![8年级上册数学人教版课时练《12.3 角平分线的性质》02(含答案)第1页](http://m.enxinlong.com/img-preview/2/3/13464017/0/0.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![8年级上册数学人教版课时练《12.3 角平分线的性质》02(含答案)第2页](http://m.enxinlong.com/img-preview/2/3/13464017/0/1.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![8年级上册数学人教版课时练《12.3 角平分线的性质》02(含答案)第3页](http://m.enxinlong.com/img-preview/2/3/13464017/0/2.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
人教版八年级上册12.3 角的平分线的性质复习练习题
展开
这是一份人教版八年级上册12.3 角的平分线的性质复习练习题,共10页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
《12.3 角平分线的性质》课时练一、选择题1.如图,OC是∠AOB的平分线,P是OC上一点,PD⊥OA于点D,PD=6,则点P到边OB的距离为( )A.6 B.5 C.4 D.32.△ABC是一个任意三角形,用直尺和圆规作出∠A、∠B的平分线,如果两条平分线交于点O,那么下列选项中不正确的是( )A.点O一定在△ABC的内部 B.∠C的平分线一定经过点O C.点O到△ABC的三边距离一定相等 D.点O到△ABC三顶点的距离一定相等3.如图,在Rt△ABC中,∠A=90°,∠ABC的平分线BD交AC于点D,AD=3,BC=10,则△BDC的面积是( )A.10 B.15 C.20 D.304.如图,在四边形ABCD中,AB=CD,BA和CD的延长线交于点E,若点P使得S△PAB=S△PCD,则满足此条件的点P( )A.有且只有1个 B.有且只有2个 C.组成∠E的角平分线 D.组成∠E的角平分线和外角平分线所在的直线(E点除外)5.如图,已知在△ABC中,CD是AB边上的高线,BE平分∠ABC,交CD于点E,BC=5,DE=2,则△BCE的面积等于( )A.10 B.7 C.5 D.46.下列作图语句正确的是( )A.以点O为顶点作∠AOB B.延长线段AB到C,使AC=BC C.作∠AOB,使∠AOB=∠α D.以A为圆心作弧7.如图,∠MON=60°,OP平分∠MON,PA⊥ON于点A,点Q是射线OM的一个动点,若OP=4,则PQ的最小值为( )A. B.4 C.2 D.8.如图,若OP平分∠AOB,PM⊥OA于M点,PM=3,N是OB上一个动点,线段PN的最小值是( )A.2 B.3 C.4 D.59.如图,在△ABC中,∠C是直角,AD平分∠BAC,交BC于点D;如果AB=8,CD=2,那么△ABD的面积等于( )A.4 B.6 C.8 D.1010.如图,已知AD∥BC,AP平分∠DAB,BP平分∠ABC,点P恰好在CD上,王玲同学根据给定的条件写出了四个结论:①AP⊥BP;②点P到AD,BC的距离相等;③PD=PC;④AD+BC=AB,其中结论正确的个数有( )A.1个 B.2个 C.3个 D.4个二.填空题11.如图,△ABC中,∠BAC的角平分线交BC于D,过D作AC的垂线DE交AC于E,DE=5,则D到AB的距离是 .12.如图,在直角坐标系中,AD是Rt△OAB的角平分线,已知点D的坐标是(0,﹣3),AB的长是10,则△ABD的面积为 .13.在数学活动课上,小明提出这样一个问题:如图,∠B=∠C=90°,E是BC的中点,DE平分∠ADC,∠CED=35°,则∠EAB的度数是 .14.如图△ABC中,∠C=90°,AD平分∠BAC,DE⊥AB于E,给出下列结论:①DC=DE;②DA平分∠CDE;③DE平分∠ADB;④BE+AC=AB;⑤∠BAC=∠BDE.其中正确的是 (写序号)15.如图,△ABC中,∠ABC与∠ACB的外角平分线交于P,PM⊥AC于M,若PM=6cm,则点P到AB的距离为 .三.解答题16.如图,在△ABC中,∠ABC=90°,D为BC上一点,在△ADE中,∠E=∠C,∠1=90°﹣∠EDC.求证:(1)∠1=∠2;(2)ED=BC+BD.17.已知,如图,BD⊥AM于点D,CE⊥AN于点E,BD、CE交点F,CF=BF,求证:点F在∠A的平分线上.18.已知:如图,∠AOC=∠BOC,点P在OC上,PD⊥OA,PE⊥OB,垂足分别为点D、E.求证:PD=PE.19.如图①,在△ABC中,∠ACB是直角,∠B=60°,AD、CE分别是∠BAC、∠BCA的平分线,AD、CE相交于点F,且FG⊥AB于G,FH⊥BC于H.(1)求证:∠BEC=∠ADC;(2)请你判断并FE与FD之间的数量关系,并证明;(3)如图②,在△ABC中,如果∠ACB不是直角,∠B=60°,AD、CE分别是∠BAC、∠BCA的平分线,AD、CE相交于点F.请问,你在(2)中所得结论是否仍然成立?若成立,请证明;若不成立,请说明理由.
参考答案一、选择题1.A 2.D 3.B 4.D 5.C 6.C 7.C 8.B 9.C 10.D二、填空题11.512.1513.35°14.①②④⑤15.6cm三、解答题16.证明:(1)由三角形的外角性质,∠BAD+∠ABD=∠1+∠EDC,∵∠1=90°﹣∠EDC,∴∠BAD+90°=90°﹣∠EDC,∴∠BAD=∠EDC,延长DB至F,使BF=BD,则AB垂直平分DF,∴∠BAD=∠DAF,AD=AF,∴∠DAF=∠EDC,∠2=∠F,在△ADF中,∠F+∠DAF=∠1+∠EDC,∴∠1=∠F,∴∠1=∠2; (2)在△AED和△ACF中,,∴△AED≌△ACF(AAS),∴ED=CF,∵CF=BC+BF=BC+DB,∴ED=BC+BD.17.证明:∵BD⊥AM,CE⊥AN,∴∠CDF=∠BEF=90°,在△CDF和△BEF中,,∴△CDF≌△BEF(AAS),∴DF=EF,∴点F在∠A的平分线上.18.解:(1)角平分线上的点到该角两边的距离相等; (2)∵PD⊥OA,PE⊥OB,∴∠PDO=∠PEO=90°,在△PDO和△PEO中,,∴△PDO≌△PEO(AAS),∴PD=PE.19.解:(1)∵AD、CE分别是∠BAC、∠BCA的平分线,∴∠DAC=∠DAB=∠BAC=15°,∠ACE=∠ACB=45°,∴∠CDA=∠BAD+∠ABD=75°,∠BEC=∠BAC+∠ECA=75°,∴∠BEC=∠ADC; (2)相等,理由:如图①,过点F作FH⊥BC于H.作FG⊥AB于G,连接BF,∵F是角平分线交点,∴BF也是角平分线,∴HF=FG,∠DHF=∠EGF=90°,∵在Rt△ABC中,∠ACB=90°,∠ABC=60°,∴∠BAC=30°,∴∠DAC=∠BAC=15°,∴∠CDA=75°,∵∠HFC=45°,∠HFG=120°,∴∠GFE=15°,∴∠GEF=75°=∠HDF,在△DHF和△EGF中,,∴△DHF≌△EGF(AAS),∴FE=FD; (3)成立.理由:如图②,过点F作FM⊥BC于M.作FN⊥AB于N,连接BF,∵F是角平分线交点,∴BF也是角平分线,∴MF=FN,∠DMF=∠ENF=90°,∴四边形BNFM是圆内接四边形,∵∠ABC=60°,∴∠MFN=180°﹣∠ABC=120°,∵∠CFA=180°﹣(∠FAC+∠FCA)=180°﹣(∠ABC+∠ACB)=180°﹣(180°﹣∠ABC)=180°﹣(180°﹣60°)=120°,∴∠DFE=∠CFA=∠MFN=120°.又∵∠MFN=∠MFD+∠DFN,∠DFE=∠DFN+∠NFE,∴∠DFM=∠NFE,在△DMF和△ENF中
相关试卷
这是一份【同步讲义】人教版数学八年级上册-提高练【12.3 角平分线的性质】 讲义,文件包含提高练123角平分线的性质原卷版docx、提高练123角平分线的性质解析版docx等2份试卷配套教学资源,其中试卷共32页, 欢迎下载使用。
这是一份【同步讲义】人教版数学八年级上册-基础练【12.3 角平分线的性质】 讲义,文件包含基础练123角平分线的性质原卷版docx、基础练123角平分线的性质解析版docx等2份试卷配套教学资源,其中试卷共29页, 欢迎下载使用。
这是一份初中数学人教版八年级上册第十二章 全等三角形12.3 角的平分线的性质课时训练,共7页。试卷主要包含了选择题等内容,欢迎下载使用。
![英语朗读宝](http://m.enxinlong.com/img/images/27f0ad84943772f8cdf3a353ba2877c5.jpg)