
    15.经过三边都不相等的三角形的一个顶点的线段把三角形分成两个小三角形,如果其中一个是等腰三角形,另外一个三角形和原三角形相似,那么把这条线段定义为原三角形的“和谐分割线”.如图,线段CD是△ABC的“和谐分割线”,△ACD为等腰三角形,△CBD和△ABC相似,∠A=46°,则∠ACB的度数为_____.

    16.已知一个多边形的每一个内角都等于108°,则这个多边形的边数是   .
    三、解答题(共8题,共72分)
    17.(8分)如图,在▱ABCD中,DE⊥AB,BF⊥CD,垂足分别为E,F.求证:△ADE≌△CBF;求证:四边形BFDE为矩形.

    18.(8分)重百江津商场销售AB两种商品,售出1件A种商品和4件B种商品所得利润为600元,售出3件A商品和5件B种商品所得利润为1100元.求每件A种商品和每件B种商品售出后所得利润分别为多少元?由于需求量大A、B两种商品很快售完,重百商场决定再次购进A、B两种商品共34件,如果将这34件商品全部售完后所得利润不低于4000元,那么重百商场至少购进多少件A种商品?
    19.(8分)为了巩固全国文明城市建设成果,突出城市品质的提升,近年来,某市积极落实节能减排政策,推行绿色建筑,据统计,该市2014年的绿色建筑面积约为950万平方米,2016年达到了1862万平方米.若2015年、2016年的绿色建筑面积按相同的增长率逐年递增,请解答下列问题:求这两年该市推行绿色建筑面积的年平均增长率;2017年该市计划推行绿色建筑面积达到2400万平方米.如果2017年仍保持相同的年平均增长率,请你预测2017年该市能否完成计划目标.
    20.(8分)在正方形网格中,每个小正方形的边长均为1个单位长度,△ABC的三个顶点的位置如图所示.现将△ABC平移,使点A变换为点D,点E、F分别是B、C的对应点.
    请画出平移后的△DEF.连接AD、CF,则这两条线段之间的关系是________.
    21.(8分)我们常用的数是十进制数,如,数要用10个数码(又叫数字):0、1、2、3、4、5、6、7、8、9,在电子计算机中用的二进制,只要两个数码:0和1,如二进制中等于十进制的数6,等于十进制的数53.那么二进制中的数101011等于十进制中的哪个数?
    22.(10分)计算:﹣14﹣2×(﹣3)2+÷(﹣)如图,小林将矩形纸片ABCD沿折痕EF翻折,使点C、D分别落在点M、N的位置,发现∠EFM=2∠BFM,求∠EFC的度数.

    23.(12分)如图,平面直角坐标系中,将含30°的三角尺的直角顶点C落在第二象限.其斜边两端点A、B分别落在x轴、y轴上且AB=12cm
    (1)若OB=6cm.
    ①求点C的坐标;
    ②若点A向右滑动的距离与点B向上滑动的距离相等,求滑动的距离;
    (2)点C与点O的距离的最大值是多少cm.

    24.如图,BC是路边坡角为30°,长为10米的一道斜坡,在坡顶灯杆CD的顶端D处有一探射灯,射出的边缘光线DA和DB与水平路面AB所成的夹角∠DAN和∠DBN分别是37°和60°(图中的点A、B、C、D、M、N均在同一平面内,CM∥AN).求灯杆CD的高度;求AB的长度(结果精确到0.1米).(参考数据:=1.1.sin37°≈060,cos37°≈0.80,tan37°≈0.75)




    参考答案

    一、选择题(共10小题,每小题3分,共30分)
    1、D
    【解析】
    连接BD,可得△ADE≌△BDF,然后可证得DE=DF,AE=BF,即可得△DEF是等边三角形,然后可证得∠ADE=∠BEF.
    【详解】
    连接BD,∵四边形ABCD是菱形,
    ∴AD=AB,∠ADB=∠ADC,AB∥CD,
    ∵∠A=60°,
    ∴∠ADC=120°,∠ADB=60°,
    同理:∠DBF=60°,
    即∠A=∠DBF,
    ∴△ABD是等边三角形,
    ∴AD=BD,
    ∵∠ADE+∠BDE=60°,∠BDE+∠BDF=∠EDF=60°,
    ∴∠ADE=∠BDF,
    ∵在△ADE和△BDF中,

    ∴△ADE≌△BDF(ASA),
    ∴DE=DF,AE=BF,故A正确;
    ∵∠EDF=60°,
    ∴△EDF是等边三角形,
    ∴C正确;
    ∴∠DEF=60°,
    ∴∠AED+∠BEF=120°,
    ∵∠AED+∠ADE=180°-∠A=120°,
    ∴∠ADE=∠BEF;
    故B正确.
    ∵△ADE≌△BDF,
    ∴AE=BF,
    同理:BE=CF,
    但BE不一定等于BF.
    故D错误.
    故选D.
    【点睛】
    本题考查了菱形的性质、等边三角形的判定与性质以及全等三角形的判定与性质,解题的关键是正确寻找全等三角形解决问题.
    2、B
    【解析】
    先根据矩形的特点设出B、C的坐标,根据矩形的面积求出B点横纵坐标的积,由D为AB的中点求出D点的横纵坐标,再由待定系数法即可求出反比例函数的解析式.
    【详解】

    解:如图:连接OE,设此反比例函数的解析式为y=(k>0),C(c,0),
    则B(c,b),E(c, ),
    设D(x,y),
    ∵D和E都在反比例函数图象上,
    ∴xy=k,
    即 ,
    ∵四边形ODBC的面积为3,


    ∴bc=4

    ∵k>0
    ∴ 解得k=2,
    故答案为:B.
    【点睛】
    本题考查了反比例函数中比例系数k的几何意义,涉及到矩形的性质及用待定系数法求反比例函数的解析式,难度适中.
    3、B
    【解析】
    根据题意设出未知数,根据甲所用的时间=乙所用的时间,用时间列出分式方程即可.
    【详解】
    设乙每天完成x个零件,则甲每天完成(x+8)个.
    即得, ,故选B.
    【点睛】
    找出甲所用的时间=乙所用的时间这个关系式是本题解题的关键.
    4、C
    【解析】
    首先求得AB与正东方向的夹角的度数,即可求解.
    【详解】
    根据题意得:∠BAC=(90°﹣70°)+15°+90°=125°,
    故选:C.
    【点睛】
    本题考查了方向角,正确理解方向角的定义是关键.
    5、C
    【解析】
    试题分析:①∵三角形三个内角的比是1:2:3,
    ∴设三角形的三个内角分别为x,2x,3x,
    ∴x+2x+3x=180°,解得x=30°,
    ∴3x=3×30°=90°,
    ∴此三角形是直角三角形,故本小题正确;
    ②∵三角形的一个外角与它相邻的一个内角的和是180°,
    ∴若三角形的一个外角等于与它相邻的一个内角,则此三角形是直角三角形,故本小题正确;
    ③∵直角三角形的三条高的交点恰好是三角形的一个顶点,
    ∴若三角形的三条高的交点恰好是三角形的一个顶点,那么这个三角形是直角三角形,故本小题正确;
    ④∵∠A=∠B=∠C,
    ∴设∠A=∠B=x,则∠C=2x,
    ∴x+x+2x=180°,解得x=45°,
    ∴2x=2×45°=90°,
    ∴此三角形是直角三角形,故本小题正确;
    ⑤∵三角形的一个外角等于与它不相邻的两内角之和,三角形的一个内角等于另两个内角之差,
    ∴三角形一个内角也等于另外两个内角的和,
    ∴这个三角形中有一个内角和它相邻的外角是相等的,且外角与它相邻的内角互补,
    ∴有一个内角一定是90°,故这个三角形是直角三角形,故本小题正确;
    ⑥∵三角形的一个外角等于与它不相邻的两内角之和,又一个内角也等于另外两个内角的和,
    由此可知这个三角形中有一个内角和它相邻的外角是相等的,且外角与它相邻的内角互补,
    ∴有一个内角一定是90°,故这个三角形是直角三角形,故本小题正确.
    故选D.
    考点:1.三角形内角和定理;2.三角形的外角性质.
    6、A
    【解析】
    众数指一组数据中出现次数最多的数据,根据众数的定义就可以求解.
    【详解】
    在这一组数据中1是出现次数最多的,故众数是1.
    故选:A.
    【点睛】
    本题为统计题,考查众数的意义.众数是一组数据中出现次数最多的数据,注意众数可以不止一个.
    7、D.
    【解析】
    试题分析:根据一次函数和反比例函数的性质,分k>0和k<0两种情况讨论:
    当k<0时,一次函数图象过二、四、三象限,反比例函数中,-k>0,图象分布在一、三象限;
    当k>0时,一次函数过一、三、四象限,反比例函数中,-k<0,图象分布在二、四象限.
    故选D.
    考点:一次函数和反比例函数的图象.
    8、A
    【解析】
    分析:由S△ABC=9、S△A′EF=1且AD为BC边的中线知S△A′DE=S△A′EF=2,S△ABD=S△ABC=,根据△DA′E∽△DAB知,据此求解可得.
    详解:如图,

    ∵S△ABC=9、S△A′EF=1,且AD为BC边的中线,
    ∴S△A′DE=S△A′EF=2,S△ABD=S△ABC=,
    ∵将△ABC沿BC边上的中线AD平移得到△A'B'C',
    ∴A′E∥AB,
    ∴△DA′E∽△DAB,
    则,即,
    解得A′D=2或A′D=-(舍),
    故选A.
    点睛:本题主要平移的性质,解题的关键是熟练掌握平移变换的性质与三角形中线的性质、相似三角形的判定与性质等知识点.
    9、D
    【解析】
    如图,连接OD.根据折叠的性质、圆的性质推知△ODB是等边三角形,则易求∠AOD=110°-∠DOB=50°;然后由弧长公式弧长的公式 来求 的长
    【详解】
    解:如图,连接OD.
    解:如图,连接OD.

    根据折叠的性质知,OB=DB.
    又∵OD=OB,
    ∴OD=OB=DB,即△ODB是等边三角形,
    ∴∠DOB=60°.
    ∵∠AOB=110°,
    ∴∠AOD=∠AOB-∠DOB=50°,
    ∴的长为 =5π.
    故选D.
    【点睛】
    本题考查了弧长的计算,翻折变换(折叠问题).折叠是一种对称变换,它属于轴对称,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等.所以由折叠的性质推知△ODB是等边三角形是解答此题的关键之处.
    10、D
    【解析】
    试题分析:因为负数小于0,正数大于0,正数大于负数,所以在,0,-1,这四个数中,最小的数是-1,故选D.
    考点:正负数的大小比较.

    二、填空题(本大题共6个小题,每小题3分,共18分)
    11、1:4
    【解析】
    ∵两个相似三角形对应边上的高的比为1∶4,
    ∴这两个相似三角形的相似比是1:4
    ∵相似三角形的周长比等于相似比,
    ∴它们的周长比1:4,
    故答案为:1:4.
    【点睛】本题考查了相似三角形的性质,相似三角形对应边上的高、相似三角形的周长比都等于相似比.
    12、4cm
    【解析】
    求出扇形的弧长,除以2π即为圆锥的底面半径,然后利用勾股定理求得圆锥的高即可.
    【详解】
    扇形的弧长==4π,
    圆锥的底面半径为4π÷2π=2,
    故圆锥的高为:=4,
    故答案为4cm.
    【点睛】
    本题考查了圆锥的计算,重点考查了扇形的弧长公式;圆的周长公式;用到的知识点为:圆锥的弧长等于底面周长.
    13、20 5.1
    【解析】
    A、先根据多边形外角和为360°且各外角相等求得边数,再根据多边形对角线条数的计算公式计算可得;
    B、利用计算器计算可得.
    【详解】
    A、根据题意,此正多边形的边数为360°÷45°=8,
    则这个正多边形对角线的条数一共有=20,
    故答案为20;
    B、•tan63°27′≈2.646×2.001≈5.1,
    故答案为5.1.
    【点睛】
    本题主要考查计算器-三角函数,解题的关键是掌握多边形的内角与外角、对角线计算公式及计算器的使用.
    14、3
    【解析】
    按顺序先进行负指数幂的运算、代入特殊角的三角函数值,然后再进行减法运算即可.
    【详解】
    (﹣)﹣2﹣2cos60°
    =4-2×
    =3,
    故答案为3.
    【点睛】
    本题考查了实数的运算,涉及了负指数幂、特殊角的三角函数值,熟练掌握相关的运算法则是解题的关键.
    15、113°或92°
    【解析】
    解:∵△BCD∽△BAC,∴∠BCD=∠A=46°.∵△ACD是等腰三角形,∠ADC>∠BCD,∴∠ADC>∠A,即AC≠CD.
    ①当AC=AD时,∠ACD=∠ADC=(180°﹣46°)÷2=67°,∴∠ACB=67°+46°=113°;
    ②当DA=DC时,∠ACD=∠A=46°,∴∠ACB=46°+46°=92°.
    故答案为113°或92°.
    16、1
    【解析】
    试题分析:∵多边形的每一个内角都等于108°,∴每一个外角为72°.
    ∵多边形的外角和为360°,∴这个多边形的边数是:360÷÷72=1.

    三、解答题(共8题,共72分)
    17、(1)证明见解析;(2)证明见解析.
    【解析】
    (1)由DE与AB垂直,BF与CD垂直,得到一对直角相等,再由ABCD为平行四边形得到AD=BC,对角相等,利用AAS即可的值;
    (2)由平行四边形的对边平行得到DC与AB平行,得到∠CDE为直角,利用三个角为直角的四边形为矩形即可的值.
    【详解】
    解:(1)∵DE⊥AB,BF⊥CD,
    ∴∠AED=∠CFB=90°,
    ∵四边形ABCD为平行四边形,
    ∴AD=BC,∠A=∠C,
    在△ADE和△CBF中,

    ∴△ADE≌△CBF(AAS);
    (2)∵四边形ABCD为平行四边形,
    ∴CD∥AB,
    ∴∠CDE+∠DEB=180°,
    ∵∠DEB=90°,
    ∴∠CDE=90°,
    ∴∠CDE=∠DEB=∠BFD=90°,
    则四边形BFDE为矩形.
    【点睛】
    本题考查1.矩形的判定;2.全等三角形的判定与性质;3.平行四边形的性质.
    18、(1)200元和100元(2)至少6件
    【解析】
    (1)设A种商品售出后所得利润为x元,B种商品售出后所得利润为y元.由售出1件A种商品和4件B种商品所得利润为600元,售出3件A种商品和5件B种商品所得利润为1100元建立两个方程,构成方程组求出其解就可以;
    (2)设购进A种商品a件,则购进B种商品(34﹣a)件.根据获得的利润不低于4000元,建立不等式求出其解即可.
    【详解】
    解:(1)设A种商品售出后所得利润为x元,B种商品售出后所得利润为y元.由题意,
    得,解得:,
    答:A种商品售出后所得利润为200元,B种商品售出后所得利润为100元.
    (2)设购进A种商品a件,则购进B种商品(34﹣a)件.由题意,得
    200a+100(34﹣a)≥4000,
    解得:a≥6
    答:威丽商场至少需购进6件A种商品.
    19、(1)这两年该市推行绿色建筑面积的年平均增长率为40%;(2)如果2017年仍保持相同的年平均增长率,2017年该市能完成计划目标.
    【解析】
    试题分析:(1)设这两年该市推行绿色建筑面积的年平均增长率x,根据2014年的绿色建筑面积约为700万平方米和2016年达到了1183万平方米,列出方程求解即可;
    (2)根据(1)求出的增长率问题,先求出预测2017年绿色建筑面积,再与计划推行绿色建筑面积达到1500万平方米进行比较,即可得出答案.
    试题解析:(1)设这两年该市推行绿色建筑面积的年平均增长率为x,
    根据题意得:700(1+x)2=1183,
    解得:x1=0.3=30%,x2=﹣2.3(舍去),
    答:这两年该市推行绿色建筑面积的年平均增长率为30%;
    (2)根据题意得:1183×(1+30%)=1537.9(万平方米),
    ∵1537.9>1500,
    ∴2017年该市能完成计划目标.
    【点睛】本题考查了一元二次方程的应用,解题关键是要读懂题目的意思,根据题目给出的条件和增长率问题的数量关系,列出方程进行求解.
    20、见解析
    【解析】
    (1)如图:

    (2)连接AD、CF,则这两条线段之间的关系是AD=CF,且AD∥CF.
    21、1.
    【解析】
    分析:利用新定义得到101011=1×25+0×24+1×23+0×22+1×21+1×20,然后根据乘方的定义进行计算.
    详解:101011=1×25+0×24+1×23+0×22+1×21+1×20=1,
    所以二进制中的数101011等于十进制中的1.
    点睛:本题考查了有理数的乘方:有理数乘方的定义:求n个相同因数积的运算,叫做乘方.
    22、(1)﹣10;(2)∠EFC=72°.
    【解析】
    (1)原式利用乘方的意义,立方根定义,乘除法则及家减法法则计算即可;(2)根据折叠的性质得到一对角相等,再由已知角的关系求出结果即可.
    【详解】
    (1)原式=﹣1﹣18+9=﹣10;
    (2)由折叠得:∠EFM=∠EFC,
    ∵∠EFM=2∠BFM,
    ∴设∠EFM=∠EFC=x,则有∠BFM=x,
    ∵∠MFB+∠MFE+∠EFC=180°,
    ∴x+x+x=180°,
    解得:x=72°,
    则∠EFC=72°.
    【点睛】
    本题考查了实数的性质及平行线的性质,解题的关键是熟练掌握实数的运算法则及平行线的性质.
    23、(1)①点C的坐标为(-3,9);②滑动的距离为6(﹣1)cm;(2)OC最大值1cm.
    【解析】
    试题分析:(1)①过点C作y轴的垂线,垂足为D,根据30°的直角三角形的性质解答即可;②设点A向右滑动的距离为x,根据题意得点B向上滑动的距离也为x,根据锐角三角函数和勾股定理解答即可;(2)设点C的坐标为(x,y),过C作CE⊥x轴,CD⊥y轴,垂足分别为E,D,证得△ACE∽△BCD,利用相似三角形的性质解答即可.
    试题解析:解:(1)①过点C作y轴的垂线,垂足为D,如图1:

    在Rt△AOB中,AB=1,OB=6,则BC=6,
    ∴∠BAO=30°,∠ABO=60°,
    又∵∠CBA=60°,∴∠CBD=60°,∠BCD=30°,
    ∴BD=3,CD=3,
    所以点C的坐标为(﹣3,9);
    ②设点A向右滑动的距离为x,根据题意得点B向上滑动的距离也为x,如图2:

    AO=1×cos∠BAO=1×cos30°=6.
    ∴A'O=6﹣x,B'O=6+x,A'B'=AB=1
    在△A'O B'中,由勾股定理得,
    (6﹣x)2+(6+x)2=12,解得:x=6(﹣1),
    ∴滑动的距离为6(﹣1);
    (2)设点C的坐标为(x,y),过C作CE⊥x轴,CD⊥y轴,垂足分别为E,D,如图3:

    则OE=﹣x,OD=y,
    ∵∠ACE+∠BCE=90°,∠DCB+∠BCE=90°,
    ∴∠ACE=∠DCB,又∵∠AEC=∠BDC=90°,
    ∴△ACE∽△BCD,
    ∴,即,
    ∴y=﹣x,
    OC2=x2+y2=x2+(﹣x)2=4x2,
    ∴当|x|取最大值时,即C到y轴距离最大时,OC2有最大值,即OC取最大值,如图,即当C'B'旋转到与y轴垂直时.此时OC=1,
    故答案为1.
    考点:相似三角形综合题.
    24、(1)10米;(2)11.4米
    【解析】
    (1)延长DC交AN于H.只要证明BC=CD即可;
    (2)在Rt△BCH中,求出BH、CH,在 Rt△ADH中求出AH即可解决问题.
    【详解】
    (1)如图,延长DC交AN于H,

    ∵∠DBH=60°,∠DHB=90°,
    ∴∠BDH=30°,
    ∵∠CBH=30°,
    ∴∠CBD=∠BDC=30°,
    ∴BC=CD=10(米);
    (2)在Rt△BCH中,CH=BC=5,BH=5≈8.65,
    ∴DH=15,
    在Rt△ADH中,AH=≈=20,
    ∴AB=AH﹣BH=20﹣8.65=11.4(米).
    【点睛】
    本题考查解直角三角形的应用﹣坡度坡角问题,解题的关键是学会添加常用辅助线,构造直角三角形解决问题.

    相关试卷

    江苏省扬州市江都区城区2022年中考押题数学预测卷含解析:

    这是一份江苏省扬州市江都区城区2022年中考押题数学预测卷含解析,共22页。试卷主要包含了若关于x的一元二次方程,一次函数的图象不经过等内容,欢迎下载使用。

    2022年福建省福安市环城区片区重点达标名校初中数学毕业考试模拟冲刺卷含解析:

    这是一份2022年福建省福安市环城区片区重点达标名校初中数学毕业考试模拟冲刺卷含解析,共22页。试卷主要包含了计算tan30°的值等于等内容,欢迎下载使用。

    2022年福建省福安市环城区片区中考二模数学试题含解析:

    这是一份2022年福建省福安市环城区片区中考二模数学试题含解析,共20页。试卷主要包含了点A,不等式组的解集在数轴上表示为等内容,欢迎下载使用。

    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map