所属成套资源:多地区中考数学真题按题型知识点分层分类汇编
贵州黔西南三年(2020-2022)中考数学真题分类汇编-解答题
展开
这是一份贵州黔西南三年(2020-2022)中考数学真题分类汇编-解答题,共39页。试卷主要包含了0;,,交y轴于点C,,且∠EAF=45°等内容,欢迎下载使用。
贵州黔西南三年(2020-2022)中考数学真题分类汇编-解答题
一.分式的化简求值(共1小题)
1.(2020•黔西南州)(1)计算(﹣2)2﹣|﹣|﹣2cos45°+(2020﹣π)0;
(2)先化简,再求值:(+),其中a=﹣1.
二.二次根式的混合运算(共1小题)
2.(2021•黔西南州)(1)计算:﹣32﹣|﹣2|+×+(﹣6)0;
(2)解不等式组,并把它的解集在数轴上表示出来.
三.分式方程的应用(共1小题)
3.(2020•黔西南州)随着人们“节能环保,绿色出行”意识的增强,越来越多的人喜欢骑自行车出行,也给自行车商家带来商机.某自行车行经营的A型自行车去年销售总额为8万元.今年该型自行车每辆售价预计比去年降低200元.若该型车的销售数量与去年相同,那么今年的销售总额将比去年减少10%,求:
(1)A型自行车去年每辆售价多少元?
(2)该车行今年计划新进一批A型车和新款B型车共60辆,且B型车的进货数量不超过A型车数量的两倍.已知A型车和B型车的进货价格分别为1500元和1800元,计划B型车销售价格为2400元,应如何组织进货才能使这批自行车销售获利最多?
四.解一元一次不等式组(共1小题)
4.(2022•黔西南州)(1)计算:﹣22+×+()﹣1﹣(π﹣3)0;
(2)解不等式组,并把解集在数轴上表示出来.
五.一次函数的应用(共2小题)
5.(2022•黔西南州)某乡镇新打造的“田园风光”景区今年计划改造一片绿化地,种植A、B两种花卉,已知3盆A种花卉和4盆B种花卉的种植费用为330元,4盆A种花卉和3盆B种花卉的种植费用为300元.
(1)每盆A种花卉和每盆B种花卉的种植费用各是多少元?
(2)若该景区今年计划种植A、B两种花卉共400盆,相关资料表明:A、B两种花卉的成活率分别为70%和90%,景区明年要将枯死的花卉补上相同的新花卉,但这两种花卉在明年共补的盆数不多于80盆,应如何安排这两种花卉的种植数量,才能使今年该项的种植费用最低?并求出最低费用.
6.(2021•黔西南州)甲、乙两家水果商店,平时以同样的价格出售品质相同的樱桃.春节期间,甲、乙两家商店都让利酬宾,甲商店的樱桃价格为60元/kg;乙商店的樱桃价格为65元/kg.若一次购买2kg以上,超过2kg部分的樱桃价格打8折.
(1)设购买樱桃xkg,y甲,y乙(单位:元)分别表示顾客到甲、乙两家商店购买樱桃的付款金额,求y甲,y乙关于x的函数解析式;
(2)春节期间,如何选择甲、乙两家商店购买樱桃更省钱?
六.二次函数综合题(共3小题)
7.(2022•黔西南州)如图,在平面直角坐标系中,经过点A(4,0)的直线AB与y轴交于点B(0,4).经过原点O的抛物线y=﹣x2+bx+c交直线AB于点A,C,抛物线的顶点为D.
(1)求抛物线y=﹣x2+bx+c的表达式;
(2)M是线段AB上一点,N是抛物线上一点,当MN∥y轴且MN=2时,求点M的坐标;
(3)P是抛物线上一动点,Q是平面直角坐标系内一点.是否存在以点A,C,P,Q为顶点的四边形是矩形?若存在,直接写出点Q的坐标;若不存在,请说明理由.
8.(2021•黔西南州)如图,直线l:y=2x+1与抛物线C:y=2x2+bx+c相交于点A(0,m),B(n,7).
(1)填空:m= ,n= ,抛物线的解析式为 .
(2)将直线l向下移a(a>0)个单位长度后,直线l与抛物线C仍有公共点,求a的取值范围.
(3)Q是抛物线上的一个动点,是否存在以AQ为直径的圆与x轴相切于点P?若存在,请求出点P的坐标;若不存在,请说明理由.
9.(2020•黔西南州)已知抛物线y=ax2+bx+6(a≠0)交x轴于点A(6,0)和点B(﹣1,0),交y轴于点C.
(1)求抛物线的解析式和顶点坐标;
(2)如图(1),点P是抛物线上位于直线AC上方的动点,过点P分别作x轴、y轴的平行线,交直线AC于点D,E,当PD+PE取最大值时,求点P的坐标;
(3)如图(2),点M为抛物线对称轴l上一点,点N为抛物线上一点,当直线AC垂直平分△AMN的边MN时,求点N的坐标.
七.四边形综合题(共1小题)
10.(2022•黔西南州)如图,在正方形ABCD中,E,F分别是BC,CD边上的点(点E不与点B,C重合),且∠EAF=45°.
(1)当BE=DF时,求证:AE=AF;
(2)猜想BE,EF,DF三条线段之间存在的数量关系,并证明你的结论;
(3)连接AC,G是CB延长线上一点,GH⊥AE,垂足为K,交AC于点H且GH=AE.若DF=a,CH=b,请用含a,b的代数式表示EF的长.
八.切线的性质(共1小题)
11.(2021•黔西南州)如图,AB为⊙O的直径,直线l与⊙O相切于点C,AD⊥l,垂足为D,AD交⊙O于点E,连接CE.
(1)求证:∠CAD=∠CAB;
(2)若EC=4,sin∠CAD=,求⊙O的半径.
九.切线的判定与性质(共1小题)
12.(2022•黔西南州)如图,在△ABC中,AB=AC,以AB为直径作⊙O,分别交BC于点D,交AC于点E,DH⊥AC,垂足为H,连接DE并延长交BA的延长线于点F.
(1)求证:DH是⊙O的切线;
(2)若E为AH的中点,求的值.
一十.旋转的性质(共1小题)
13.(2021•黔西南州)如图1,D为等边△ABC内一点,将线段AD绕点A逆时针旋转60°得到AE,连接CE,BD的延长线与AC交于点G,与CE交于点F.
(1)求证:BD=CE;
(2)如图2,连接FA,小颖对该图形进行探究,得出结论:∠BFC=∠AFB=∠AFE.小颖的结论是否正确?若正确,请给出证明;若不正确,请说明理由.
一十一.旋转对称图形(共1小题)
14.(2020•黔西南州)规定:在平面内,如果一个图形绕一个定点旋转一定的角度α(0°<α≤180°)后能与自身重合,那么就称这个图形是旋转对称图形,转动的这个角度α称为这个图形的一个旋转角.例如:正方形绕着两条对角线的交点O旋转90°或180°后,能与自身重合(如图1),所以正方形是旋转对称图形,且有两个旋转角.
根据以上规定,回答问题:
(1)下列图形是旋转对称图形,但不是中心对称图形的是 ;
A.矩形
B.正五边形
C.菱形
D.正六边形
(2)下列图形中,是旋转对称图形,且有一个旋转角是60度的有: (填序号);
(3)下列三个命题:①中心对称图形是旋转对称图形;②等腰三角形是旋转对称图形;③圆是旋转对称图形.
其中真命题的个数有 个;
A.0
B.1
C.2
D.3
(4)如图2的旋转对称图形由等腰直角三角形和圆构成,旋转角有45°,90°,135°,180°,将图形补充完整.
一十二.相似三角形的判定与性质(共1小题)
15.(2020•黔西南州)古希腊数学家毕达哥拉斯认为:“一切平面图形中最美的是圆”.请研究如下美丽的圆.如图,线段AB是⊙O的直径,延长AB至点C,使BC=OB,点E是线段OB的中点,DE⊥AB交⊙O于点D,点P是⊙O上一动点(不与点A,B重合),连接CD,PE,PC.
(1)求证:CD是⊙O的切线;
(2)小明在研究的过程中发现是一个确定的值.回答这个确定的值是多少?并对小明发现的结论加以证明.
一十三.条形统计图(共1小题)
16.(2020•黔西南州)新学期,某校开设了“防疫宣传”“心理疏导”等课程.为了解学生对新开设课程的掌握情况,从八年级学生中随机抽取了部分学生进行了一次综合测试.测试结果分为四个等级:A级为优秀,B级为良好,C级为及格,D级为不及格.将测试结果绘制了如图两幅不完整的统计图.根据统计图中的信息解答下列问题:
(1)本次抽样测试的学生人数是 名;
(2)扇形统计图中表示A级的扇形圆心角α的度数是 ,并把条形统计图补充完整;
(3)该校八年级共有学生500名,如果全部参加这次测试,估计优秀的人数为 ;
(4)某班有4名优秀的同学(分别记为E、F、G、H,其中E为小明),班主任要从中随机选择两名同学进行经验分享.利用列表法或画树状图法,求小明被选中的概率.
一十四.列表法与树状图法(共2小题)
17.(2022•黔西南州)神舟十四号载人飞船的成功发射,再次引发校园科技热.光明中学准备举办“我的航天梦”科技活动周,在全校范围内邀请有兴趣的学生参加以下四项活动,A:航模制作;B:航天资料收集;C:航天知识竞赛;D:参观科学馆.为了了解学生对这四项活动的参与意愿,学校随机调查了该校有兴趣的m名学生(每名学生必选一项且只能选择一项),并将调查的结果绘制成两幅不完整的统计图.
根据以上信息,解答下列问题:
(1)m= ,n= ;并补全条形统计图;
(2)根据抽样调查的结果,请估算全校1800名学生中,大约有多少人选择参观科学馆;
(3)在选择A项活动的10人中,有甲、乙、丙、丁四名女生,现计划把这10名学生平均分成两组进行培训,每组各有两名女生,则甲、乙被分在同一组的概率是多少?
18.(2021•黔西南州)为引导学生知史爱党、知史爱国,某中学组织全校学生进行“党史知识”竞赛,该校德育处随机抽取部分学生的竞赛成绩进行统计,将成绩分为四个等级:优秀、良好、一般、不合格,并绘制成两幅不完整的统计图.
根据以上信息,解答下列问题:
(1)德育处一共随机抽取了 名学生的竞赛成绩;在扇形统计图中,表示“一般”的扇形圆心角的度数为 ;
(2)将条形统计图补充完整;
(3)该校共有1400名学生,估计该校大约有多少名学生在这次竞赛中成绩优秀?
(4)德育处决定从本次竞赛成绩前四名学生甲、乙、丙、丁中,随机抽取2名同学参加全市“党史知识”竞赛,请用树状图或列表法求恰好选中甲和乙的概率.
贵州黔西南三年(2020-2022)中考数学真题分类汇编-解答题
参考答案与试题解析
一.分式的化简求值(共1小题)
1.(2020•黔西南州)(1)计算(﹣2)2﹣|﹣|﹣2cos45°+(2020﹣π)0;
(2)先化简,再求值:(+),其中a=﹣1.
【解答】解:(1)原式=4﹣﹣2×+1
=4﹣﹣+1
=5﹣2;
(2)原式=[+]•
=•
=,
当a=﹣1时,原式==.
二.二次根式的混合运算(共1小题)
2.(2021•黔西南州)(1)计算:﹣32﹣|﹣2|+×+(﹣6)0;
(2)解不等式组,并把它的解集在数轴上表示出来.
【解答】解:(1)原式=﹣9﹣2++1
=﹣9﹣2+4+1
=﹣6;
(2),
解①得x≥﹣2,
解②得x<3,
所以不等式组的解集为﹣2≤x<3,
用数轴表示为:
三.分式方程的应用(共1小题)
3.(2020•黔西南州)随着人们“节能环保,绿色出行”意识的增强,越来越多的人喜欢骑自行车出行,也给自行车商家带来商机.某自行车行经营的A型自行车去年销售总额为8万元.今年该型自行车每辆售价预计比去年降低200元.若该型车的销售数量与去年相同,那么今年的销售总额将比去年减少10%,求:
(1)A型自行车去年每辆售价多少元?
(2)该车行今年计划新进一批A型车和新款B型车共60辆,且B型车的进货数量不超过A型车数量的两倍.已知A型车和B型车的进货价格分别为1500元和1800元,计划B型车销售价格为2400元,应如何组织进货才能使这批自行车销售获利最多?
【解答】解:(1)设去年A型车每辆售价x元,则今年售价每辆为(x﹣200)元,由题意,得
=,
解得:x=2000.
经检验,x=2000是原方程的根.
答:去年A型车每辆售价为2000元;
(2)设今年新进A型车a辆,则B型车(60﹣a)辆,获利y元,由题意,得
y=(2000﹣200﹣1500)a+(2400﹣1800)(60﹣a),
y=﹣300a+36000.
∵B型车的进货数量不超过A型车数量的两倍,
∴60﹣a≤2a,
∴a≥20.
∵y=﹣300a+36000.
∴k=﹣300<0,
∴y随a的增大而减小.
∴a=20时,y有最大值,
∴B型车的数量为:60﹣20=40(辆).
∴当新进A型车20辆,B型车40辆时,这批车获利最大.
四.解一元一次不等式组(共1小题)
4.(2022•黔西南州)(1)计算:﹣22+×+()﹣1﹣(π﹣3)0;
(2)解不等式组,并把解集在数轴上表示出来.
【解答】解:(1)﹣22+×+()﹣1﹣(π﹣3)0
=﹣4+6+2﹣1
=3;
(2),
解不等式①得:x≥﹣1,
解不等式②得:x<3,
在数轴上表示为:
故不等式组的解集为:﹣1≤x<3.
五.一次函数的应用(共2小题)
5.(2022•黔西南州)某乡镇新打造的“田园风光”景区今年计划改造一片绿化地,种植A、B两种花卉,已知3盆A种花卉和4盆B种花卉的种植费用为330元,4盆A种花卉和3盆B种花卉的种植费用为300元.
(1)每盆A种花卉和每盆B种花卉的种植费用各是多少元?
(2)若该景区今年计划种植A、B两种花卉共400盆,相关资料表明:A、B两种花卉的成活率分别为70%和90%,景区明年要将枯死的花卉补上相同的新花卉,但这两种花卉在明年共补的盆数不多于80盆,应如何安排这两种花卉的种植数量,才能使今年该项的种植费用最低?并求出最低费用.
【解答】解:(1)设每盆A种花卉种植费用为x元,每盆B种花卉种植费用为y元,根据题意,
得:,
解得:,
答:每盆A种花卉种植费用为30元,每盆B种花卉种植费用为60元;
(2)设种植A种花卉的数量为m盆,则种植B种花卉的数量为(400﹣m)盆,种植两种花卉的总费用为w元,
根据题意,得:(1﹣70%)m+(1﹣90%)(400﹣m)≤80,
解得:m≤200,
w=30m+60(400﹣m)=﹣30m+24000,
∵﹣30<0,
∴w随m的增大而减小,
当m=200时,w的最小值=﹣30×200+24000=18000,
答:种植A、B两种花卉各200盆,能使今年该项的种植费用最低,最低费用为18000元.
6.(2021•黔西南州)甲、乙两家水果商店,平时以同样的价格出售品质相同的樱桃.春节期间,甲、乙两家商店都让利酬宾,甲商店的樱桃价格为60元/kg;乙商店的樱桃价格为65元/kg.若一次购买2kg以上,超过2kg部分的樱桃价格打8折.
(1)设购买樱桃xkg,y甲,y乙(单位:元)分别表示顾客到甲、乙两家商店购买樱桃的付款金额,求y甲,y乙关于x的函数解析式;
(2)春节期间,如何选择甲、乙两家商店购买樱桃更省钱?
【解答】解:(1)由题意可得:y甲=60x,
当x≤2时,y乙=65x,
当x>2时,y乙=65×2+65×0.8(x﹣2)=52x+26,
∴y乙=;
(2)当60x<52x+26时,即时,到甲商店购买樱桃更省钱;
当60x=52x+26时,即x=时,到甲、乙两家商店购买樱桃花费相同;
当60x>52x+26,即x>时,到乙商店购买樱桃更省钱.
六.二次函数综合题(共3小题)
7.(2022•黔西南州)如图,在平面直角坐标系中,经过点A(4,0)的直线AB与y轴交于点B(0,4).经过原点O的抛物线y=﹣x2+bx+c交直线AB于点A,C,抛物线的顶点为D.
(1)求抛物线y=﹣x2+bx+c的表达式;
(2)M是线段AB上一点,N是抛物线上一点,当MN∥y轴且MN=2时,求点M的坐标;
(3)P是抛物线上一动点,Q是平面直角坐标系内一点.是否存在以点A,C,P,Q为顶点的四边形是矩形?若存在,直接写出点Q的坐标;若不存在,请说明理由.
【解答】解:(1)∵抛物线y=﹣x2+bx+c过点A(4,0)和O(0,0),
∴,
解得:,
∴抛物线的解析式为:y=﹣x2+4x;
(2)∵直线AB经过点A(4,0)和B(0,4),
∴直线AB的解析式为:y=﹣x+4,
∵MN∥y轴,
设M(t,﹣t+4),N(t,﹣t2+4t),其中0≤t≤4,
当M在N点的上方时,
MN=﹣t+4﹣(﹣t2+4t)=t2﹣5t+4=2,
解得:t1=,t2=(舍),
∴M1(,),
当M在N点下方时,
MN=﹣t2+4t﹣(﹣t+4)=﹣t2+5t﹣4=2,
解得:t1=2,t2=3,
∴M2(2,2),M3(3,1),
综上,满足条件的点M的坐标有三个(,)或(2,2)或(3,1);
(3)存在,
①如图2,若AC是矩形的边,
设抛物线的对称轴与直线AB交于点R,且R(2,2),
过点C,A分别作直线AB的垂线交抛物线于点P1,P2,
∵C(1,3),D(2,4),
∴CD==,
同理得:CR=,RD=2,
∴CD2+CR2=DR2,
∴∠RCD=90°,
∴点P1与点D重合,
当CP1∥AQ1,CP1=AQ1时,四边形ACP1Q1是矩形,
∵C(1,3)向右平移1个单位,向上平移1个单位得到P1(2,4),
∴A(4,0)向右平移1个单位,向上平移1个单位得到Q1(5,1),
此时直线P1C的解析式为:y=x+2,
∵直线P2A与P1C平行且过点A(4,0),
∴直线P2A的解析式为:y=x﹣4,
∵点P2是直线y=x﹣4与抛物线y=﹣x2+4x的交点,
∴﹣x2+4x=x﹣4,
解得:x1=﹣1,x2=4(舍),
∴P2(﹣1,﹣5),
当AC∥P2Q2时,四边形ACQ2P2是矩形,
∵A(4,0)向左平移3个单位,向上平移3个单位得到C(1,3),
∴P2(﹣1,﹣5)向左平移3个单位,向上平移3个单位得到Q2(﹣4,﹣2);
②如图3,若AC是矩形的对角线,
设P3(m,﹣m2+4m)
当∠AP3C=90°时,过点P3作P3H⊥x轴于H,过点C作CK⊥P3H于K,
∴∠P3KC=∠AHP3=90°,∠P3CK=∠AP3H,
∴△P3CK∽△AP3H,
∴=,
∴=,
∵点P不与点A,C重合,
∴m≠1或m≠4,
∴﹣m2﹣3m+1=0,
∴m=,
∴如图4,满足条件的点P有两个,即P3(,),P4(,),
当P3C∥AQ3,P3C=AQ3时,四边形AP3CQ3是矩形,
∵P3(,)向左平移个单位,向下平移个单位得到C(1,3),
∴A(4,0)向左平移个单位,向下平移个单位得到Q3(,),
当P4C∥AQ4,P4C=AQ4时,四边形AP4CQ4是矩形,
∵P4(,)向右平移个单位,向上平移个单位得到C(1,3),
∴A(4,0)向右平移个单位,向上平移个单位得到Q4(,);
综上,点Q的坐标为(5,1)或(﹣4,﹣2)或(,)或(,).
8.(2021•黔西南州)如图,直线l:y=2x+1与抛物线C:y=2x2+bx+c相交于点A(0,m),B(n,7).
(1)填空:m= 1 ,n= 3 ,抛物线的解析式为 y=2x2﹣4x+1 .
(2)将直线l向下移a(a>0)个单位长度后,直线l与抛物线C仍有公共点,求a的取值范围.
(3)Q是抛物线上的一个动点,是否存在以AQ为直径的圆与x轴相切于点P?若存在,请求出点P的坐标;若不存在,请说明理由.
【解答】解:(1)将A(0,m),B(n,7)代入y=2x+1,
可得m=1,n=3,
∴A(0,1),B(3,7),
再将A(0,1),B(3,7)代入y=2x2+bx+c得,
,
可得,
∴y=2x2﹣4x+1,
故答案为:1,3,y=2x2﹣4x+1;
(2)由题意可得y=2x+1﹣a,
联立,
∴2x2﹣6x+a=0,
∵直线l与抛物线C仍有公共点
∴Δ=36﹣8a≥0,
∴a≤,
∴0<a≤;
(3)存在以AQ为直径的圆与x轴相切,理由如下:
设Q(t,s),
∴M(,),P(,0),
∴半径r=,
∵AQ2=t2+(s﹣1)2=(s+1)2,∴t2=4s,
∵s=2t2﹣4t+1,
∴t2=4(2t2﹣4t+1),
∴t=2或t=,
∴P(1,0)或P(,0),
∴以AQ为直径的圆与x轴相切时,P点坐标为P(1,0)或P(,0).
9.(2020•黔西南州)已知抛物线y=ax2+bx+6(a≠0)交x轴于点A(6,0)和点B(﹣1,0),交y轴于点C.
(1)求抛物线的解析式和顶点坐标;
(2)如图(1),点P是抛物线上位于直线AC上方的动点,过点P分别作x轴、y轴的平行线,交直线AC于点D,E,当PD+PE取最大值时,求点P的坐标;
(3)如图(2),点M为抛物线对称轴l上一点,点N为抛物线上一点,当直线AC垂直平分△AMN的边MN时,求点N的坐标.
【解答】解:(1)∵抛物线y=ax2+bx+6经过点A(6,0),B(﹣1,0),
∴,
∴,
∴抛物线的解析式为y=﹣x2+5x+6=﹣(x﹣)2+,
∴抛物线的解析式为y=﹣x2+5x+6,顶点坐标为(,);
(2)由(1)知,抛物线的解析式为y=﹣x2+5x+6,
∴C(0,6),
∴OC=6,
∵A(6,0),
∴OA=6,
∴OA=OC,
∴∠OAC=45°,
∵PD平行于x轴,PE平行于y轴,
∴∠DPE=90°,∠PDE=∠DAO=45°,
∴∠PED=45°,
∴∠PDE=∠PED,
∴PD=PE,
∴PD+PE=2PE,
∴当PE的长度最大时,PE+PD取最大值,
∵A(6,0),C(0,6),
∴直线AC的解析式为y=﹣x+6,
设E(t,﹣t+6)(0<t<6),则P(t,﹣t2+5t+6),
∴PE=﹣t2+5t+6﹣(﹣t+6)=﹣t2+6t=﹣(t﹣3)2+9,
当t=3时,PE最大,此时,﹣t2+5t+6=12,
∴P(3,12);
(3)如图(2),设直线AC与抛物线的对称轴l的交点为F,连接NF,
∵点F在线段MN的垂直平分线AC上,
∴FM=FN,∠NFC=∠MFC,
∵l∥y轴,
∴∠MFC=∠OCA=45°,
∴∠MFN=∠NFC+∠MFC=90°,
∴NF∥x轴,
由(2)知,直线AC的解析式为y=﹣x+6,
当x=时,y=,
∴F(,),
∴点N的纵坐标为,
设N的坐标为(m,﹣m2+5m+6),
∴﹣m2+5m+6=,解得,m=或m=,
∴点N的坐标为(,)或(,).
七.四边形综合题(共1小题)
10.(2022•黔西南州)如图,在正方形ABCD中,E,F分别是BC,CD边上的点(点E不与点B,C重合),且∠EAF=45°.
(1)当BE=DF时,求证:AE=AF;
(2)猜想BE,EF,DF三条线段之间存在的数量关系,并证明你的结论;
(3)连接AC,G是CB延长线上一点,GH⊥AE,垂足为K,交AC于点H且GH=AE.若DF=a,CH=b,请用含a,b的代数式表示EF的长.
【解答】(1)证明:∵四边形ABCD是正方形,
∴AB=AD,∠B=∠D=90°,
在△ABE和△ADF中,
,
∴△ABE≌△ADF(SAS),
∴AE=AF;
(2)解:如图1,
BE+DF=EF,理由如下:
在CD的延长线上截取DG=BE,
同理(1)可得:△ABE≌△ADG(SAS),
∴∠BAE=∠DAG,AG=AE,
∵四边形ABCD是正方形,
∴∠BAD=90°,
∵∠EAF=45°,
∴∠BAE+∠DAF=∠BAD﹣∠EAF=45°,
∴∠DAG+∠DAF=45°,
即:∠GAF=45°,
∴∠GAF=∠EAF,
在△GAF和△EAF中,
,
∴△GAF≌△EAF(SAS),
∴FG=EF,
∴DG+DF=EF,
∴BE+DF=EF;
(3)如图2,
作HR⊥BC于R,
∴∠HRG=90°,
∵四边形ABCD是正方形,
∴∠ABE=90°,∠ACB=∠ACD=45°,
∴∠ABE=∠HRG,∠BAE+∠AEB=90°,
∵GH⊥AE,
∴∠EKG=90°,
∴∠G+∠AEB=90°,
∴∠G=∠BAE,
在△ABE和△GRH中,
,
∴△ABE≌△GRH(AAS),
∴BE=HR,
在Rt△CRH中,∠ACB=45°,CH=b,
∴HR=b•sin45°=,
∴BE=,
∴EF=BE+DF=.
八.切线的性质(共1小题)
11.(2021•黔西南州)如图,AB为⊙O的直径,直线l与⊙O相切于点C,AD⊥l,垂足为D,AD交⊙O于点E,连接CE.
(1)求证:∠CAD=∠CAB;
(2)若EC=4,sin∠CAD=,求⊙O的半径.
【解答】(1)证明:连接OC,
∵CD为⊙O的切线,
∴OC⊥CD,
∵AD⊥CD,
∴OC∥AD,
∴∠CAD=∠ACO.
又∵OC=OA,
∴∠ACO=∠OAC,
∴∠CAD=∠OAC,
即∠CAD=∠BAC;
(2)解:连接BC,
∵AB为⊙O的直径,
∴∠ACB=90°,
∴∠B+∠CAB=90°,
∴∠CAD+∠B=90°,
∵∠CED=∠B,∠CED+∠ECD=90°,
∴∠DCE=∠CAD,
∵sin∠CAD=sin∠DCE==,
∴DE=,
∴CD==,
∴AC=8,
∵∠BAC=∠CAD,
∴sin∠CAD=sin∠BAC==,
∴设AB=3x,BC=x,
∴AC=2x=8,
∴x=4,
∴AB=3x=12,
∴⊙O的半径为6.
方法二:∵∠CAD=∠BAC,
∴EC=CB=4,
连接BC,
∵AB是直径,
∴∠ACB=90°,
∴sin∠CAB=,
∴AB=12,
∴半径为6
九.切线的判定与性质(共1小题)
12.(2022•黔西南州)如图,在△ABC中,AB=AC,以AB为直径作⊙O,分别交BC于点D,交AC于点E,DH⊥AC,垂足为H,连接DE并延长交BA的延长线于点F.
(1)求证:DH是⊙O的切线;
(2)若E为AH的中点,求的值.
【解答】(1)证明:连接OD,如图所示:
∵OB=OD,
∴∠OBD=∠ODB,
∵AB=AC,
∴∠ABC=∠ACB,
∴∠ODB=∠ACB,
∴OD∥AC,
∵DH⊥AC,
∴DH⊥OD,
∵OD是⊙O的半径,
∴DH是⊙O的切线;
(2)解:连接AD,如图所示:
∵AB为⊙O的直径,
∴OA=OB,∠ADB=90°,
∵AB=AC,
∴BD=CD,
∴OD=AC,OD∥AC,
∴△AEF∽△ODF,
∴=,
∵∠CED+∠DEA=180°,∠B+∠DEA=180°,
∴∠CED=∠B=∠C,
∴CD=ED,
∵DH⊥AC,
∴CH=EH,
∵E为AH的中点,
∴AE=AH=CH,
∴===.
一十.旋转的性质(共1小题)
13.(2021•黔西南州)如图1,D为等边△ABC内一点,将线段AD绕点A逆时针旋转60°得到AE,连接CE,BD的延长线与AC交于点G,与CE交于点F.
(1)求证:BD=CE;
(2)如图2,连接FA,小颖对该图形进行探究,得出结论:∠BFC=∠AFB=∠AFE.小颖的结论是否正确?若正确,请给出证明;若不正确,请说明理由.
【解答】(1)证明:如图1,∵线段AD绕点A逆时针旋转60°得到AE,
∴AD=AE,∠DAE=60°,
∵∠BAC=60°,
∴∠BAC=∠DAE,
∴∠BAD=∠CAE,
在△ABD和△ACE中,
,
∴△ABD≌△ACE(SAS),
∴BD=CE,
(2)解:结论正确,理由如下:
如图2,过A作BD,CF的垂线段分别交于点M,N,
∵△ABD≌△ACE,
∴∠ABD=∠ACE,
又∵∠AGB=∠CGF,
∴∠BFC=∠BAC=60°,
∴∠BFE=120°,
∵△ABD≌△ACE,
∴BD=CE,S△ABD=S△ACE,
∴×AM×BD=×CE×AN,
∴AM=AN,
在Rt△AFM和Rt△AFN中,
,
∴Rt△AFM≌Rt△AFN(HL),
∴∠AFM=∠AFN,
∴∠BFC=∠AFB=∠AFE=60°.
一十一.旋转对称图形(共1小题)
14.(2020•黔西南州)规定:在平面内,如果一个图形绕一个定点旋转一定的角度α(0°<α≤180°)后能与自身重合,那么就称这个图形是旋转对称图形,转动的这个角度α称为这个图形的一个旋转角.例如:正方形绕着两条对角线的交点O旋转90°或180°后,能与自身重合(如图1),所以正方形是旋转对称图形,且有两个旋转角.
根据以上规定,回答问题:
(1)下列图形是旋转对称图形,但不是中心对称图形的是 B ;
A.矩形
B.正五边形
C.菱形
D.正六边形
(2)下列图形中,是旋转对称图形,且有一个旋转角是60度的有: (1)(3)(5) (填序号);
(3)下列三个命题:①中心对称图形是旋转对称图形;②等腰三角形是旋转对称图形;③圆是旋转对称图形.
其中真命题的个数有 C 个;
A.0
B.1
C.2
D.3
(4)如图2的旋转对称图形由等腰直角三角形和圆构成,旋转角有45°,90°,135°,180°,将图形补充完整.
【解答】解:(1)是旋转图形,不是中心对称图形是正五边形,
故选B.
(2)是旋转对称图形,且有一个旋转角是60度的有(1)(3)(5).
故答案为(1)(3)(5).
(3)命题中①③正确,
故选C.
(4)图形如图所示:
一十二.相似三角形的判定与性质(共1小题)
15.(2020•黔西南州)古希腊数学家毕达哥拉斯认为:“一切平面图形中最美的是圆”.请研究如下美丽的圆.如图,线段AB是⊙O的直径,延长AB至点C,使BC=OB,点E是线段OB的中点,DE⊥AB交⊙O于点D,点P是⊙O上一动点(不与点A,B重合),连接CD,PE,PC.
(1)求证:CD是⊙O的切线;
(2)小明在研究的过程中发现是一个确定的值.回答这个确定的值是多少?并对小明发现的结论加以证明.
【解答】解:(1)如图1中,连接OD、DB,
∵点E是线段OB的中点,DE⊥AB交⊙O于点D,
∴DE垂直平分OB,
∴DB=DO,OE=BE.
解法一:
∵在⊙O中,DO=OB,
∴DB=DO=OB,
∴△ODB是等边三角形,
∴∠BDO=∠DBO=60°,
∵BC=OB=BD,且∠DBE为△BDC的外角,
∴∠BCD=∠BDC=∠DBO.
∵∠DBO=60°,
∴∠CDB=30°.
∴∠ODC=∠BDO+∠BDC=60°+30°=90°,
∴CD是⊙O的切线;
解法二:
∵BC=OB,OB=OD,
∴===,
又∵∠DOE=∠COD,
∴△EOD∽△DOC,
∴∠CDO=∠DEO=90°,
∴CD为圆O的切线;
(2)答:这个确定的值是.
连接OP,如图2中:
由已知可得:OP=OB=BC=2OE.
∴==,
又∵∠COP=∠POE,
∴△OEP∽△OPC,
∴==.
一十三.条形统计图(共1小题)
16.(2020•黔西南州)新学期,某校开设了“防疫宣传”“心理疏导”等课程.为了解学生对新开设课程的掌握情况,从八年级学生中随机抽取了部分学生进行了一次综合测试.测试结果分为四个等级:A级为优秀,B级为良好,C级为及格,D级为不及格.将测试结果绘制了如图两幅不完整的统计图.根据统计图中的信息解答下列问题:
(1)本次抽样测试的学生人数是 40 名;
(2)扇形统计图中表示A级的扇形圆心角α的度数是 54° ,并把条形统计图补充完整;
(3)该校八年级共有学生500名,如果全部参加这次测试,估计优秀的人数为 75 ;
(4)某班有4名优秀的同学(分别记为E、F、G、H,其中E为小明),班主任要从中随机选择两名同学进行经验分享.利用列表法或画树状图法,求小明被选中的概率.
【解答】解:(1)本次抽样测试的学生人数是:12÷30%=40(名);
(2)∵A级的百分比为:×100%=15%,
∴∠α=360°×15%=54°;
C级人数为:40﹣6﹣12﹣8=14(名).
如图所示:
(3)500×15%=75(名).
故估计优秀的人数为 75;
(4)画树状图得:
∵共有12种等可能的结果,选中小明的有6种情况,
∴选中小明的概率为.
故答案为:40;54°;75.
一十四.列表法与树状图法(共2小题)
17.(2022•黔西南州)神舟十四号载人飞船的成功发射,再次引发校园科技热.光明中学准备举办“我的航天梦”科技活动周,在全校范围内邀请有兴趣的学生参加以下四项活动,A:航模制作;B:航天资料收集;C:航天知识竞赛;D:参观科学馆.为了了解学生对这四项活动的参与意愿,学校随机调查了该校有兴趣的m名学生(每名学生必选一项且只能选择一项),并将调查的结果绘制成两幅不完整的统计图.
根据以上信息,解答下列问题:
(1)m= 100 ,n= 35 ;并补全条形统计图;
(2)根据抽样调查的结果,请估算全校1800名学生中,大约有多少人选择参观科学馆;
(3)在选择A项活动的10人中,有甲、乙、丙、丁四名女生,现计划把这10名学生平均分成两组进行培训,每组各有两名女生,则甲、乙被分在同一组的概率是多少?
【解答】解:(1)m=10÷10%=100;
航天知识竞赛的人数有:100×15%=15(人),
航天资料收集的人数有:100﹣10﹣40﹣15=35(人),
n%=×100%=35%,即n=35,
补全统计图如下:
故答案为:100,35;
(2)根据题意得:
1800×40%=720(人),
答:大约有720人选择参观科学馆;
(3)由题意列表得:
甲
乙
丙
丁
甲
甲乙
甲丙
甲丁
乙
乙甲
乙丙
乙丁
丙
丙甲
丙乙
丙丁
丁
丁甲
丁乙
丁丙
共有12种等可能的结果数,其中甲、乙被分在同一组的有4种,
则甲、乙被分在同一组的概率是=.
18.(2021•黔西南州)为引导学生知史爱党、知史爱国,某中学组织全校学生进行“党史知识”竞赛,该校德育处随机抽取部分学生的竞赛成绩进行统计,将成绩分为四个等级:优秀、良好、一般、不合格,并绘制成两幅不完整的统计图.
根据以上信息,解答下列问题:
(1)德育处一共随机抽取了 40 名学生的竞赛成绩;在扇形统计图中,表示“一般”的扇形圆心角的度数为 108° ;
(2)将条形统计图补充完整;
(3)该校共有1400名学生,估计该校大约有多少名学生在这次竞赛中成绩优秀?
(4)德育处决定从本次竞赛成绩前四名学生甲、乙、丙、丁中,随机抽取2名同学参加全市“党史知识”竞赛,请用树状图或列表法求恰好选中甲和乙的概率.
【解答】解:(1)德育处一共随机抽取的学生人数为:16÷40%=40(名),
则在条形统计图中,成绩“一般”的学生人数为:40﹣10﹣16﹣2=12(名),
∴在扇形统计图中,成绩“一般”的扇形圆心角的度数为:360°×=108°,
故答案为:40,108°;
(2)把条形统计图补充完整如下:
(3)1400×=350(名),
即估计该校大约有350名学生在这次竞赛中成绩优秀;
(4)画树状图如图:
共有12种等可能的结果,恰好选中甲和乙的结果有2种,
∴恰好选中甲和乙的概率为=.
相关试卷
这是一份贵州省六盘水市三年(2020-2022)中考数学真题分类汇编-解答题(含解析),共47页。试卷主要包含了计算等内容,欢迎下载使用。
这是一份贵州省六盘水市三年(2020-2022)中考数学真题分类汇编-解答题,共47页。试卷主要包含了计算等内容,欢迎下载使用。
这是一份贵州省安顺市三年(2020-2022)中考数学真题分类汇编-解答题,共52页。试卷主要包含了0+2sin60°+|1﹣|﹣,阅读材料,两点,甲秀楼是贵阳市一张靓丽的名片等内容,欢迎下载使用。