选择性必修 第三册第八章 成对数据的统计分析8.3 分类变量与列联表教学演示课件ppt
展开1.通过对典型案例的探究,了解独立性检验(只要求2×2列联表)的基本思想、方法及初步应用.2.通过对数据的收集、整理和分析,增强学生的社会实践能力,培养学生分析问题、解决问题的能力.
前面两节所讨论的变量,如人的身高、树的胸径、树的高度、短跑100m世界纪录和创纪录的时间等,都是数值变量,数值变量的取值为实数.其大小和运算都有实际含义. 在现实生活中,人们经常需要回答一定范围内的两种现象或性质之间是否存在关联性或相互影响的问题.例如,就读不同学校是否对学生的成绩有影响,不同班级学生用于体育锻炼的时间是否有差别,吸烟是否会增加患肺癌的风险,等等,本节将要学习的独立性检验方法为我们提供了解决这类问题的方案。 在讨论上述问题时,为了表述方便,我们经常会使用一种特殊的随机变量,以区别不同的现象或性质,这类随机变量称为分类变量.分类变量的取值可以用实数表示,例如,学生所在的班级可以用1,2,3等表示,男性、女性可以用1,0表示,等等.在很多时候,这些数值只作为编号使用,并没有通常的大小和运算意义,本节我们主要讨论取值于{0,1}的分类变量的关联性问题.
问题1. 为了有针对性地提高学生体育锻炼的积极性,某中学需要了解性别因素是否对本校学生体育锻炼的经常性有影响,为此对学生是否经常锻炼的情况进行了普查,全校学生的普查数据如下:523名女生中有331名经常锻炼;601名男生中有473名经常锻炼。你能利用这些数据,说明该校女生和男生在体育锻炼的经常性方面是否存在差异吗?
为了清楚起见,我们用表格整理数据
在实践中,由于保存原始数据的成本较高,人们经常按研究问题的需要,将数据分类统计,并做成表格加以保存,我们将下表这种形式的数据统计表称为2×2列联表(cntingency table).2×2列联表给出了成对分类变量数据的交叉分类频数,以右表为例,它包含了X和Y的如下信息:最后一行的前两个数分别是事件{Y=0}和{Y=1}中样本点的个数;最后一列的前两个数分别是事件{X=0}和{X=1}中样本点的个数;中间的四个格中的数是表格的核心部分,给出了事件{X=x,Y=y}(x,y=0,1)中样本点的个数;右下角格中的数是样本空间中样本点的总数。
例1.为比较甲、乙两所学校学生的数学水平,采用简单随机抽样的方法抽取88名学生.通过测验得到了如下数据:甲校43名学生中有10名数学成绩优秀;乙校45名学生中有7名数学成绩优秀,试分析两校学生中数学成绩优秀率之间是否存在差异.
表是关于分类变量X和Y的抽样数据的2×2列联表:最后一行的前两个数分别是事件(Y=0)和(Y=1)的频数;最后一列的前两个数分别是事件(X=0)和(X=1)的频数;中间的四个格中的数是事件(X=x,Y=y)(x,y=0,1)的频数;
我们可以用等高堆积条形图直观地展示上述计算结果,如图所示
左边的蓝色和红色条的高度分别是甲校学生中数学成绩不优秀和数学成绩优秀的频率;右边的蓝色和红色条的高度分别是乙校学生中数学成绩不优秀和数学成绩优秀的频率,通过比较发现,两个学校学生抽样数据中数学成绩优秀的频率存在差异,甲校的频率明显高于乙校的频率,依据频率稳定于概率的原理,我们可以推断P(Y=1|X=0)>P(Y=1|X=1).也就是说,如果从甲校和乙校各随机选取一名学生,那么甲校学生数学成绩优秀的概率大于乙校学生数学成绩优秀的概率,因此,可以认为两校学生的数学成绩优秀率存在差异,甲校学生的数学成绩优秀率比乙校学生的高。
2.两个分类变量之间关联关系的定性分析的方法:
等高堆积条形图可以展示列联表数据的频率特征,能够直观地反映出两个分类变量间是否相互影响.
问题2.你认为“两校学生的数学成绩优秀率存在差异”这一结论是否有可能是错误的?
“两校学生的数学成绩优秀率存在差异”这个结论是根据两个频率间存在差异推断出来的.有可能出现这种情况:在随机抽取的这个样本中,两个频率间确实存在差异,但两校学生的数学成绩优秀率实际上是没有差别的.对于随机样本而言,因为频率具有随机性,频率与概率之间存在误差,所以我们的推断可能犯错误,而且在样本容量较小时,犯错误的可能性会较大.因此,需要找到一种更为合理的推断方法,同时也希望能对出现错误推断的概率有一定的控制或估算.
以上性质成立,我们就称分类变量X和Y独立,这相当于下面四个等式成立;P(X=0,Y=0)=P(X=0)P(Y=0); P(X=0,Y=1)=P(X=0)P(Y=1);P(X=1,Y=0)=P(X=1)P(Y=0); P(X=1,Y=1)=P(X=1)P(Y=1). ②我们可以用概率语言,将零假设改述为H0:分类变量X和Y独立.假定我们通过简单随机抽样得到了X和Y的抽样数据列联表,如下表所示。
表是关于分类变量X和Y的抽样数据的2×2列联表:最后一行的前两个数分别是事件{Y=0}和{Y=1}的频数;最后一列的前两个数分别是事件{X=0}和{X=1}的频数;中间的四个数a,b,c,d是事件{X=x,Y=y}(x, y=0,1)的频数;右下角格中的数n是样本容量。
问题3:如何基于②中的四个等式及列联表中的数据,构造适当的统计量,对成对分类变量X和Y是否相互独立作出推断?
分别考虑③中的四个差的绝对值很困难,我们需要找到一个既合理又能够计算分布的统计量,来推断H0是否成立. 一般来说,若频数的期望值较大,则③中相应的差的绝对值也会较大;而若频数的期望值较小,则③中相应的差的绝对值也会较小.为了合理地平衡这种影响,我们将四个差的绝对值取平方后分别除以相应的期望值再求和,得到如下的统计量:
独立性检验公式及定义:
χ2独立性检验中几个常用的小概率值和相应的临界值.
对于任何小概率值α,可以找到相应的正实数xα,使得P(χ2≥xα)=α成立,我们称xα为α的临界值,这个临界值可作为判断χ2大小的标准,概率值α越小,临界值xα越大.
基于小概率值α的检验规则:当χ2≥xα时,我们就推断H0不成立,即认为X和Y不独立,该推断犯错误的概率不超过α;当χ2
问题5.例1和例2都是基于同一组数据的分析,但却得出了不同的结论,你能说明其中的原因吗?
解:零假设为H0:疗法与疗效独立,即两种疗法效果没有差异.将所给数据进行整理,得到两种疗法治疗数据的列联表,
例4.为了调查吸烟是否对肺癌有影响,某肿瘤研究所采取有放回简单随机抽样,调查了9965人,得到如下结果(单位:人)依据小概率值α=0.001的独立性检验,分析吸烟是否会增加患肺癌的风险。
解:零假设为H0:吸烟和患肺癌之间没有关系根据列联表中的数据,经计算的
根据小概率值α=0.001的独立性检验,推断H0不成立,即认为吸 烟与患肺癌有关联,此推断犯错误的概率不大于0.001,即我们有99.9%的把握认为“吸烟与患肺癌有关系”.
根据表中的数据计算不吸烟者中不患肺癌和患肺癌的频率分别为
吸烟者中不患肺癌和患肺癌的评率分别为
可见,在被调查者中,吸烟者患肺癌的频率是不吸烟者患肺癌频率的4倍以上。于是,根据频率稳定于概率的原理,我们可以认为吸烟者患肺癌的概率明显大于不吸烟者患肺癌概率,即吸烟更容易引发肺癌。
应用独立性检验解决实际问题大致应包括以下几个主要环节:
跟踪训练1.某校对学生的课外活动进行调查,结果整理成下表:
试用你所学过的知识分析:能否在犯错误的概率不超过0.005的前提下,认为“喜欢体育还是文娱与性别有关系”?
解:∵a=21,b=23,c=6,d=29,n=79,
1.给出下列实际问题:①一种药物对某种病的治愈率;②两种药物治疗同一种病是否有区别;③吸烟者得肺病的概率;④吸烟是否与性别有关系;⑤网吧与青少年的犯罪是否有关系.其中用独立性检验可以解决的问题有( )A.①②③B.②④⑤ C.②③④⑤ D.①②③④⑤
解析:独立性检验是判断两个分类变量是否有关系的方法,而①③都是概率问题,不能用独立性检验解决.答案:B
2.某班主任对全班50名学生进行了作业量多少的调查,数据如下表:下列叙述中,正确的是( )A.有99%的把握认为“喜欢玩电脑游戏与认为作业量的多少有关系”B.有95%的把握认为“喜欢玩电脑游戏与认为作业量的多少无关系”C.有99%的把握认为“喜欢玩电脑游戏与认为作业量的多少无关系”D.有95%的把握认为“喜欢玩电脑游戏与认为作业量的多少有关系”
3.某高校《统计》课程的教师随机调查了选该课的一些学生情况,具体数据如下表: 为了判断主修统计专业是否与性别有关系,根据表中的数据,得到因为4.844>3.841,所以有 的把握判定主修统计专业与性别有关系.
4.在500人身上试验某种血清预防感冒作用,把他们一年中的感冒记录与另外500名未用血清的人的感冒记录作比较,结果如表所示。问:该种血清能否起到预防感冒的作用?
解:设H0:感冒与是否使用该血清没有关系。
因当H0成立时, χ2≥6.635的概率约为0.01,故有99%的把握认为该血清能起到预防感冒的作用。
5.随着工业化以及城市车辆的增加,城市的空气污染越来越严重,空气质量指数API一直居高不下,对人体的呼吸系统造成了严重的影响.现调查了某市500名居民的工作场所和呼吸系统健康情况,得到2×2列联表如下:
(1)补全2×2列联表;(2)能否在犯错误的概率不超过0.05的前提下认为感染呼吸系统疾病与工作场所有关?(3)现采用分层抽样从室内工作的居民中抽取一个容量为6的样本,将该样本看成一个总体,从中随机地抽取两人,求两人都有呼吸系统疾病的概率.
解:(1)列联表如下:所以能在犯错误的概率不超过0.05的前提下认为感染呼吸系统疾病与工作场所有关.
(3)采用分层抽样从室内工作的居民中抽取6名,其中有呼吸系统疾病的抽4人,无呼吸系统疾病的抽2人,设A为“从中随机地抽取两人,两人都有呼吸系统疾病”,则
高中数学人教A版 (2019)选择性必修 第三册8.3 分类变量与列联表优秀课件ppt: 这是一份高中数学人教A版 (2019)选择性必修 第三册8.3 分类变量与列联表优秀课件ppt,共27页。PPT课件主要包含了复习导入,新知探索,课堂总结等内容,欢迎下载使用。
高中数学人教A版 (2019)选择性必修 第三册第八章 成对数据的统计分析8.3 分类变量与列联表优质课件ppt: 这是一份高中数学人教A版 (2019)选择性必修 第三册第八章 成对数据的统计分析8.3 分类变量与列联表优质课件ppt,共29页。
高中数学人教A版 (2019)选择性必修 第三册8.3 分类变量与列联表优质ppt课件: 这是一份高中数学人教A版 (2019)选择性必修 第三册8.3 分类变量与列联表优质ppt课件,共60页。