|试卷下载
搜索
    上传资料 赚现金
    安徽省亳州一中学南校国际部重点名校2021-2022学年初中数学毕业考试模拟冲刺卷含解析
    立即下载
    加入资料篮
    安徽省亳州一中学南校国际部重点名校2021-2022学年初中数学毕业考试模拟冲刺卷含解析01
    安徽省亳州一中学南校国际部重点名校2021-2022学年初中数学毕业考试模拟冲刺卷含解析02
    安徽省亳州一中学南校国际部重点名校2021-2022学年初中数学毕业考试模拟冲刺卷含解析03
    还剩16页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    安徽省亳州一中学南校国际部重点名校2021-2022学年初中数学毕业考试模拟冲刺卷含解析

    展开
    这是一份安徽省亳州一中学南校国际部重点名校2021-2022学年初中数学毕业考试模拟冲刺卷含解析,共19页。试卷主要包含了考生要认真填写考场号和座位序号,近似数精确到等内容,欢迎下载使用。

    1.考生要认真填写考场号和座位序号。
    2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B 铅笔作答;第二部分必须用黑色字迹的签字笔作答。
    3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。
    一、选择题(每小题只有一个正确答案,每小题3分,满分30分)
    1.函数y=mx2+(m+2)x+m+1的图象与x轴只有一个交点,则m的值为( )
    A.0B.0或2C.0或2或﹣2D.2或﹣2
    2.在2014年5月崇左市教育局举行的“经典诗朗诵”演讲比赛中,有11名学生参加决赛,他们决赛的成绩各不相同,其中的一名学生想知道自己能否进入前6名,不仅要了解自己的成绩,还要了解这11名学生成绩的( )
    A.众数B.中位数C.平均数D.方差
    3.如图,直线a∥b,点A在直线b上,∠BAC=100°,∠BAC的两边与直线a分别交于B、C两点,若∠2=32°,则∠1的大小为( )
    A.32°B.42°C.46°D.48°
    4.在△ABC中,AD和BE是高,∠ABE=45°,点F是AB的中点,AD与FE,BE分别交于点G、H.∠CBE=∠BAD,有下列结论:①FD=FE;②AH=2CD;③BC•AD=AE2;④S△BEC=S△ADF.其中正确的有( )
    A.1个B.2个C.3个D.4个
    5.正五边形绕着它的中心旋转后与它本身重合,最小的旋转角度数是( )
    A.36°B.54°C.72°D.108°
    6.如图,△OAC和△BAD都是等腰直角三角形,∠ACO=∠ADB=90°,反比例函数y=在第一象限的图象经过点B,则△OAC与△BAD的面积之差S△OAC﹣S△BAD为( )
    A.36B.12C.6D.3
    7.如图,数轴A、B上两点分别对应实数a、b,则下列结论正确的是( )
    A.a+b>0B.ab >0C.D.
    8.3点40分,时钟的时针与分针的夹角为( )
    A.140°B.130°C.120°D.110°
    9.如图,在△ABC中,EF∥BC,AB=3AE,若S四边形BCFE=16,则S△ABC=( )
    A.16B.18C.20D.24
    10.近似数精确到( )
    A.十分位B.个位C.十位D.百位
    二、填空题(共7小题,每小题3分,满分21分)
    11.如图,在 Rt△ABC 中,∠C=90°,AM 是 BC 边上的中线,cs∠AMC ,则 tan∠B 的值为__________.
    12.观察下列一组数:,它们是按一定规律排列的,那么这一组数的第n个数是_____.
    13.若分式的值为正,则实数的取值范围是__________________.
    14.分解因式:8a3﹣8a2+2a=_____.
    15.已知一次函数的图象与直线y=x+3平行,并且经过点(﹣2,﹣4),则这个一次函数的解析式为_____.
    16.如图所示,边长为1的小正方形构成的网格中,半径为1的⊙O的圆心O在格点上,则∠AED的正切值等于__________.
    17.如图,在△ABC中,P,Q分别为AB,AC的中点.若S△APQ=1,则S四边形PBCQ=__.
    三、解答题(共7小题,满分69分)
    18.(10分)如图,在边长为1 个单位长度的小正方形网格中:
    (1)画出△ABC 向上平移6 个单位长度,再向右平移5 个单位长度后的△A1B1C1.
    (2)以点B为位似中心,将△ABC放大为原来的2倍,得到△A2B2C2,请在网格中画出△A2B2C2.
    (3)求△CC1C2的面积.
    19.(5分)计算:(﹣1)2﹣2sin45°+(π﹣2018)0+|﹣|
    20.(8分)已知矩形ABCD的一条边AD=8,将矩形ABCD折叠,使得顶点B落在CD边上的P点处.如图,已知折痕与边BC交于点O,连接AP、OP、OA.
    (1)求证:;
    (2)若△OCP与△PDA的面积比为1:4,求边AB的长.
    21.(10分)如图,AB是⊙O的直径,弧CD⊥AB,垂足为H,P为弧AD上一点,连接PA、PB,PB交CD于E.
    (1)如图(1)连接PC、CB,求证:∠BCP=∠PED;
    (2)如图(2)过点P作⊙O的切线交CD的延长线于点E,过点A向PF引垂线,垂足为G,求证:∠APG=∠F;
    (3)如图(3)在图(2)的条件下,连接PH,若PH=PF,3PF=5PG,BE=2,求⊙O的直径AB.
    22.(10分)已知△ABC在平面直角坐标系中的位置如图所示.分别写出图中点A和点C的坐标;画出△ABC绕点C按顺时针方向旋转90°后的△A′B′C′;求点A旋转到点A′所经过的路线长(结果保留π).
    23.(12分)某电器超市销售每台进价分别为200元,170元的A,B两种型号的电风扇,表中是近两周的销售情况:
    (进价、售价均保持不变,利润=销售收入-进货成本)
    (1)求A,B两种型号的电风扇的销售单价.
    (2)若超市准备用不多于5400元的金额再采购这两种型号的电风扇共30台,则A种型号的电风扇最多能采购多少台?
    (3)在(2)的条件下,超市销售完这30台电风扇能否实现利润为1400元的目标?若能,请给出相应的采购方案;若不能,请说明理由.
    24.(14分)如图,平行四边形ABCD的对角线AC,BD相交于点O,EF过点O且与AB、CD分别交于点E、F.求证:OE=OF.
    参考答案
    一、选择题(每小题只有一个正确答案,每小题3分,满分30分)
    1、C
    【解析】
    根据函数y=mx2+(m+2)x+m+1的图象与x轴只有一个交点,利用分类讨论的方法可以求得m的值,本题得以解决.
    【详解】
    解:∵函数y=mx2+(m+2)x+m+1的图象与x轴只有一个交点,
    ∴当m=0时,y=2x+1,此时y=0时,x=﹣0.5,该函数与x轴有一个交点,
    当m≠0时,函数y=mx2+(m+2)x+m+1的图象与x轴只有一个交点,
    则△=(m+2)2﹣4m(m+1)=0,解得,m1=2,m2=﹣2,
    由上可得,m的值为0或2或﹣2,
    故选:C.
    【点睛】
    本题考查抛物线与x轴的交点,解答本题的关键是明确题意,利用分类讨论的数学思想解答.
    2、B
    【解析】
    解:11人成绩的中位数是第6名的成绩.参赛选手要想知道自己是否能进入前6名,只需要了解自己的成绩以及全部成绩的中位数,比较即可.
    故选B.
    【点睛】
    本题考查统计量的选择,掌握中位数的意义是本题的解题关键.
    3、D
    【解析】
    根据平行线的性质与对顶角的性质求解即可.
    【详解】
    ∵a∥b,
    ∴∠BCA=∠2,
    ∵∠BAC=100°,∠2=32°
    ∴∠CBA=180°-∠BAC-∠BCA=180°-100°-32°=48°.
    ∴∠1=∠CBA=48°.
    故答案选D.
    【点睛】
    本题考查了平行线的性质,解题的关键是熟练的掌握平行线的性质与对顶角的性质.
    4、C
    【解析】
    根据题意和图形,可以判断各小题中的结论是否成立,从而可以解答本题.
    【详解】
    ∵在△ABC中,AD和BE是高,
    ∴∠ADB=∠AEB=∠CEB=90°,
    ∵点F是AB的中点,
    ∴FD=AB,FE=AB,
    ∴FD=FE,①正确;
    ∵∠CBE=∠BAD,∠CBE+∠C=90°,∠BAD+∠ABC=90°,
    ∴∠ABC=∠C,
    ∴AB=AC,
    ∵AD⊥BC,
    ∴BC=2CD,∠BAD=∠CAD=∠CBE,
    在△AEH和△BEC中, ,
    ∴△AEH≌△BEC(ASA),
    ∴AH=BC=2CD,②正确;
    ∵∠BAD=∠CBE,∠ADB=∠CEB,
    ∴△ABD∽△BCE,
    ∴,即BC•AD=AB•BE,
    ∵∠AEB=90°,AE=BE,
    ∴AB=BE
    BC•AD=BE•BE,
    ∴BC•AD=AE2;③正确;
    设AE=a,则AB=a,
    ∴CE=a﹣a,
    ∴=,
    即 ,
    ∵AF=AB,
    ∴ ,
    ∴S△BEC≠S△ADF,故④错误,
    故选:C.
    【点睛】
    本题考查相似三角形的判定与性质、全等三角形的判定与性质、直角三角形斜边上的中线,解答本题的关键是明确题意,找出所求问题需要的条件,利用数形结合的思想解答.
    5、C
    【解析】
    正五边形绕着它的中心旋转后与它本身重合,最小的旋转角度数是=72度,
    故选C.
    6、D
    【解析】
    设△OAC和△BAD的直角边长分别为a、b,结合等腰直角三角形的性质及图象可得出点B的坐标,根据三角形的面积公式结合反比例函数系数k的几何意义以及点B的坐标即可得出结论.
    解:设△OAC和△BAD的直角边长分别为a、b,
    则点B的坐标为(a+b,a﹣b).
    ∵点B在反比例函数的第一象限图象上,
    ∴(a+b)×(a﹣b)=a2﹣b2=1.
    ∴S△OAC﹣S△BAD=a2﹣b2=(a2﹣b2)=×1=2.
    故选D.
    点睛:本题主要考查了反比例函数系数k的几何意义、等腰三角形的性质以及面积公式,解题的关键是找出a2﹣b2的值.解决该题型题目时,要设出等腰直角三角形的直角边并表示出面积,再用其表示出反比例函数上点的坐标是关键.
    7、C
    【解析】
    本题要先观察a,b在数轴上的位置,得b<-1<0<a<1,然后对四个选项逐一分析.
    【详解】
    A、因为b<-1<0<a<1,所以|b|>|a|,所以a+b<0,故选项A错误;
    B、因为b<0<a,所以ab<0,故选项B错误;
    C、因为b<-1<0<a<1,所以+>0,故选项C正确;
    D、因为b<-1<0<a<1,所以->0,故选项D错误.
    故选C.
    【点睛】
    本题考查了实数与数轴的对应关系,数轴上右边的数总是大于左边的数.
    8、B
    【解析】
    根据时针与分针相距的份数乘以每份的度数,可得答案.
    【详解】
    解:3点40分时针与分针相距4+=份,
    30°×=130,
    故选B.
    【点睛】
    本题考查了钟面角,确定时针与分针相距的份数是解题关键.
    9、B
    【解析】
    【分析】由EF∥BC,可证明△AEF∽△ABC,利用相似三角形的性质即可求出S△ABC的值.
    【详解】∵EF∥BC,
    ∴△AEF∽△ABC,
    ∵AB=3AE,
    ∴AE:AB=1:3,
    ∴S△AEF:S△ABC=1:9,
    设S△AEF=x,
    ∵S四边形BCFE=16,
    ∴,
    解得:x=2,
    ∴S△ABC=18,
    故选B.
    【点睛】本题考查了相似三角形的判定与性质,熟练掌握相似三角形的面积比等于相似比的平方是解本题的关键.
    10、C
    【解析】
    根据近似数的精确度:近似数5.0×102精确到十位.
    故选C.
    考点:近似数和有效数字
    二、填空题(共7小题,每小题3分,满分21分)
    11、
    【解析】
    根据cs∠AMC ,设, ,由勾股定理求出AC的长度,根据中线表达出BC即可求解.
    【详解】
    解:∵cs∠AMC ,

    设, ,
    ∴在Rt△ACM中,
    ∵AM 是 BC 边上的中线,
    ∴BM=MC=3x,
    ∴BC=6x,
    ∴在Rt△ABC中,,
    故答案为:.
    【点睛】
    本题考查了锐角三角函数值的求解问题,解题的关键是熟记锐角三角函数的定义.
    12、
    【解析】
    试题解析:根据题意得,这一组数的第个数为:
    故答案为
    点睛:观察已知一组数发现:分子为从1开始的连续奇数,分母为从2开始的连续正整数的平方,写出第个数即可.
    13、x>0
    【解析】
    【分析】分式值为正,则分子与分母同号,据此进行讨论即可得.
    【详解】∵分式的值为正,
    ∴x与x2+2的符号同号,
    ∵x2+2>0,
    ∴x>0,
    故答案为x>0.
    【点睛】本题考查了分式值为正的情况,熟知分式值为正时,分子分母同号是解题的关键.
    14、2a(2a﹣1)2
    【解析】
    提取2a,再将剩下的4a2-4a+1用完全平方和公式配出(2a﹣1)2,即可得出答案.
    【详解】
    原式=2a(4a2-4a+1)=2a(2a﹣1)2.
    【点睛】
    本题考查了因式分解,仔细观察题目并提取公因式是解决本题的关键.
    15、y=x﹣1
    【解析】
    分析:根据互相平行的两直线解析式的k值相等设出一次函数的解析式,再把点(﹣2,﹣4)的坐标代入解析式求解即可.
    详解:∵一次函数的图象与直线y=x+1平行,∴设一次函数的解析式为y=x+b.
    ∵一次函数经过点(﹣2,﹣4),∴×(﹣2)+b=﹣4,解得:b=﹣1,所以这个一次函数的表达式是:y=x﹣1.
    故答案为y=x﹣1.
    点睛:本题考查了两直线平行的问题,熟记平行直线的解析式的k值相等设出一次函数解析式是解题的关键.
    16、
    【解析】
    根据同弧或等弧所对的圆周角相等来求解.
    【详解】
    解:∵∠E=∠ABD,
    ∴tan∠AED=tan∠ABD==.
    故选D.
    【点睛】
    本题利用了圆周角定理(同弧或等弧所对的圆周角相等)和正切的概念求解.
    17、1
    【解析】
    根据三角形的中位线定理得到PQ=BC,得到相似比为,再根据相似三角形面积之比等于相似比的平方,可得到结果.
    【详解】
    解:∵P,Q分别为AB,AC的中点,
    ∴PQ∥BC,PQ=BC,
    ∴△APQ∽△ABC,
    ∴ =()2=,
    ∵S△APQ=1,
    ∴S△ABC=4,
    ∴S四边形PBCQ=S△ABC﹣S△APQ=1,
    故答案为1.
    【点睛】
    本题考查相似三角形的判定和性质,三角形中位线定理等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.
    三、解答题(共7小题,满分69分)
    18、(1)见解析 (2)见解析 (3) 9
    【解析】
    试题分析:(1)将△ABC向上平移6个单位长度,再向右平移5个单位长度后的△A1B1C1,如图所示;
    (2)以点B为位似中心,将△ABC放大为原来的2倍,得到△A2B2C2,如图所示.
    试题解析:(1)根据题意画出图形,△A1B1C1为所求三角形;
    (2)根据题意画出图形,△A2B2C2为所求三角形.
    考点:1.作图-位似变换,2. 作图-平移变换
    19、1
    【解析】
    原式第一项利用乘方法则计算,第二项利用特殊角的三角函数值计算,第三项利用零指数幂法则计算,最后一项利用绝对值的代数意义化简即可得到结果.
    【详解】
    解:原式=1﹣1×+1+=1﹣+1+=1.
    【点睛】
    此题考查了含有特殊角的三角函数值的运算,熟练掌握各运算法则是解题的关键.
    20、 (1)详见解析;(2)10.
    【解析】
    ①只需证明两对对应角分别相等可得两个三角形相似;故.
    ②根据相似三角形的性质求出PC长以及AP与OP的关系,然后在Rt△PCO中运用勾股定理求出OP长,从而求出AB长.
    【详解】
    ①∵四边形ABCD是矩形,
    ∴AD=BC,DC=AB,∠DAB=∠B=∠C=∠D=90°.
    由折叠可得:AP=AB,PO=BO,∠PAO=∠BAO,∠APO=∠B.
    ∴∠APO=90°.
    ∴∠APD=90°−∠CPO=∠POC.
    ∵∠D=∠C,∠APD=∠POC.
    ∴△OCP∽△PDA.
    ∴.
    ②∵△OCP与△PDA的面积比为1:4,
    ∴OCPD=OPPA=CPDA=14−−√=12.
    ∴PD=2OC,PA=2OP,DA=2CP.
    ∵AD=8,
    ∴CP=4,BC=8.
    设OP=x,则OB=x,CO=8−x.
    在△PCO中,
    ∵∠C=90∘,CP=4,OP=x,CO=8−x,
    ∴x2=(8−x)2+42.
    解得:x=5.
    ∴AB=AP=2OP=10.
    ∴边AB的长为10.
    【点睛】
    本题考查了相似三角形的判定与性质以及翻转变换,解题的关键是熟练的掌握相似三角形与翻转变换的相关知识.
    21、(1)见解析;(2)见解析;(3)AB=1
    【解析】
    (1)由垂径定理得出∠CPB=∠BCD,根据∠BCP=∠BCD+∠PCD=∠CPB+∠PCD=∠PED即可得证;
    (2)连接OP,知OP=OB,先证∠FPE=∠FEP得∠F+2∠FPE=180°,再由∠APG+∠FPE=90得2∠APG+2∠FPE=180°,据此可得2∠APG=∠F,据此即可得证;
    (3)连接AE,取AE中点N,连接HN、PN,过点E作EM⊥PF,先证∠PAE=∠F,由tan∠PAE=tan∠F得,再证∠GAP=∠MPE,由sin∠GAP=sin∠MPE得,从而得出,即MF=GP,由3PF=5PG即,可设PG=3k,得PF=5k、MF=PG=3k、PM=2k,由∠FPE=∠PEF知PF=EF=5k、EM=4k及PE=2k、AP=k,证∠PEM=∠ABP得BP=3k,继而可得BE=k=2,据此求得k=2,从而得出AP、BP的长,利用勾股定理可得答案.
    【详解】
    证明:(1)∵AB是⊙O的直径且AB⊥CD,
    ∴∠CPB=∠BCD,
    ∴∠BCP=∠BCD+∠PCD=∠CPB+∠PCD=∠PED,
    ∴∠BCP=∠PED;
    (2)连接OP,则OP=OB,
    ∴∠OPB=∠OBP,
    ∵PF是⊙O的切线,
    ∴OP⊥PF,则∠OPF=90°,
    ∠FPE=90°﹣∠OPE,
    ∵∠PEF=∠HEB=90°﹣∠OBP,
    ∴∠FPE=∠FEP,
    ∵AB是⊙O的直径,
    ∴∠APB=90°,
    ∴∠APG+∠FPE=90°,
    ∴2∠APG+2∠FPE=180°,
    ∵∠F+∠FPE+∠PEF=180°,
    ∵∠F+2∠FPE=180°
    ∴2∠APG=∠F,
    ∴∠APG= ∠F;
    (3)连接AE,取AE中点N,连接HN、PN,过点E作EM⊥PF于M,
    由(2)知∠APB=∠AHE=90°,
    ∵AN=EN,
    ∴A、H、E、P四点共圆,
    ∴∠PAE=∠PHF,
    ∵PH=PF,
    ∴∠PHF=∠F,
    ∴∠PAE=∠F,
    tan∠PAE=tan∠F,
    ∴,
    由(2)知∠APB=∠G=∠PME=90°,
    ∴∠GAP=∠MPE,
    ∴sin∠GAP=sin∠MPE,
    则,
    ∴,
    ∴MF=GP,
    ∵3PF=5PG,
    ∴,
    设PG=3k,则PF=5k,MF=PG=3k,PM=2k
    由(2)知∠FPE=∠PEF,
    ∴PF=EF=5k,
    则EM=4k,
    ∴tan∠PEM=,tan∠F=,
    ∴tan∠PAE=,
    ∵PE=,
    ∴AP=k,
    ∵∠APG+∠EPM=∠EPM+∠PEM=90°,
    ∴∠APG=∠PEM,
    ∵∠APG+∠OPA=∠ABP+∠BAP=90°,且∠OAP=∠OPA,
    ∴∠APG=∠ABP,
    ∴∠PEM=∠ABP,
    则tan∠ABP=tan∠PEM,即,
    ∴,
    则BP=3k,
    ∴BE=k=2,
    则k=2,
    ∴AP=3、BP=6,
    根据勾股定理得,AB=1.
    【点睛】
    本题主要考查圆的综合问题,解题的关键是掌握圆周角定理、四点共圆条件、相似三角形的判定与性质、三角函数的应用等知识点.
    22、(1)、(2)见解析(3)
    【解析】
    试题分析:(1)根据点的平面直角坐标系中点的位置写出点的坐标;(2)根据旋转图形的性质画出旋转后的图形;(3)点A所经过的路程是以点C为圆心,AC长为半径的扇形的弧长.
    试题解析:(1)A(0,4)C(3,1)
    (2)如图所示:
    (3)根据勾股定理可得:AC=3,则.
    考点:图形的旋转、扇形的弧长计算公式.
    23、 (1) A,B两种型号电风扇的销售单价分别为250元/台、210元/台;(2) A种型号的电风扇最多能采购10台;(3) 在(2)的条件下超市不能实现利润为1400元的目标.
    【解析】
    (1)设A、B两种型号电风扇的销售单价分别为x元、y元,根据3台A型号5台B型号的电扇收入1800元,4台A型号10台B型号的电扇收入3100元,列方程组求解;
    (2)设采购A种型号电风扇a台,则采购B种型号电风扇(30-a)台,根据金额不多余5400元,列不等式求解;
    (3)设利润为1400元,列方程求出a的值为20,不符合(2)的条件,可知不能实现目标.
    【详解】
    (1)设A,B两种型号电风扇的销售单价分别为x元/台、y元/台.
    依题意,得解得
    答:A,B两种型号电风扇的销售单价分别为250元/台、210元/台.
    (2)设采购A种型号的电风扇a台,则采购B种型号的电风扇(30-a)台.
    依题意,得200a+170(30-a)≤5400,
    解得a≤10.
    答:A种型号的电风扇最多能采购10台.
    (3)依题意,有(250-200)a+(210-170)(30-a)=1400,
    解得a=20.
    ∵a≤10,
    ∴在(2)的条件下超市不能实现利润为1400元的目标.
    【点睛】
    本题考查了二元一次方程组和一元一次不等式的应用,解答本题的关键是读懂题意,设出未知数,找出合适的等量关系和不等关系,列方程组和不等式求解.
    24、见解析
    【解析】
    由四边形ABCD是平行四边形,根据平行四边形对角线互相平分,即可得OA=OC,易证得△AEO≌△CFO,由全等三角形的对应边相等,可得OE=OF.
    【详解】
    证明:∵四边形ABCD是平行四边形,
    ∴OA=OC,AB∥DC,
    ∴∠EAO=∠FCO,
    在△AEO和△CFO中,
    ∴△AEO≌△CFO(ASA),
    ∴OE=OF.
    【点睛】
    本题考查了平行四边形的性质和全等三角形的判定,属于简单题,熟悉平行四边形的性质和全等三角形的判定方法是解题关键.
    销售时段
    销售数量
    销售收入
    A种型号
    B种型号
    第一周
    3台
    5台
    1800元
    第二周
    4台
    10台
    3100元
    相关试卷

    枣庄市重点名校2021-2022学年初中数学毕业考试模拟冲刺卷含解析: 这是一份枣庄市重点名校2021-2022学年初中数学毕业考试模拟冲刺卷含解析,共19页。试卷主要包含了方程=的解为等内容,欢迎下载使用。

    河南卢氏县重点名校2021-2022学年初中数学毕业考试模拟冲刺卷含解析: 这是一份河南卢氏县重点名校2021-2022学年初中数学毕业考试模拟冲刺卷含解析,共20页。试卷主要包含了考生要认真填写考场号和座位序号,已知,某反比例函数的图象经过点等内容,欢迎下载使用。

    甘肃省重点名校2021-2022学年初中数学毕业考试模拟冲刺卷含解析: 这是一份甘肃省重点名校2021-2022学年初中数学毕业考试模拟冲刺卷含解析,共19页。试卷主要包含了考生必须保证答题卡的整洁,化简•a5所得的结果是, 1分等内容,欢迎下载使用。

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单

        欢迎来到教习网

        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        还可免费领教师专享福利「樊登读书VIP」

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        返回
        顶部
        Baidu
        map