终身会员
搜索
    上传资料 赚现金
    英语朗读宝

    湖南省各地区2022年中考数学真题按题型难易度分层分类汇编-12解答题(压轴题)

    立即下载
    加入资料篮
    湖南省各地区2022年中考数学真题按题型难易度分层分类汇编-12解答题(压轴题)第1页
    湖南省各地区2022年中考数学真题按题型难易度分层分类汇编-12解答题(压轴题)第2页
    湖南省各地区2022年中考数学真题按题型难易度分层分类汇编-12解答题(压轴题)第3页
    还剩32页未读, 继续阅读
    下载需要30学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    湖南省各地区2022年中考数学真题按题型难易度分层分类汇编-12解答题(压轴题)

    展开

    这是一份湖南省各地区2022年中考数学真题按题型难易度分层分类汇编-12解答题(压轴题),共35页。试卷主要包含了的顶点P在抛物线F,已知抛物线y=x2+bx+c,,与y轴交于点C,顶点为点D等内容,欢迎下载使用。
    湖南省各地区2022年中考数学真题按题型难易度分层分类汇编-12解答题(压轴题)
    一.二次函数综合题(共6小题)
    1.(2022•益阳)如图,在平面直角坐标系xOy中,抛物线E:y=﹣(x﹣m)2+2m2(m<0)的顶点P在抛物线F:y=ax2上,直线x=t与抛物线E,F分别交于点A,B.
    (1)求a的值;
    (2)将A,B的纵坐标分别记为yA,yB,设s=yA﹣yB,若s的最大值为4,则m的值是多少?
    (3)Q是x轴的正半轴上一点,且PQ的中点M恰好在抛物线F上.试探究:此时无论m为何负值,在y轴的负半轴上是否存在定点G,使∠PQG总为直角?若存在,请求出点G的坐标;若不存在,请说明理由.

    2.(2022•娄底)如图,抛物线y=x2﹣2x﹣6与x轴相交于点A、点B,与y轴相交于点C.
    (1)请直接写出点A,B,C的坐标;
    (2)点P(m,n)(0<m<6)在抛物线上,当m取何值时,△PBC的面积最大?并求出△PBC面积的最大值.
    (3)点F是抛物线上的动点,作FE∥AC交x轴于点E,是否存在点F,使得以A、C、E、F为顶点的四边形是平行四边形?若存在,请写出所有符合条件的点F的坐标;若不存在,请说明理由.

    3.(2022•湘潭)已知抛物线y=x2+bx+c.
    (1)如图①,若抛物线图象与x轴交于点A(3,0),与y轴交点B(0,﹣3),连接AB.
    (Ⅰ)求该抛物线所表示的二次函数表达式;
    (Ⅱ)若点P是抛物线上一动点(与点A不重合),过点P作PH⊥x轴于点H,与线段AB交于点M,是否存在点P使得点M是线段PH的三等分点?若存在,请求出点P的坐标;若不存在,请说明理由.
    (2)如图②,直线y=x+n与y轴交于点C,同时与抛物线y=x2+bx+c交于点D(﹣3,0),以线段CD为边作菱形CDFE,使点F落在x轴的正半轴上,若该抛物线与线段CE没有交点,求b的取值范围.


    4.(2022•衡阳)如图,已知抛物线y=x2﹣x﹣2交x轴于A、B两点,将该抛物线位于x轴下方的部分沿x轴翻折,其余部分不变,得到的新图象记为“图象W”,图象W交y轴于点C.
    (1)写出图象W位于线段AB上方部分对应的函数关系式;
    (2)若直线y=﹣x+b与图象W有三个交点,请结合图象,直接写出b的值;
    (3)P为x轴正半轴上一动点,过点P作PM∥y轴交直线BC于点M,交图象W于点N,是否存在这样的点P,使△CMN与△OBC相似?若存在,求出所有符合条件的点P的坐标;若不存在,请说明理由.

    5.(2022•怀化)如图一所示,在平面直角坐标中,抛物线y=ax2+2x+c经过点A(﹣1,0)、B(3,0),与y轴交于点C,顶点为点D.在线段CB上方的抛物线上有一动点P,过点P作PE⊥BC于点E,作PF∥AB交BC于点F.
    (1)求抛物线和直线BC的函数表达式.
    (2)当△PEF的周长为最大值时,求点P的坐标和△PEF的周长.
    (3)若点G是抛物线上的一个动点,点M是抛物线对称轴上的一个动点,是否存在以C、B、G、M为顶点的四边形为平行四边形?若存在,求出点G的坐标,若不存在,请说明理由.


    6.(2022•株洲)已知二次函数y=ax2+bx+c(a>0).
    (1)若a=1,b=3,且该二次函数的图象过点(1,1),求c的值;
    (2)如图所示,在平面直角坐标系xOy中,该二次函数的图象与x轴相交于不同的两点A(x1,0)、B(x2,0),其中x1<0<x2、|x1|>|x2|,且该二次函数的图象的顶点在矩形ABFE的边EF上,其对称轴与x轴、BE分别交于点M、N,BE与y轴相交于点P,且满足tan∠ABE=.
    ①求关于x的一元二次方程ax2+bx+c=0的根的判别式的值;
    ②若NP=2BP,令T=c,求T的最小值.
    阅读材料:十六世纪的法国数学家弗朗索瓦•韦达发现了一元二次方程的根与系数之间的关系,可表述为“当判别式Δ≥0时,关于x的一元二次方程ax2+bx+c=0(a≠0)的两个根x1、x2有如下关系:x1+x2=,x1x2=”.此关系通常被称为“韦达定理”.

    二.三角形综合题(共2小题)
    7.(2022•郴州)如图1,在△ABC中,AC=BC,∠ACB=90°,AB=4cm.点D从A点出发,沿线段AB向终点B运动.过点D作AB的垂线,与△ABC的直角边AC(或BC)相交于点E.设线段AD的长为a(cm),线段DE的长为h(cm).
    (1)为了探究变量a与h之间的关系,对点D在运动过程中不同时刻AD,DE的长度进行测量,得出以下几组数据:
    变量a(cm)
    0
    0.5
    1
    1.5
    2
    2.5
    3
    3.5
    4
    变量h(cm)
    0
    0.5
    1
    1.5
    2
    1.5
    1
    0.5
    0
    在平面直角坐标系中,以变量a的值为横坐标,变量h的值为纵坐标,描点如图2﹣1;以变量h的值为横坐标,变量a的值为纵坐标,描点如图2﹣2.

    根据探究的结果,解答下列问题:
    ①当a=1.5时,h=   ;当h=1时,a=   .
    ②将图2﹣1,图2﹣2中描出的点顺次连接起来.
    ③下列说法正确的是    .(填“A”或“B”)
    A.变量h是以a为自变量的函数
    B.变量a是以h为自变量的函数
    (2)如图3,记线段DE与△ABC的一直角边、斜边围成的三角形(即阴影部分)的面积(cm2)为s.
    ①分别求出当0≤a≤2和2<a≤4时,s关于a的函数表达式;
    ②当s=时,求a的值.

    8.(2022•岳阳)如图,△ABC和△DBE的顶点B重合,∠ABC=∠DBE=90°,∠BAC=∠BDE=30°,BC=3,BE=2.
    (1)特例发现:如图1,当点D,E分别在AB,BC上时,可以得出结论:=   ,直线AD与直线CE的位置关系是    ;
    (2)探究证明:如图2,将图1中的△DBE绕点B顺时针旋转,使点D恰好落在线段AC上,连接EC,(1)中的结论是否仍然成立?若成立,请证明;若不成立,请说明理由;
    (3)拓展运用:如图3,将图1中的△DBE绕点B顺时针旋转α(19°<α<60°),连接AD、EC,它们的延长线交于点F,当DF=BE时,求tan(60°﹣α)的值.


    三.四边形综合题(共1小题)
    9.(2022•益阳)如图,矩形ABCD中,AB=15,BC=9,E是CD边上一点(不与点C重合),作AF⊥BE于F,CG⊥BE于G,延长CG至点C′,使C′G=CG,连接CF,AC′.
    (1)直接写出图中与△AFB相似的一个三角形;
    (2)若四边形AFCC′是平行四边形,求CE的长;
    (3)当CE的长为多少时,以C′,F,B为顶点的三角形是以C′F为腰的等腰三角形?


    四.相似形综合题(共1小题)
    10.(2022•常德)在四边形ABCD中,∠BAD的平分线AF交BC于F,延长AB到E使BE=FC,G是AF的中点,GE交BC于O,连接GD.
    (1)当四边形ABCD是矩形时,如图1,求证:①GE=GD;②BO•GD=GO•FC.
    (2)当四边形ABCD是平行四边形时,如图2,(1)中的结论都成立.请给出结论②的证明.



    湖南省各地区2022年中考数学真题按题型难易度分层分类汇编-12解答题(压轴题)
    参考答案与试题解析
    一.二次函数综合题(共6小题)
    1.(2022•益阳)如图,在平面直角坐标系xOy中,抛物线E:y=﹣(x﹣m)2+2m2(m<0)的顶点P在抛物线F:y=ax2上,直线x=t与抛物线E,F分别交于点A,B.
    (1)求a的值;
    (2)将A,B的纵坐标分别记为yA,yB,设s=yA﹣yB,若s的最大值为4,则m的值是多少?
    (3)Q是x轴的正半轴上一点,且PQ的中点M恰好在抛物线F上.试探究:此时无论m为何负值,在y轴的负半轴上是否存在定点G,使∠PQG总为直角?若存在,请求出点G的坐标;若不存在,请说明理由.

    【解答】解:(1)由题意可知,抛物线E:y=﹣(x﹣m)2+2m2(m<0)的顶点P的坐标为(m,2m2),
    ∵点P在抛物线F:y=ax2上,
    ∴am2=2m2,
    ∴a=2.
    (2)∵直线x=t与抛物线E,F分别交于点A,B,
    ∴yA=﹣(t﹣m)2+2m2=﹣t2+2mt+m2,yB=2t2,
    ∴s=yA﹣yB
    =﹣t2+2mt+m2﹣2t2
    =﹣3t2+2mt+m2
    =﹣3(t﹣m)2+m2,
    ∵﹣3<0,
    ∴当t=m时,s的最大值为m2,
    ∵s的最大值为4,
    ∴m2=4,解得m=±,
    ∵m<0,
    ∴m=﹣.
    (3)存在,理由如下:
    设点M的坐标为n,则M(n,2n2),
    ∴Q(2n﹣m,4n2﹣m2),
    ∵点Q在x轴正半轴上,
    ∴2n﹣m>0且4n2﹣m2=0,
    ∴n=﹣m,
    ∴M(﹣m,m2),Q(﹣m﹣m,0).
    如图,过点Q作x轴的垂线KN,分别过点P,G作x轴的平行线,与KN分别交于K,N,

    ∴∠K=∠N=90°,∠QPK+∠PQK=90°,
    ∵∠PQG=90°,
    ∴∠PQK+∠GQN=90°,
    ∴∠QPK=∠GQN,
    ∴△PKQ∽△QNG,
    ∴PK:QN=KQ:GN,即PK•GN=KQ•QN.
    ∵PK=﹣m﹣m﹣m=﹣m﹣2m,KQ=2m2,GN=﹣m﹣m,
    ∴(﹣m﹣2m)(﹣m﹣m)=2m2•QN
    解得QN=.
    ∴G(0,﹣).
    2.(2022•娄底)如图,抛物线y=x2﹣2x﹣6与x轴相交于点A、点B,与y轴相交于点C.
    (1)请直接写出点A,B,C的坐标;
    (2)点P(m,n)(0<m<6)在抛物线上,当m取何值时,△PBC的面积最大?并求出△PBC面积的最大值.
    (3)点F是抛物线上的动点,作FE∥AC交x轴于点E,是否存在点F,使得以A、C、E、F为顶点的四边形是平行四边形?若存在,请写出所有符合条件的点F的坐标;若不存在,请说明理由.

    【解答】解:(1)当x=0时,y=﹣6,
    ∴C(0,﹣6),
    当y=0时,x2﹣2x﹣6=0,
    ∴x1=6,x2=﹣2,
    ∴A(﹣2,0),B(6,0);
    (2)方法一:如图1,

    连接OP,
    设点P(m,﹣2m﹣6),
    ∴S△POC=xP==3m,
    S△BOP=|yP|=+2m+6),
    ∵S△BOC==18,
    ∴S△PBC=S四边形PBOC﹣S△BOC
    =(S△POC+S△POB)﹣S△BOC
    =3m+3(﹣+2m+6)﹣18
    =﹣(m﹣3)2+,
    ∴当m=3时,S△PBC最大=;
    方法二:如图2,

    作PQ⊥AB于Q,交BC于点D,
    ∵B(6,0),C(0,﹣6),
    ∴直线BC的解析式为:y=x﹣6,
    ∴D(m,m﹣6),
    ∴PD=(m﹣6)﹣(﹣2m﹣6)=﹣+3m,
    ∴S△PBC===﹣(m﹣3)2+,
    ∴当m=3时,S△PBC最大=;
    (3)如图3,


    当▱ACFE时,AE∥CF,
    ∵抛物线对称轴为直线:x==2,
    ∴F1点的坐标:(4,﹣6),
    如图4,

    当▱ACEF时,
    作FG⊥AE于G,
    ∴FG=OC=6,
    当y=6时,x2﹣2x﹣6=6,
    ∴x1=2+2,x2=2﹣2,
    ∴F2(2+2,6),F3(2﹣2,6),
    综上所述:F(4,﹣6)或(2+2,6)或(2﹣2,6).
    3.(2022•湘潭)已知抛物线y=x2+bx+c.
    (1)如图①,若抛物线图象与x轴交于点A(3,0),与y轴交点B(0,﹣3),连接AB.
    (Ⅰ)求该抛物线所表示的二次函数表达式;
    (Ⅱ)若点P是抛物线上一动点(与点A不重合),过点P作PH⊥x轴于点H,与线段AB交于点M,是否存在点P使得点M是线段PH的三等分点?若存在,请求出点P的坐标;若不存在,请说明理由.
    (2)如图②,直线y=x+n与y轴交于点C,同时与抛物线y=x2+bx+c交于点D(﹣3,0),以线段CD为边作菱形CDFE,使点F落在x轴的正半轴上,若该抛物线与线段CE没有交点,求b的取值范围.


    【解答】(1)解:(Ⅰ)由题意得,

    ∴,
    ∴y=x2﹣2x﹣3;
    (Ⅱ)存在点P,使得点M是线段PH的三等分点,理由如下:
    ∵B(0,﹣3),A(3,0),
    ∴直线AB的解析式为:y=x﹣3,
    设点P(m,m2﹣2m﹣3),M(m,m﹣3),
    ∴PH=﹣m2+2m+3,HM=3﹣m,
    当PH=3HM时,
    ﹣m2+2m+3=3(3﹣m),
    化简得,
    m2﹣5m+6=0,
    ∴m1=2,m2=3,
    当m=2时,y=22﹣2×2﹣3=﹣3,
    ∴P(2,﹣3),
    当m=3时,y=32﹣2×3﹣3=0,
    此时P(3,0)(舍去),
    当PH=HM时,
    ﹣m2+2m+3=(3﹣m),
    化简得,
    2m2﹣7m+3=0,
    ∴m3=3(舍去),m2=,
    当m=时,y=()2﹣2×﹣3=﹣,
    ∴P(,﹣),
    综上所述:P(2,﹣3)或(,﹣);
    (2)如图1,

    ∵抛物线y=x2+bx+c过点D(﹣3,0),
    ∴(﹣3)2﹣3b+c=0,
    ∴c=3b﹣9,
    ∴y=x2+bx+(3b﹣9),
    把x=﹣3,y=0代入y=+n得,
    0=+n,
    ∴n=4,
    ∴OC=4,
    ∵∠COD=90°,OD=3,OC=4,
    ∴CD=5,
    ∵四边形CDFE是菱形,
    ∴CE=CD=5,
    ∴E(5,4),
    当﹣<0时,即b>0时,
    当x=0时,y=3b﹣9,
    ∴G(0,3b﹣9),
    ∵该抛物线与线段CE没有交点,
    ∴3b﹣9>4,
    ∴b>,
    当b<0时,
    当x=5时,y=25+5b+3b﹣9=8b+16,
    ∴H(5,8b+16),
    ∵抛物线与CE没有交点,
    ∴8b+16<4,
    ∴b<﹣,
    综上所述:b>或b<﹣.
    4.(2022•衡阳)如图,已知抛物线y=x2﹣x﹣2交x轴于A、B两点,将该抛物线位于x轴下方的部分沿x轴翻折,其余部分不变,得到的新图象记为“图象W”,图象W交y轴于点C.
    (1)写出图象W位于线段AB上方部分对应的函数关系式;
    (2)若直线y=﹣x+b与图象W有三个交点,请结合图象,直接写出b的值;
    (3)P为x轴正半轴上一动点,过点P作PM∥y轴交直线BC于点M,交图象W于点N,是否存在这样的点P,使△CMN与△OBC相似?若存在,求出所有符合条件的点P的坐标;若不存在,请说明理由.

    【解答】解:(1)当x=0时,y=﹣2,
    ∴C(0,2),
    当y=0时,x2﹣x﹣2=0,
    (x﹣2)(x+1)=0,
    ∴x1=2,x2=﹣1,
    ∴A(﹣1,0),B(2,0),
    设图象W的解析式为:y=a(x+1)(x﹣2),
    把C(0,2)代入得:﹣2a=2,
    ∴a=﹣1,
    ∴y=﹣(x+1)(x﹣2)=﹣x2+x+2,
    ∴图象W位于线段AB上方部分对应的函数关系式为:y=﹣x2+x+2(﹣1<x<2);
    (2)由图象得直线y=﹣x+b与图象W有三个交点时,存在两种情况:
    ①当直线y=﹣x+b过点C时,与图象W有三个交点,此时b=2;
    ②当直线y=﹣x+b与图象W位于线段AB上方部分对应的函数图象相切时,如图1,

    ﹣x+b=﹣x2+x+2,
    x2﹣2x+b﹣2=0,
    Δ=(﹣2)2﹣4×1×(b﹣2)=0,
    ∴b=3,
    综上,b的值是2或3;
    (3)∵OB=OC=2,∠BOC=90°,
    ∴△BOC是等腰直角三角形,
    如图2,CN∥OB,△CNM∽△BOC,

    ∵PN∥y轴,
    ∴P(1,0);
    如图3,CN∥OB,△CNM∽△BOC,

    当y=2时,x2﹣x﹣2=2,
    x2﹣x﹣4=0,
    ∴x1=,x2=,
    ∴P(,0);
    如图4,当∠MCN=90°时,△OBC∽△CMN,

    ∴CN的解析式为:y=x+2,
    ∴x+2=x2﹣x﹣2,
    ∴x1=1+,x2=1﹣(舍),
    ∴P(1+,0),
    综上,点P的坐标为(1,0)或(,0)或(1+,0).
    5.(2022•怀化)如图一所示,在平面直角坐标中,抛物线y=ax2+2x+c经过点A(﹣1,0)、B(3,0),与y轴交于点C,顶点为点D.在线段CB上方的抛物线上有一动点P,过点P作PE⊥BC于点E,作PF∥AB交BC于点F.
    (1)求抛物线和直线BC的函数表达式.
    (2)当△PEF的周长为最大值时,求点P的坐标和△PEF的周长.
    (3)若点G是抛物线上的一个动点,点M是抛物线对称轴上的一个动点,是否存在以C、B、G、M为顶点的四边形为平行四边形?若存在,求出点G的坐标,若不存在,请说明理由.


    【解答】解:(1)∵抛物线y=ax2+2x+c经过点A(﹣1,0)、B(3,0),
    ∴,
    解得,
    ∴抛物线的解析式为y=﹣x2+2x+3,
    令x=0,可得y=3,
    ∴C(0,3),
    设直线BC的解析式为y=kx+b,则,
    ∴,
    ∴直线BC的解析式为y=﹣x+3;

    (2)如图一中,连接PC,OP,PB.设P(m,﹣m2+2m+3),

    ∵B(3,0),C(0,3),
    ∴OB=OC=3,
    ∴∠OBC=45°,
    ∵PF∥AB,
    ∴∠PFE=∠OBC=45°,
    ∵PE⊥BC,
    ∴△PEF是等腰直角三角形,
    ∴PE的值最大时,△PEF的周长最大,
    ∵S△PBC=S△POB+S△POC﹣S△OBC
    =×3×(﹣m2+2m+3)+×3×m﹣×3×3
    =﹣m2+m
    =﹣(m﹣)2+,
    ∵﹣<0,
    ∴m=时,△PBC的面积最大,面积的最大值为,此时PE的值最大,
    ∵×3×PE=,
    ∴PE=,
    ∴△PEF的周长的最大值=++=+,此时P(,);

    (3)存在.
    理由:如图二中,设M(1,t),G(m,﹣m2+2m+3).

    当BC为平行四边形的边时,则有|1﹣m|=3,
    解得m=﹣2或4,
    ∴G(﹣2,﹣5)或(4,﹣5),
    当BC为平行四边形的对角线时,(1+m)=(0+3),
    ∴m=2,
    ∴G(2,3),
    综上所述,满足条件的点G的坐标为(﹣2,﹣5)或(4,﹣5)或(2,3).
    6.(2022•株洲)已知二次函数y=ax2+bx+c(a>0).
    (1)若a=1,b=3,且该二次函数的图象过点(1,1),求c的值;
    (2)如图所示,在平面直角坐标系xOy中,该二次函数的图象与x轴相交于不同的两点A(x1,0)、B(x2,0),其中x1<0<x2、|x1|>|x2|,且该二次函数的图象的顶点在矩形ABFE的边EF上,其对称轴与x轴、BE分别交于点M、N,BE与y轴相交于点P,且满足tan∠ABE=.
    ①求关于x的一元二次方程ax2+bx+c=0的根的判别式的值;
    ②若NP=2BP,令T=c,求T的最小值.
    阅读材料:十六世纪的法国数学家弗朗索瓦•韦达发现了一元二次方程的根与系数之间的关系,可表述为“当判别式Δ≥0时,关于x的一元二次方程ax2+bx+c=0(a≠0)的两个根x1、x2有如下关系:x1+x2=,x1x2=”.此关系通常被称为“韦达定理”.

    【解答】解:(1)当a=1,b=3时,y=x2+3x+c,
    把x=1,y=1代入得,
    1=1+3+c,
    ∴c=﹣3;
    (2)①方法(一)由ax2+bx+c=0得,
    x1=,x2=,
    ∴AB=x2﹣x1=,
    ∵抛物线的顶点坐标为:(﹣,),
    ∴AE=,OM=,
    ∵∠BAE=90°,
    ∴tan∠ABE==,
    ∴=,
    ∴b2﹣4ac=9;
    (方法二)由ax2+bx+c=0得,
    ∵x1+x2=,x1x2=,
    ∴|x1﹣x2|===,
    下面过程相同;
    ②∵b2﹣4ac=9,
    ∴x2=,
    ∵OP∥MN,
    ∴,
    ∴:=2,
    ∴b=2,
    ∴22﹣4ac=9,
    ∴c=﹣,
    ∴T=c=﹣=﹣=(﹣2)2﹣4,
    ∴当=2时,T最小=﹣4,
    即a=时,T最小=﹣4.
    二.三角形综合题(共2小题)
    7.(2022•郴州)如图1,在△ABC中,AC=BC,∠ACB=90°,AB=4cm.点D从A点出发,沿线段AB向终点B运动.过点D作AB的垂线,与△ABC的直角边AC(或BC)相交于点E.设线段AD的长为a(cm),线段DE的长为h(cm).
    (1)为了探究变量a与h之间的关系,对点D在运动过程中不同时刻AD,DE的长度进行测量,得出以下几组数据:
    变量a(cm)
    0
    0.5
    1
    1.5
    2
    2.5
    3
    3.5
    4
    变量h(cm)
    0
    0.5
    1
    1.5
    2
    1.5
    1
    0.5
    0
    在平面直角坐标系中,以变量a的值为横坐标,变量h的值为纵坐标,描点如图2﹣1;以变量h的值为横坐标,变量a的值为纵坐标,描点如图2﹣2.

    根据探究的结果,解答下列问题:
    ①当a=1.5时,h= 1.5 ;当h=1时,a= 1或3 .
    ②将图2﹣1,图2﹣2中描出的点顺次连接起来.
    ③下列说法正确的是  A .(填“A”或“B”)
    A.变量h是以a为自变量的函数
    B.变量a是以h为自变量的函数
    (2)如图3,记线段DE与△ABC的一直角边、斜边围成的三角形(即阴影部分)的面积(cm2)为s.
    ①分别求出当0≤a≤2和2<a≤4时,s关于a的函数表达式;
    ②当s=时,求a的值.

    【解答】解:(1)①从图1中,当a<2时,△ADE是等腰直角三角形,
    ∴DE=AD=1.5,
    从图2,当h=1时,横坐标a对应1或3,
    故答案为:1.5;1或3;
    ②如图,

    ③当自变量a变化时,h随之变化,当a确定时,h有唯一一个值与之对应,所以h是a的函数;
    当自变量h确定时,a有两个值与之对应,所以a不是h的函数,
    故答案为A;
    (2)①当0≤a≤2时,DE=AD=a,
    S△ADE=AD•DE=;
    当2<a≤4时,DE=AB﹣AD=4﹣a,
    ∴S==,
    ∴S=;
    ②当S=时,当0≤a≤2时,
    =,
    ∴a1=1,a2=﹣1(舍去),
    当2<≤4时,
    =,
    ∴a3=3,a4=5(舍去),
    综上所述:当S=时,a=1或3.
    8.(2022•岳阳)如图,△ABC和△DBE的顶点B重合,∠ABC=∠DBE=90°,∠BAC=∠BDE=30°,BC=3,BE=2.
    (1)特例发现:如图1,当点D,E分别在AB,BC上时,可以得出结论:=  ,直线AD与直线CE的位置关系是  垂直 ;
    (2)探究证明:如图2,将图1中的△DBE绕点B顺时针旋转,使点D恰好落在线段AC上,连接EC,(1)中的结论是否仍然成立?若成立,请证明;若不成立,请说明理由;
    (3)拓展运用:如图3,将图1中的△DBE绕点B顺时针旋转α(19°<α<60°),连接AD、EC,它们的延长线交于点F,当DF=BE时,求tan(60°﹣α)的值.


    【解答】解:(1)在Rt△ABC中,∠B=90°,BC=3,∠A=30°,
    ∴AB=BC=3,
    在Rt△BDE中,∠BDE=30°,BE=2,
    ∴BD=BE=2,
    ∴EC=1,AD=,
    ∴=,此时AD⊥EC,
    故答案为:,垂直;

    (2)结论成立.
    理由:∵∠ABC=∠DBE=90°,
    ∴∠ABD=∠CBE,
    ∵AB=BC,BD=BE,
    ∴=,
    ∴△ABD∽△CBE,
    ∴==,∠ADB=∠BEC,
    ∵∠ADB+∠CDB=180°,
    ∴∠CDB+∠BEC=180°,
    ∴∠DBE+∠DCE=180°,
    ∵∠DBE=90°,
    ∴∠DCE=90°,
    ∴AD⊥EC;

    (3)如图3中,过点B作BJ⊥AC于点J,设BD交AK于点K,过点K作KT⊥AC于点K.

    ∵∠AJB=90°,∠BAC=30°,
    ∴∠ABJ=60°,
    ∴∠KBJ=60°﹣α.
    ∵AB=3,
    ∴BJ=AB=,AJ=BJ=,
    当DF=BE时,四边形BEFD是矩形,
    ∴∠ADB=90°,AD===,
    设KT=m,则AT=m,AK=2m,
    ∵∠KTB=∠ADB=90°,
    ∴tanα==,
    ∴=,
    ∴BT=m,
    ∴m+m=3,
    ∴m=,
    ∴AK=2m=,
    ∴KJ=AJ﹣AK=﹣=,
    ∴tan(60°﹣α)==.
    解法二:证明∠CAF=60°﹣α,
    通过tan(60°﹣α)=求解即可.
    三.四边形综合题(共1小题)
    9.(2022•益阳)如图,矩形ABCD中,AB=15,BC=9,E是CD边上一点(不与点C重合),作AF⊥BE于F,CG⊥BE于G,延长CG至点C′,使C′G=CG,连接CF,AC′.
    (1)直接写出图中与△AFB相似的一个三角形;
    (2)若四边形AFCC′是平行四边形,求CE的长;
    (3)当CE的长为多少时,以C′,F,B为顶点的三角形是以C′F为腰的等腰三角形?


    【解答】解:(1)(任意回答一个即可);
    ①如图1,△AFB∽△BCE,理由如下:

    ∵四边形ABCD是矩形,
    ∴DC∥AB,∠BCE=∠ABC=90°,
    ∴∠BEC=∠ABF,
    ∵AF⊥BE,
    ∴∠AFB=90°,
    ∴∠AFB=∠BCE=90°,
    ∴△AFB∽△BCE;
    ②△AFB∽△CGE,理由如下:
    ∵CG⊥BE,
    ∴∠CGE=90°,
    ∴∠CGE=∠AFB,
    ∵∠CEG=∠ABF,
    ∴△AFB∽△CGE;
    ③△AFB∽△BGC,理由如下:
    ∵∠ABF+∠CBG=∠CBG+∠BCG=90°,
    ∴∠ABF=∠BCG,
    ∵∠AFB=∠CGB=90°,
    ∴△AFB∽△BGC;
    (2)∵四边形AFCC'是平行四边形,
    ∴AF=CC',
    由(1)知:△AFB∽△BGC,
    ∴=,即==,
    设AF=5x,BG=3x,
    ∴CC'=AF=5x,
    ∵CG=C'G,
    ∴CG=C'G=2.5x,
    ∵△AFB∽△BCE∽△BGC,
    ∴=,即=,
    ∴CE=7.5;
    (3)分两种情况:
    ①当C'F=BC'时,如图2,

    ∵C'G⊥BE,
    ∴BG=GF,
    ∵CG=C'G,
    ∴四边形BCFC'是菱形,
    ∴CF=CB=9,
    由(2)知:AF=5x,BG=3x,
    ∴BF=6x,
    ∵△AFB∽△BCE,
    ∴=,即=,
    ∴=,
    ∴CE=;
    ②当C'F=BF时,如图3,

    由(1)知:△AFB∽△BGC,
    ∴===,
    设BF=5a,CG=3a,
    ∴C'F=5a,
    ∵CG=C'G,BE⊥CC',
    ∴CF=C'F=5a,
    ∴FG=4a,
    ∵tan∠CBE==,
    ∴=,
    ∴CE=3;
    综上,当CE的长为或3时,以C′,F,B为顶点的三角形是以C′F为腰的等腰三角形.
    四.相似形综合题(共1小题)
    10.(2022•常德)在四边形ABCD中,∠BAD的平分线AF交BC于F,延长AB到E使BE=FC,G是AF的中点,GE交BC于O,连接GD.
    (1)当四边形ABCD是矩形时,如图1,求证:①GE=GD;②BO•GD=GO•FC.
    (2)当四边形ABCD是平行四边形时,如图2,(1)中的结论都成立.请给出结论②的证明.


    【解答】(1)证明:连接CG,过点G作GJ⊥CD于点J.

    ∵四边形ABCD是矩形,
    ∴∠BAD=∠ABC=90°,AD=BC,
    ∵AF平分∠BAD,
    ∴∠BAF=∠DAF=45°,
    ∴∠AFB=∠BAF=45°,
    ∴BA=BF,
    ∵BE=CF,
    ∴AE=AB+BE=BF+CF=BC=AD,
    ∵AG=AG,
    ∴△EAG≌△DAG(SAS),
    ∴EG=DG,∠AEG=∠ADG,
    ∵AD∥FC,AG=GF,
    ∴DJ=JC,
    ∵GJ⊥CD,
    ∴GD=GC,
    ∴∠GDC=∠GCD,
    ∵∠ADC=∠BCD=90°,
    ∴∠ADG=∠GCO,
    ∴∠OEB=∠OCG,
    ∵∠BOE=∠GOC,
    ∴△OBE∽△OGC,
    ∴=,
    ∵GC=GD,BE=CF,
    ∴BO•GD=GO•FC;

    (2)解:过点D作DT⊥BC于点T,连接GT.

    ∵四边形ABCD是平行四边形,
    ∴AD=BC,AD∥BC,
    ∴∠DAG=∠AFB,
    ∵AF平分∠DAB,
    ∴∠DAG=∠BAF,
    ∴BAF=∠AFB,
    ∴AB=BF,
    ∴AE=AB+BE=BF+CF=BC=AD,
    ∵AG=AG,
    ∴△EAG≌△DAG(SAS),
    ∴∠AEG=∠ADG,
    ∵AD∥FT,AG=GF,
    ∴DJ=JT,
    ∵GJ⊥DT,
    ∴GD=GT,
    ∴∠GDT=∠GTD,
    ∵∠ADT=∠BTD=90°,
    ∴∠ADG=∠GTO,
    ∴∠OEB=∠OTG,
    ∵∠BOE=∠GOT,
    ∴△OBE∽△OGT,
    ∴=,
    ∵GT=GD,BE=CF,
    ∴BO•GD=GO•FC.
    解法二:延长EG交AD于点M,在DM上取一点N,使得GN=GM.

    证明△OGF≌△MGA,推出GM=OG=GN,∠AMG=∠GOF,
    再证明△BOE∽△GDN,可得结论.

    相关试卷

    江苏省2022年各地区中考数学真题按题型难易度分层分类汇编(14套)-05解答题压轴题:

    这是一份江苏省2022年各地区中考数学真题按题型难易度分层分类汇编(14套)-05解答题压轴题,共55页。

    江苏省2022年各地区中考数学真题按题型难易度分层分类汇编(14套)-05解答题基础题②:

    这是一份江苏省2022年各地区中考数学真题按题型难易度分层分类汇编(14套)-05解答题基础题②,共22页。

    湖南省各地区2022年中考数学真题按题型难易度分层分类汇编-07解答题(容易题):

    这是一份湖南省各地区2022年中考数学真题按题型难易度分层分类汇编-07解答题(容易题),共4页。试卷主要包含了﹣2sin30°+cs45°,﹣2﹣2sin60°,+1的值,,其中x=4等内容,欢迎下载使用。

    • 精品推荐
    • 所属专辑
    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map