福建省福安市环城区片区重点达标名校2021-2022学年中考数学考试模拟冲刺卷含解析
展开
这是一份福建省福安市环城区片区重点达标名校2021-2022学年中考数学考试模拟冲刺卷含解析,共18页。试卷主要包含了考生必须保证答题卡的整洁,点P,老师在微信群发了这样一个图,下列四个实数中,比5小的是,下列计算正确的是等内容,欢迎下载使用。
2021-2022中考数学模拟试卷
考生请注意:
1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。
2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。
3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。
一、选择题(共10小题,每小题3分,共30分)
1.如图,▱ABCD的对角线AC、BD相交于点O,且AC+BD=16,CD=6,则△ABO的周长是( )
A.10 B.14 C.20 D.22
2.如图,甲从A点出发向北偏东70°方向走到点B,乙从点A出发向南偏西15°方向走到点C,则∠BAC的度数是( )
A.85° B.105° C.125° D.160°
3.下列图形中,既是中心对称图形,又是轴对称图形的是( )
A. B. C. D.
4.点P(4,﹣3)关于原点对称的点所在的象限是( )
A.第四象限 B.第三象限 C.第二象限 D.第一象限
5.老师在微信群发了这样一个图:以线段AB为边作正五边形ABCDE和正三角形ABG,连接AC、DG,交点为F,下列四位同学的说法不正确的是( )
A.甲 B.乙 C.丙 D.丁
6.习近平主席在2018年新年贺词中指出,2017年,基本医疗保险已经覆盖1350000000人.将1350000000用科学记数法表示为( )
A.135×107 B.1.35×109 C.13.5×108 D.1.35×1014
7.下列四个实数中,比5小的是( )
A. B. C. D.
8.下列计算正确的是( )
A.(a+2)(a﹣2)=a2﹣2 B.(a+1)(a﹣2)=a2+a﹣2
C.(a+b)2=a2+b2 D.(a﹣b)2=a2﹣2ab+b2
9.如图,在△ABC中,分别以点A和点C为圆心,大于AC长为半径画弧,两弧相交于点M,N,作直线MN分别交BC,AC于点D,E,若AE=3cm,△ABD的周长为13cm,则△ABC的周长为( )
A.16cm B.19cm C.22cm D.25cm
10.在娱乐节目“墙来了!”中,参赛选手背靠水池,迎面冲来一堵泡沫墙,墙上有人物造型的空洞.选手需要按墙上的造型摆出相同的姿势,才能穿墙而过,否则会被墙推入水池.类似地,有一块几何体恰好能以右图中两个不同形状的“姿势”分别穿过这两个空洞,则该几何体为( )
A. B. C. D.
二、填空题(本大题共6个小题,每小题3分,共18分)
11.已知A、B两地之间的距离为20千米,甲步行,乙骑车,两人沿着相同路线,由A地到B地匀速前行,甲、乙行进的路程s与x(小时)的函数图象如图所示.(1)乙比甲晚出发___小时;(2)在整个运动过程中,甲、乙两人之间的距离随x的增大而增大时,x的取值范围是___.
12.抛物线(为非零实数)的顶点坐标为_____________.
13.如图,在矩形ABCD中,对角线AC与BD相交于点O,过点A作AE⊥BD,垂足为点E,若∠EAC=2∠CAD,则∠BAE=__________度.
14.在某一时刻,测得一根高为2m的竹竿的影长为1m,同时测得一栋建筑物的影长为9m,那么这栋建筑物的高度为_____m.
15.若圆锥的地面半径为,侧面积为,则圆锥的母线是__________.
16.飞机着陆后滑行的距离S(单位:米)与滑行的时间t(单位:秒)之间的函数关系式是s=60t﹣1.2t2,那么飞机着陆后滑行_____秒停下.
三、解答题(共8题,共72分)
17.(8分)如图,已知⊙O经过△ABC的顶点A、B,交边BC于点D,点A恰为的中点,且BD=8,AC=9,sinC=,求⊙O的半径.
18.(8分)如图1,在长方形ABCD中,,,点P从A出发,沿的路线运动,到D停止;点Q从D点出发,沿路线运动,到A点停止.若P、Q两点同时出发,速度分别为每秒、,a秒时P、Q两点同时改变速度,分别变为每秒、(P、Q两点速度改变后一直保持此速度,直到停止),如图2是的面积和运动时间(秒)的图象.
(1)求出a值;
(2)设点P已行的路程为,点Q还剩的路程为,请分别求出改变速度后,和运动时间(秒)的关系式;
(3)求P、Q两点都在BC边上,x为何值时P,Q两点相距3cm?
19.(8分)如图,AB是⊙O的直径,∠BAC=90°,四边形EBOC是平行四边形,EB交⊙O于点D,连接CD并延长交AB的延长线于点F.
(1)求证:CF是⊙O的切线;
(2)若∠F=30°,EB=6,求图中阴影部分的面积.(结果保留根号和π)
20.(8分)体育老师为了解本校九年级女生1分钟“仰卧起坐”体育测试项目的达标情况,从该校九年级136名女生中,随机抽取了20名女生,进行了1分钟仰卧起坐测试,获得数据如下:
收集数据:抽取20名女生的1分钟仰卧起坐测试成绩(个)如下:
38 46 42 52 55 43 59 46 25 38
35 45 51 48 57 49 47 53 58 49
(1)整理、描述数据:请你按如下分组整理、描述样本数据,把下列表格补充完整:
范围
25≤x≤29
30≤x≤34
35≤x≤39
40≤x≤44
45≤x≤49
50≤x≤54
55≤x≤59
人数
(说明:每分钟仰卧起坐个数达到49个及以上时在中考体育测试中可以得到满分)
(2)分析数据:样本数据的平均数、中位数、满分率如下表所示:
平均数
中位数
满分率
46.8
47.5
45%
得出结论:①估计该校九年级女生在中考体育测试中1分钟“仰卧起坐”项目可以得到满分的人数为 ;
②该中心所在区县的九年级女生的1分钟“仰卧起坐”总体测试成绩如下:
平均数
中位数
满分率
45.3
49
51.2%
请你结合该校样本测试成绩和该区县总体测试成绩,为该校九年级女生的1分钟“仰卧起坐”达标情况做一下评估,并提出相应建议.
21.(8分)风电已成为我国继煤电、水电之后的第三大电源,风电机组主要由塔杆和叶片组成(如图①),图②是平面图.光明中学的数学兴趣小组针对风电塔杆进行了测量,甲同学站在平地上的A处测得塔杆顶端C的仰角是55°,乙同学站在岩石B处测得叶片的最高位置D的仰角是45°(D,C,H在同一直线上,G,A,H在同一条直线上),他们事先从相关部门了解到叶片的长度为15米(塔杆与叶片连接处的长度忽略不计),岩石高BG为4米,两处的水平距离AG为23米,BG⊥GH,CH⊥AH,求塔杆CH的高.(参考数据:tan55°≈1.4,tan35°≈0.7,sin55°≈0.8,sin35°≈0.6)
22.(10分)如图,四边形ABCD中,对角线AC,BD相交于点O,点E,F分别在OA,OC上.
(1)给出以下条件;①OB=OD,②∠1=∠2,③OE=OF,请你从中选取两个条件证明△BEO≌△DFO;
(2)在(1)条件中你所选条件的前提下,添加AE=CF,求证:四边形ABCD是平行四边形.
23.(12分)随着通讯技术迅猛发展,人与人之间的沟通方式更多样、便捷.某校数学兴趣小组设计了“你最喜欢的沟通方式”调查问卷(每人必选且只选一种),在全校范围内随机调查了部分学生,将统计结果绘制了如下两幅不完整的统计图,请结合图中所给的信息解答下列问题:
(1)这次统计共抽查了_____名学生,最喜欢用电话沟通的所对应扇形的圆心角是____°;
(2)将条形统计图补充完整;
(3)运用这次的调查结果估计1200名学生中最喜欢用QQ进行沟通的学生有多少名?
(4)甲、乙两名同学从微信,QQ,电话三种沟通方式中随机选了一种方式与对方联系,请用列表或画树状图的方法求出甲乙两名同学恰好选中同一种沟通方式的概率.
24.一次函数的图象经过点和点,求一次函数的解析式.
参考答案
一、选择题(共10小题,每小题3分,共30分)
1、B
【解析】
直接利用平行四边形的性质得出AO=CO,BO=DO,DC=AB=6,再利用已知求出AO+BO的长,进而得出答案.
【详解】
∵四边形ABCD是平行四边形,
∴AO=CO,BO=DO,DC=AB=6,
∵AC+BD=16,
∴AO+BO=8,
∴△ABO的周长是:1.
故选B.
【点睛】
平行四边形的性质掌握要熟练,找到等值代换即可求解.
2、C
【解析】
首先求得AB与正东方向的夹角的度数,即可求解.
【详解】
根据题意得:∠BAC=(90°﹣70°)+15°+90°=125°,
故选:C.
【点睛】
本题考查了方向角,正确理解方向角的定义是关键.
3、C
【解析】
根据中心对称图形和轴对称图形对各选项分析判断即可得解.
【详解】
A、不是轴对称图形,是中心对称图形,故本选项错误;
B、不是中心对称图形,是轴对称图形,故本选项错误;
C、既是中心对称图形,又是轴对称图形,故本选项正确;
D、是轴对称图形,不是中心对称图形,故本选项错误.
故选C.
【点睛】
本题考查了中心对称图形与轴对称图形的概念,轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合.
4、C
【解析】
由题意得点P的坐标为(﹣4,3),根据象限内点的符号特点可得点P1的所在象限.
【详解】
∵设P(4,﹣3)关于原点的对称点是点P1,
∴点P1的坐标为(﹣4,3),
∴点P1在第二象限.
故选 C
【点睛】
本题主要考查了两点关于原点对称,这两点的横纵坐标均互为相反数;符号为(﹣,+)的点在第二象限.
5、B
【解析】
利用对称性可知直线DG是正五边形ABCDE和正三角形ABG的对称轴,再利用正五边形、等边三角形的性质一一判断即可;
【详解】
∵五边形ABCDE是正五边形,△ABG是等边三角形,
∴直线DG是正五边形ABCDE和正三角形ABG的对称轴,
∴DG垂直平分线段AB,
∵∠BCD=∠BAE=∠EDC=108°,∴∠BCA=∠BAC=36°,
∴∠DCA=72°,∴∠CDE+∠DCA=180°,∴DE∥AC,
∴∠CDF=∠EDF=∠CFD=72°,
∴△CDF是等腰三角形.
故丁、甲、丙正确.
故选B.
【点睛】
本题考查正多边形的性质、等边三角形的性质、轴对称图形的性质等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.
6、B
【解析】
科学记数法的表示形式为a×的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.
【详解】
将1350000000用科学记数法表示为:1350000000=1.35×109,
故选B.
【点睛】
本题考查科学记数法的表示方法. 科学记数法的表示形式为a×的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值及n的值.
7、A
【解析】
首先确定无理数的取值范围,然后再确定是实数的大小,进而可得答案.
【详解】
解:A、∵5<<6,
∴5﹣1<﹣1<6﹣1,
∴﹣1<5,故此选项正确;
B、∵
∴,故此选项错误;
C、∵6<<7,
∴5<﹣1<6,故此选项错误;
D、∵4<<5,
∴,故此选项错误;
故选A.
【点睛】
考查无理数的估算,掌握无理数估算的方法是解题的关键.通常使用夹逼法.
8、D
【解析】
A、原式=a2﹣4,不符合题意;
B、原式=a2﹣a﹣2,不符合题意;
C、原式=a2+b2+2ab,不符合题意;
D、原式=a2﹣2ab+b2,符合题意,
故选D
9、B
【解析】
根据作法可知MN是AC的垂直平分线,利用垂直平分线的性质进行求解即可得答案.
【详解】
解:根据作法可知MN是AC的垂直平分线,
∴DE垂直平分线段AC,
∴DA=DC,AE=EC=6cm,
∵AB+AD+BD=13cm,
∴AB+BD+DC=13cm,
∴△ABC的周长=AB+BD+BC+AC=13+6=19cm,
故选B.
【点睛】
本题考查作图-基本作图,线段的垂直平分线的性质等知识,解题的关键是熟练掌握线段的垂直平分线的性质.
10、C
【解析】
试题分析:通过图示可知,要想通过圆,则可以是圆柱、圆锥、球,而能通过三角形的只能是圆锥,综合可知只有圆锥符合条件.
故选C
二、填空题(本大题共6个小题,每小题3分,共18分)
11、2, 0≤x≤2或≤x≤2.
【解析】
(2)由图象直接可得答案;
(2)根据图象求出甲乙的函数解析式,再求出方程组的解集即可解答
【详解】
(2)由 函数图象可知,乙比甲晚出发2小时.
故答案为2.
(2)在整个运动过程中,甲、乙两人之间的距离随x的增大而增大时,有两种情况:
一是甲出发,乙还未出发时:此时0≤x≤2;
二是乙追上甲后,直至乙到达终点时:
设甲的函数解析式为:y=kx,由图象可知,(4,20)在函数图象上,代入得:20=4k,
∴k=5,
∴甲的函数解析式为:y=5x①
设乙的函数解析式为:y=k′x+b,将坐标(2,0),(2,20)代入得: ,
解得 ,
∴乙的函数解析式为:y=20x﹣20 ②
由①②得 ,
∴ ,
故 ≤x≤2符合题意.
故答案为0≤x≤2或≤x≤2.
【点睛】
此题考查函数的图象和二元一次方程组的解,解题关键在于看懂图中数据
12、
【解析】
【分析】将抛物线的解析式由一般式化为顶点式,即可得到顶点坐标.
【详解】y=mx2+2mx+1
=m(x2+2x)+1
=m(x2+2x+1-1)+1
=m(x+1)2 +1-m,
所以抛物线的顶点坐标为(-1,1-m),
故答案为(-1,1-m).
【点睛】本题考查了抛物线的顶点坐标,把抛物线的解析式转化为顶点式是解题的关键.
13、22.5°
【解析】
四边形ABCD是矩形,
AC=BD,OA=OC,OB=OD,
OA=OB═OC,
∠OAD=∠ODA,∠OAB=∠OBA,
∠AOE=∠OAD+∠ODA=2∠OAD,
∠EAC=2∠CAD,
∠EAO=∠AOE,
AE⊥BD,
∠AEO=90°,
∠AOE=45°,
∠OAB=∠OBA=67.5°,
即∠BAE=∠OAB﹣∠OAE=22.5°.
考点:矩形的性质;等腰三角形的性质.
14、1
【解析】
分析:根据同时同地的物高与影长成正比列式计算即可得解.
详解:设这栋建筑物的高度为xm,
由题意得,,
解得x=1,
即这栋建筑物的高度为1m.
故答案为1.
点睛:同时同地的物高与影长成正比,利用相似三角形的相似比,列出方程,通过解方程求出这栋高楼的高度,体现了方程的思想.
15、13
【解析】
试题解析:圆锥的侧面积=×底面半径×母线长,把相应数值代入即可求解.
设母线长为R,则:
解得:
故答案为13.
16、1
【解析】
飞机停下时,也就是滑行距离最远时,即在本题中需求出s最大时对应的t值.
【详解】
由题意,s=﹣1.2t2+60t=﹣1.2(t2﹣50t+61﹣61)=﹣1.2(t﹣1)2+750
即当t=1秒时,飞机才能停下来.
故答案为1.
【点睛】
本题考查了二次函数的应用.解题时,利用配方法求得t=2时,s取最大值.
三、解答题(共8题,共72分)
17、⊙O的半径为.
【解析】
如图,连接OA.交BC于H.首先证明OA⊥BC,在Rt△ACH中,求出AH,设⊙O的半径为r,在Rt△BOH中,根据BH2+OH2=OB2,构建方程即可解决问题。
【详解】
解:如图,连接OA.交BC于H.
∵点A为的中点,
∴OA⊥BD,BH=DH=4,
∴∠AHC=∠BHO=90°,
∵,AC=9,
∴AH=3,
设⊙O的半径为r,
在Rt△BOH中,∵BH2+OH2=OB2,
∴42+(r﹣3)2=r2,
∴r=,
∴⊙O的半径为.
【点睛】
本题考查圆心角、弧、弦的关系、垂径定理、勾股定理、锐角三角函数等知识,解题的关键是学会添加常用辅助线,构造直角三角形解决问题.
18、(1)6;(2);;(3)10或;
【解析】
(1)根据图象变化确定a秒时,P点位置,利用面积求a;
(2)P、Q两点的函数关系式都是在运动6秒的基础上得到的,因此注意在总时间内减去6秒;
(3)以(2)为基础可知,两个点相距3cm分为相遇前相距或相遇后相距,因此由(2)可列方程.
【详解】
(1)由图象可知,当点P在BC上运动时,△APD的面积保持不变,则a秒时,点P在AB上.
,
∴AP=6,
则a=6;
(2)由(1)6秒后点P变速,则点P已行的路程为y1=6+2(x﹣6)=2x﹣6,
∵Q点路程总长为34cm,第6秒时已经走12cm,
故点Q还剩的路程为y2=34﹣12﹣;
(3)当P、Q两点相遇前相距3cm时,
﹣(2x﹣6)=3,解得x=10,
当P、Q两点相遇后相距3cm时,
(2x﹣6)﹣()=3,解得x=,
∴当x=10或时,P、Q两点相距3cm
【点睛】
本题是双动点问题,解答时应注意分析图象的变化与动点运动位置之间的关系.列函数关系式时,要考虑到时间x的连续性才能直接列出函数关系式.
19、(1)证明见解析;(2)9﹣3π
【解析】
试题分析:(1)、连接OD,根据平行四边形的性质得出∠AOC=∠OBE,∠COD=∠ODB,结合OB=OD得出∠DOC=∠AOC,从而证明出△COD和△COA全等,从而的得出答案;(2)、首先根据题意得出△OBD为等边三角形,根据等边三角形的性质得出EC=ED=BO=DB,根据Rt△AOC的勾股定理得出AC的长度,然后根据阴影部分的面积等于两个△AOC的面积减去扇形OAD的面积得出答案.
试题解析:(1)如图连接OD.
∵四边形OBEC是平行四边形,∴OC∥BE,∴∠AOC=∠OBE,∠COD=∠ODB,
∵OB=OD,∴∠OBD=∠ODB,∴∠DOC=∠AOC,
在△COD和△COA中,,∴△COD≌△COA,∴∠CDO=∠CAO=90°,
∴CF⊥OD, ∴CF是⊙O的切线.
(2)∵∠F=30°,∠ODF=90°,∴∠DOF=∠AOC=∠COD=60°,
∵OD=OB,∴△OBD是等边三角形,∴∠4=60°,∵∠4=∠F+∠1,∴∠1=∠2=30°,
∵EC∥OB,∴∠E=180°﹣∠4=120°,∴∠3=180°﹣∠E﹣∠2=30°,∴EC=ED=BO=DB,
∵EB=6,∴OB=OD═OA=3, 在Rt△AOC中,∵∠OAC=90°,OA=3,∠AOC=60°,
∴AC=OA•tan60°=3, ∴S阴=2•S△AOC﹣S扇形OAD=2××3×3﹣=9﹣3π.
20、(1)补充表格见解析;(2)①61;②见解析.
【解析】
(1)根据所给数据分析补充表格即可.(2)①根据概率公式计算即可. ②根据平均数、中位数分别进行分析并根据分析结果给出建议即可.
【详解】
(1)补充表格如下:
范围
25≤x≤29
30≤x≤34
35≤x≤39
40≤x≤44
45≤x≤49
50≤x≤54
55≤x≤59
人数
1
0
3
2
7
3
4
(2)①估计该校九年级女生在中考体育测试中1分钟“仰卧起坐”项目可以得到满分的人数为136×≈61,
故答案为:61;
②从平均数角度看,该校女生1分钟仰卧起坐的平均成绩高于区县水平,整体水平较好;
从中位数角度看,该校成绩中等水平偏上的学生比例低于区县水平,该校测试成绩的满分率低于区县水平;
建议:该校在保持学校整体水平的同事,多关注接近满分的学生,提高满分成绩的人数.
【点睛】
本题考查的是统计表的综合运用,读懂统计图,从统计图中得到必要的信息是解决问题的关键.
21、塔杆CH的高为42米
【解析】
作BE⊥DH,知GH=BE、BG=EH=4,设AH=x,则BE=GH=23+x,由CH=AHtan∠CAH=tan55°•x知CE=CH-EH=tan55°•x-4,根据BE=DE可得关于x的方程,解之可得.
【详解】
解:如图,作BE⊥DH于点E,
则GH=BE、BG=EH=4,
设AH=x,则BE=GH=GA+AH=23+x,
在Rt△ACH中,CH=AHtan∠CAH=tan55°•x,
∴CE=CH﹣EH=tan55°•x﹣4,
∵∠DBE=45°,
∴BE=DE=CE+DC,即23+x=tan55°•x﹣4+15,
解得:x≈30,
∴CH=tan55°•x=1.4×30=42,
答:塔杆CH的高为42米.
【点睛】
本题考查了解直角三角形的应用,解答本题要求学生能借助仰角构造直角三角形并解直角三角形.
22、(1)见解析;(2)见解析.
【解析】
试题分析:(1)选取①②,利用ASA判定△BEO≌△DFO;也可选取②③,利用AAS判定△BEO≌△DFO;还可选取①③,利用SAS判定△BEO≌△DFO;
(2)根据△BEO≌△DFO可得EO=FO,BO=DO,再根据等式的性质可得AO=CO,根据两条对角线互相平分的四边形是平行四边形可得结论.
试题解析:
证明:(1)选取①②,
∵在△BEO和△DFO中,
∴△BEO≌△DFO(ASA);
(2)由(1)得:△BEO≌△DFO,
∴EO=FO,BO=DO,
∵AE=CF,
∴AO=CO,
∴四边形ABCD是平行四边形.
点睛:此题主要考查了平行四边形的判定,以及全等三角形的判定,关键是掌握两条对角线互相平分的四边形是平行四边形.
23、 (1)120,54;(2)补图见解析;(3)660名;(4).
【解析】
(1)用喜欢使用微信的人数除以它所占的百分比得到调查的总人数,再用360°乘以样本中电话人数所占比例;
(2)先计算出喜欢使用短信的人数,然后补全条形统计图;
(3)利用样本估计总体,用1200乘以样本中最喜欢用QQ进行沟通的学生所占的百分比即可;
(4)画树状图展示所有9种等可能的结果数,再找出甲乙两名同学恰好选中同一种沟通方式的结果数,然后根据概率公式求解.
【详解】
解:(1)这次统计共抽查学生24÷20%=120(人),其中最喜欢用电话沟通的所对应扇形的圆心角是360°×=54°,
故答案为120、54;
(2)喜欢使用短信的人数为120﹣18﹣24﹣66﹣2=10(人),
条形统计图为:
(3)1200×=660,
所以估计1200名学生中最喜欢用QQ进行沟通的学生有660名;
(4)画树状图为:
共有9种等可能的结果数,甲乙两名同学恰好选中同一种沟通方式的结果数为3,
所以甲乙两名同学恰好选中同一种沟通方式的概率.
【点睛】
本题考查了列表法与树状图法:利用列表法或树状图法展示所有等可能的结果n,再从中选出符合事件A或B的结果数目m,然后利用概率公式求事件A或B的概率.也考查了统计图和用样本估计总体.
24、y=2x+1.
【解析】
直接把点A(﹣1,1),B(1,5)代入一次函数y=kx+b(k≠0),求出k、b的值即可.
【详解】
∵一次函数y=kx+b(k≠0)的图象经过点A(﹣1,1)和点B(1,5),∴,解得:.
故一次函数的解析式为y=2x+1.
【点睛】
本题考查了待定系数法求一次函数的解析式,熟知待定系数法求一次函数解析式一般步骤是解答此题的关键.
相关试卷
这是一份山东省枣庄市峄城区底阁镇重点达标名校2021-2022学年中考数学考试模拟冲刺卷含解析,共19页。试卷主要包含了考生必须保证答题卡的整洁,如图,将函数y=等内容,欢迎下载使用。
这是一份2022年福建省福安市环城区片区重点达标名校初中数学毕业考试模拟冲刺卷含解析,共22页。试卷主要包含了计算tan30°的值等于等内容,欢迎下载使用。
这是一份2021-2022学年徽省临泉重点达标名校中考数学考试模拟冲刺卷含解析,共19页。试卷主要包含了化简的结果为等内容,欢迎下载使用。