终身会员
搜索
    上传资料 赚现金

    2022年四川省达州市达川区中考冲刺卷数学试题含解析

    立即下载
    加入资料篮
    2022年四川省达州市达川区中考冲刺卷数学试题含解析第1页
    2022年四川省达州市达川区中考冲刺卷数学试题含解析第2页
    2022年四川省达州市达川区中考冲刺卷数学试题含解析第3页
    还剩19页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    2022年四川省达州市达川区中考冲刺卷数学试题含解析

    展开

    这是一份2022年四川省达州市达川区中考冲刺卷数学试题含解析,共22页。试卷主要包含了下列计算正确的是等内容,欢迎下载使用。
    2021-2022中考数学模拟试卷
    考生须知:
    1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。
    2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。
    3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。

    一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)
    1.如图,直线l是一次函数y=kx+b的图象,若点A(3,m)在直线l上,则m的值是(  )

    A.﹣5 B. C. D.7
    2.如图,在△ABC中,DE∥BC交AB于D,交AC于E,错误的结论是(      ).

    A. B. C. D.
    3.计算结果是( )
    A.0 B.1 C.﹣1 D.x
    4.关于的一元二次方程有两个不相等的实数根,则的取值范围为( )
    A. B. C. D.
    5.已知抛物线y=x2+bx+c的部分图象如图所示,若y<0,则x的取值范围是(  )

    A.﹣1<x<4 B.﹣1<x<3 C.x<﹣1或x>4 D.x<﹣1或x>3
    6.把图中的五角星图案,绕着它的中心点O进行旋转,若旋转后与自身重合,则至少旋转(  )

    A.36° B.45° C.72° D.90°
    7.从 ,0,π, ,6这5个数中随机抽取一个数,抽到有理数的概率是(  )
    A. B. C. D.
    8.点M(a,2a)在反比例函数y=的图象上,那么a的值是( )
    A.4 B.﹣4 C.2 D.±2
    9.如图,已知△ADE是△ABC绕点A逆时针旋转所得,其中点D在射线AC上,设旋转角为α,直线BC与直线DE交于点F,那么下列结论不正确的是(  )

    A.∠BAC=α B.∠DAE=α C.∠CFD=α D.∠FDC=α
    10.下列计算正确的是(  )
    A.2x+3x=5x B.2x•3x=6x C.(x3)2=5 D.x3﹣x2=x
    11.3点40分,时钟的时针与分针的夹角为(  )
    A.140° B.130° C.120° D.110°
    12.如图图形中,既是中心对称图形又是轴对称图形的是(  )
    A. B. C. D.
    二、填空题:(本大题共6个小题,每小题4分,共24分.)
    13.完全相同的3个小球上面分别标有数-2、-1、1,将其放入一个不透明的盒子中后摇匀,再从中随机摸球两次(第一次摸出球后放回摇匀),两次摸到的球上数之和是负数的概率是________.
    14.已知,大正方形的边长为4厘米,小正方形的边长为2厘米,起始状态如图所示,大正方形固定不动,把小正方形向右平移,当两个正方形重叠部分的面积为2平方厘米时,小正方形平移的距离为_____厘米.

    15.如图,圆O的直径AB垂直于弦CD,垂足是E,∠A=22.5°,OC=4,CD的长为________.

    16.不透明袋子中装有个球,其中有个红球、个绿球和个黑球,这些球除颜色外无其他差别.从袋子中随机取出个球,则它是黑球的概率是_____.
    17.在平面直角坐标系xOy中,点A、B为反比例函数 (x>0)的图象上两点,A点的横坐标与B点的纵坐标均为1,将 (x>0)的图象绕原点O顺时针旋转90°,A点的对应点为A′,B点的对应点为B′.此时点B′的坐标是_____.
    18.分解因式:_____.
    三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.
    19.(6分)如图,在平面直角坐标系中有三点(1,2),(3,1),(-2,-1),其中有两点同时在反比例函数的图象上,将这两点分别记为A,B,另一点记为C,
    (1)求出的值;
    (2)求直线AB对应的一次函数的表达式;
    (3)设点C关于直线AB的对称点为D,P是轴上的一个动点,直接写出PC+PD的最小值(不必说明理由).

    20.(6分)将一个等边三角形纸片AOB放置在平面直角坐标系中,点O(0,0),点B(6,0).点C、D分别在OB、AB边上,DC∥OA,CB=2.
    (I)如图①,将△DCB沿射线CB方向平移,得到△D′C′B′.当点C平移到OB的中点时,求点D′的坐标;
    (II)如图②,若边D′C′与AB的交点为M,边D′B′与∠ABB′的角平分线交于点N,当BB′多大时,四边形MBND′为菱形?并说明理由.
    (III)若将△DCB绕点B顺时针旋转,得到△D′C′B,连接AD′,边D′C′的中点为P,连接AP,当AP最大时,求点P的坐标及AD′的值.(直接写出结果即可).

    21.(6分)某校开展“我最喜爱的一项体育活动”调查,要求每名学生必选且只能选一项,现随机抽查了m名学生,并将其结果绘制成如下不完整的条形图和扇形图.

    请结合以上信息解答下列问题:m=   ;请补全上面的条形统计图;在图2中,“乒乓球”所对应扇形的圆心角的度数为   ;已知该校共有1200名学生,请你估计该校约有   名学生最喜爱足球活动.
    22.(8分)已知BD平分∠ABF,且交AE于点D.
    (1)求作:∠BAE的平分线AP(要求:尺规作图,保留作图痕迹,不写作法);
    (2)设AP交BD于点O,交BF于点C,连接CD,当AC⊥BD时,求证:四边形ABCD是菱形.

    23.(8分)如图,矩形摆放在平面直角坐标系中,点在轴上,点在轴上,.
    (1)求直线的表达式;
    (2)若直线与矩形有公共点,求的取值范围;
    (3)直线与矩形没有公共点,直接写出的取值范围.

    24.(10分)列方程解应用题:某地2016年为做好“精准扶贫”,投入资金1280万元用于异地安置,并规划投入资金逐年增加,2018年在2016年的基础上增加投入资金1600万元.从2016年到2018年,该地投入异地安置资金的年平均增长率为多少?
    25.(10分)某班为了解学生一学期做义工的时间情况,对全班50名学生进行调查,按做义工的时间(单位:小时),将学生分成五类: 类( ),类(),类(),类(),类(),绘制成尚不完整的条形统计图如图11.

    根据以上信息,解答下列问题: 类学生有 人,补全条形统计图;类学生人数占被调查总人数的 %;从该班做义工时间在的学生中任选2人,求这2人做义工时间都在 中的概率.
    26.(12分)抛物线y=ax2+bx+3(a≠0)经过点A(﹣1,0),B(,0),且与y轴相交于点C.
    (1)求这条抛物线的表达式;
    (2)求∠ACB的度数;
    (3)点D是抛物线上的一动点,是否存在点D,使得tan∠DCB=tan∠ACO.若存在,请求出点D的坐标,若不存在,说明理由.

    27.(12分)如图,轮船从点A处出发,先航行至位于点A的南偏西15°且点A相距100km的点B处,再航行至位于点A的南偏东75°且与点B相距200km的点C处.
    (1)求点C与点A的距离(精确到1km);
    (2)确定点C相对于点A的方向.
    (参考数据:)




    参考答案

    一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)
    1、C
    【解析】
    把(-2,0)和(0,1)代入y=kx+b,求出解析式,再将A(3,m)代入,可求得m.
    【详解】
    把(-2,0)和(0,1)代入y=kx+b,得

    解得
    所以,一次函数解析式y=x+1,
    再将A(3,m)代入,得
    m=×3+1=.
    故选C.
    【点睛】
    本题考核知识点:考查了待定系数法求一次函数的解析式,根据解析式再求函数值.
    2、D
    【解析】
    根据平行线分线段成比例定理及相似三角形的判定与性质进行分析可得出结论.
    【详解】
    由DE∥BC,可得△ADE∽△ABC,并可得:
    ,,,故A,B,C正确;D错误;
    故选D.
    【点睛】
    考点:1.平行线分线段成比例;2.相似三角形的判定与性质.
    3、C
    【解析】
    试题解析:.
    故选C.
    考点:分式的加减法.
    4、B
    【解析】
    试题分析:根据题意得△=32﹣4m>0,
    解得m<.
    故选B.
    考点:根的判别式.
    点睛:本题考查了一元二次方程ax2+bx+c=0(a≠0,a,b,c为常数)的根的判别式△=b2-4ac.当△>0,方程有两个不相等的实数根;当△=0,方程有两个相等的实数根;当△<0,方程没有实数根.
    5、B
    【解析】
    试题分析:观察图象可知,抛物线y=x2+bx+c与x轴的交点的横坐标分别为(﹣1,0)、(1,0),
    所以当y<0时,x的取值范围正好在两交点之间,即﹣1<x<1.
    故选B.
    考点:二次函数的图象.106144
    6、C
    【解析】
    分析:五角星能被从中心发出的射线平分成相等的5部分,再由一个周角是360°即可求出最小的旋转角度.
    详解:五角星可以被中心发出的射线平分成5部分,那么最小的旋转角度为:360°÷5=72°.
    故选C.
    点睛:本题考查了旋转对称图形的概念:把一个图形绕着一个定点旋转一个角度后,与初始图形重合,这种图形叫做旋转对称图形,这个定点叫做旋转对称中心,旋转的角度叫做旋转角.
    7、C
    【解析】
    根据有理数的定义可找出在从,0,π,,6这5个数中只有0、、6为有理数,再根据概率公式即可求出抽到有理数的概率.
    【详解】
    ∵在,0,π,,6这5个数中有理数只有0、、6这3个数,
    ∴抽到有理数的概率是,
    故选C.
    【点睛】
    本题考查了概率公式以及有理数,根据有理数的定义找出五个数中的有理数的个数是解题的关键.
    8、D
    【解析】
    根据点M(a,2a)在反比例函数y=的图象上,可得:,然后解方程即可求解.
    【详解】
    因为点M(a,2a)在反比例函数y=的图象上,可得:
    ,
    ,
    解得:,
    故选D.
    【点睛】
    本题主要考查反比例函数图象的上点的特征,解决本题的关键是要熟练掌握反比例函数图象上点的特征.
    9、D
    【解析】
    利用旋转不变性即可解决问题.
    【详解】
    ∵△DAE是由△BAC旋转得到,
    ∴∠BAC=∠DAE=α,∠B=∠D,
    ∵∠ACB=∠DCF,
    ∴∠CFD=∠BAC=α,
    故A,B,C正确,
    故选D.
    【点睛】
    本题考查旋转的性质,解题的关键是熟练掌握旋转不变性解决问题,属于中考常考题型.
    10、A
    【解析】
    依据合并同类项法则、单项式乘单项式法则、积的乘方法则进行判断即可.
    【详解】
    A、2x+3x=5x,故A正确;
    B、2x•3x=6x2,故B错误;
    C、(x3)2=x6,故C错误;
    D、x3与x2不是同类项,不能合并,故D错误.
    故选A.
    【点睛】
    本题主要考查的是整式的运算,熟练掌握相关法则是解题的关键.
    11、B
    【解析】
    根据时针与分针相距的份数乘以每份的度数,可得答案.
    【详解】
    解:3点40分时针与分针相距4+=份,
    30°×=130,
    故选B.
    【点睛】
    本题考查了钟面角,确定时针与分针相距的份数是解题关键.
    12、A
    【解析】
    A. 是轴对称图形,是中心对称图形,故本选项正确;
    B. 是中心对称图,不是轴对称图形,故本选项错误;
    C. 不是中心对称图,是轴对称图形,故本选项错误;
    D. 不是轴对称图形,是中心对称图形,故本选项错误。
    故选A.

    二、填空题:(本大题共6个小题,每小题4分,共24分.)
    13、
    【解析】
    画树状图列出所有等可能结果,从中找到能两次摸到的球上数之和是负数的结果,根据概率公式计算可得.
    【详解】
    解:画树状图如下:

    由树状图可知共有9种等可能结果,其中两次摸到的球上数之和是负数的有6种结果,
    所以两次摸到的球上数之和是负数的概率为,
    故答案为:.
    【点睛】
    本题考查的是用列表法或画树状图法求概率.列表法或画树状图法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件.用到的知识点为:概率=所求情况数与总情况数之比.
    14、1或5.
    【解析】
    小正方形的高不变,根据面积即可求出小正方形平移的距离.
    【详解】
    解:当两个正方形重叠部分的面积为2平方厘米时,重叠部分宽为2÷2=1,
    ①如图,小正方形平移距离为1厘米;

    ②如图,小正方形平移距离为4+1=5厘米.

    故答案为1或5,
    【点睛】
    此题考查了平移的性质,要明确,平移前后图形的形状和面积不变.画出图形即可直观解答.
    15、
    【解析】
    试题分析:因为OC=OA,所以∠ACO=,所以∠AOC=45°,又直径垂直于弦,,所以CE=,所以CD=2CE=.
    考点:1.解直角三角形、2.垂径定理.
    16、
    【解析】
    一般方法:如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=.根据随机事件概率大小的求法,找准两点:①符合条件的情况数目,②全部情况的总数,二者的比值就是其发生的概率的大小.
    【详解】
    ∵不透明袋子中装有7个球,其中有2个红球、2个绿球和3个黑球,
    ∴从袋子中随机取出1个球,则它是黑球的概率是:
    故答案为:.
    【点睛】
    本题主要考查概率的求法与运用,解决本题的关键是要熟练掌握概率的定义和求概率的公式.
    17、(1,-4)
    【解析】
    利用旋转的性质即可解决问题.
    【详解】
    如图,

    由题意A(1,4),B(4,1),A根据旋转的性质可知′(4,-1),B′(1,-4);
    所以,B′(1,-4);
    故答案为(1,-4).
    【点睛】
    本题考查反比例函数的旋转变换,解题的关键是灵活运用所学知识解决问题.
    18、
    【解析】
    分析:要将一个多项式分解因式的一般步骤是首先看各项有没有公因式,若有公因式,则把它提取出来,之后再观察是否是完全平方公式或平方差公式,若是就考虑用公式法继续分解因式.因此,
    先提取公因式2后继续应用完全平方公式分解即可:.

    三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.
    19、(2)2;(2)y=x+2;(3).
    【解析】
    (2)确定A、B、C的坐标即可解决问题;
    (2)理由待定系数法即可解决问题;
    (3)作D关于x轴的对称点D′(0,-4),连接CD′交x轴于P,此时PC+PD的值最小,最小值=CD′的长.
    【详解】
    解:(2)∵反比例函数y=的图象上的点横坐标与纵坐标的积相同,
    ∴A(2,2),B(-2,-2),C(3,2)
    ∴k=2.
    (2)设直线AB的解析式为y=mx+n,则有,
    解得,
    ∴直线AB的解析式为y=x+2.
    (3)∵C、D关于直线AB对称,
    ∴D(0,4)
    作D关于x轴的对称点D′(0,-4),连接CD′交x轴于P,

    此时PC+PD的值最小,最小值=CD′=.
    【点睛】
    本题考查反比例函数图象上的点的特征,一次函数的性质、反比例函数的性质、轴对称最短问题等知识,解题的关键是熟练掌握待定系数法确定函数解析式,学会利用轴对称解决最短问题.
    20、(Ⅰ)D′(3+,3);(Ⅱ)当BB'=时,四边形MBND'是菱形,理由见解析;
    (Ⅲ)P().
    【解析】
    (Ⅰ)如图①中,作DH⊥BC于H.首先求出点D坐标,再求出CC′的长即可解决问题;
    (Ⅱ)当BB'=时,四边形MBND'是菱形.首先证明四边形MBND′是平行四边形,再证明BB′=BC′即可解决问题;
    (Ⅲ)在△ABP中,由三角形三边关系得,AP<AB+BP,推出当点A,B,P三点共线时,AP最大.
    【详解】
    (Ⅰ)如图①中,作DH⊥BC于H,

    ∵△AOB是等边三角形,DC∥OA,
    ∴∠DCB=∠AOB=60°,∠CDB=∠A=60°,
    ∴△CDB是等边三角形,
    ∵CB=2,DH⊥CB,
    ∴CH=HB=,DH=3,
    ∴D(6﹣,3),
    ∵C′B=3,
    ∴CC′=2﹣3,
    ∴DD′=CC′=2﹣3,
    ∴D′(3+,3).
    (Ⅱ)当BB'=时,四边形MBND'是菱形,
    理由:如图②中,

    ∵△ABC是等边三角形,
    ∴∠ABO=60°,
    ∴∠ABB'=180°﹣∠ABO=120°,
    ∵BN是∠ACC'的角平分线,
    ∴∠NBB′'=∠ABB'=60°=∠D′C′B,
    ∴D'C'∥BN,∵AB∥B′D′
    ∴四边形MBND'是平行四边形,
    ∵∠ME'C'=∠MCE'=60°,∠NCC'=∠NC'C=60°,
    ∴△MC′B'和△NBB'是等边三角形,
    ∴MC=CE',NC=CC',
    ∵B'C'=2,
    ∵四边形MBND'是菱形,
    ∴BN=BM,
    ∴BB'=B'C'=;
    (Ⅲ)如图连接BP,

    在△ABP中,由三角形三边关系得,AP<AB+BP,
    ∴当点A,B,P三点共线时,AP最大,
    如图③中,在△D'BE'中,由P为D'E的中点,得AP⊥D'E',PD'=,
    ∴CP=3,
    ∴AP=6+3=9,
    在Rt△APD'中,由勾股定理得,AD'==2.
    此时P(,﹣).
    【点睛】
    此题是四边形综合题,主要考查了平行四边形的判定和性质,菱形的性质,平移和旋转的性质,等边三角形的判定和性质,勾股定理,解(2)的关键是四边形MCND'是平行四边形,解(3)的关键是判断出点A,C,P三点共线时,AP最大.
    21、(1)150,(2)36°,(3)1.
    【解析】
    (1)根据图中信息列式计算即可;
    (2)求得“足球“的人数=150×20%=30人,补全上面的条形统计图即可;
    (3)360°×乒乓球”所占的百分比即可得到结论;
    (4)根据题意计算即可.
    【详解】
    (1)m=21÷14%=150,
    (2)“足球“的人数=150×20%=30人,
    补全上面的条形统计图如图所示;
    (3)在图2中,“乒乓球”所对应扇形的圆心角的度数为360°×=36°;
    (4)1200×20%=1人,
    答:估计该校约有1名学生最喜爱足球活动.
    故答案为150,36°,1.

    【点睛】
    本题考查了条形统计图,观察条形统计图、扇形统计图获得有效信息是解题关键.
    22、 (1)见解析:(2)见解析.
    【解析】
    试题分析:(1)根据角平分线的作法作出∠BAE的平分线AP即可;
    (2)先证明△ABO≌△CBO,得到AO=CO,AB=CB,再证明△ABO≌△ADO,得到BO=DO.由对角线互相平分的四边形是平行四边形及有一组邻边相等的平行四边形是菱形即可证明四边形ABCD是菱形.
    试题解析:(1)如图所示:

    (2)如图:

    在△ABO和△CBO中,∵∠ABO=∠CBO,OB=OB,∠ AOB=∠COB=90°,∴△ABO≌△CBO(ASA),∴AO=CO,AB=CB.在△ABO和△ADO中,∵∠OAB=∠OAD,OA=OA,∠AOB=∠AOD=90°,∴△ABO≌△ADO(ASA),∴BO=DO.∵AO=CO,BO=DO,∴四边形ABCD是平行四边形,∵AB=CB,∴平行四边形ABCD是菱形.
    考点:1.菱形的判定;2.作图—基本作图.
    23、(1);(2);(3)
    【解析】
    (1)由条件可求得A、C的坐标,利用待定系数法可求得直线AC的表达式;
    (2)结合图形,当直线平移到过C、A时与矩形有一个公共点,则可求得b的取值范围;
    (3)由题意可知直线l过(0,10),结合图象可知当直线过B点时与矩形有一个公共点,结合图象可求得k的取值范围.
    【详解】
    解:
    (1)

    设直线表达式为,
    ,解得
    直线表达式为;
    (2) 直线可以看到是由直线平移得到,
    当直线过时,直线与矩形有一个公共点,如图1,

    当过点时,代入可得,解得.
    当过点时,可得
    直线与矩形有公共点时,的取值范围为;
    (3) ,
    直线过,且,
    如图2,直线绕点旋转,当直线过点时,与矩形有一个公共点,逆时针旋转到与轴重合时与矩形有公共点,

    当过点时,代入可得,解得
    直线:与矩形没有公共点时的取值范围为
    【点睛】
    本题为一次函数的综合应用,涉及待定系数法、直线的平移、旋转及数形结合思想等知识.在(1)中利用待定系数法是解题的关键,在(2)、(3)中确定出直线与矩形OABC有一个公共点的位置是解题的关键.本题考查知识点较多,综合性较强,难度适中.
    24、从2015年到2017年,该地投入异地安置资金的年平均增长率为50%.
    【解析】
    设年平均增长率为x,根据:2016年投入资金×(1+增长率)2=2018年投入资金,列出方程求解可得.
    【详解】
    解:设该地投入异地安置资金的年平均增长率为x.
    根据题意得:1280(1+x)2=1280+1600.
    解得x1=0.5=50%,x2=-2.5(舍去),
    答:从2016年到2018年,该地投入异地安置资金的年平均增长率为50%.
    【点睛】
    本题考查了一元二次方程的应用,由题意准确找出相等关系并据此列出方程是解题的关键.
    25、(1)5;(2)36%;(3).
    【解析】
    试题分析:(1)根据:数据总数-已知的小组频数=所求的小组频数,进行求解,然后根据所求数据补全条形图即可;
    (2)根据:小组频数= ,进行求解即可;
    (3)利用列举法求概率即可.
    试题解析:
    (1)E类:50-2-3-22-18=5(人),故答案为:5;
    补图如下:

    (2)D类:1850×100%=36%,故答案为:36%;
    (3)设这5人为
    有以下10种情况:
    其中,两人都在 的概率是: .
    26、(1)y=﹣2x2+x+3;(2)∠ACB=45°;(3)D点坐标为(1,2)或(4,﹣25).
    【解析】
    (1)设交点式y=a(x+1)(x﹣),展开得到﹣a=3,然后求出a即可得到抛物线解析式;
    (2)作AE⊥BC于E,如图1,先确定C(0,3),再分别计算出AC=,BC=,接着利用面积法计算出AE=,然后根据三角函数的定义求出∠ACE即可;
    (3)作BH⊥CD于H,如图2,设H(m,n),证明Rt△BCH∽Rt△ACO,利用相似计算出BH=,CH=,再根据两点间的距离公式得到(m﹣)2+n2=()2,m2+(n﹣3)2=()2,接着通过解方程组得到H(,﹣)或(),然后求出直线CD的解析式,与二次函数联立成方程组,解方程组即可.
    【详解】
    (1)设抛物线解析式为y=a(x+1)(x﹣),即y=ax2﹣ax﹣a,∴﹣a=3,解得:a=﹣2,∴抛物线解析式为y=﹣2x2+x+3;
    (2)作AE⊥BC于E,如图1,当x=0时,y=﹣2x2+x+3=3,则C(0,3),而A(﹣1,0),B(,0),∴AC==,BC==
    AE•BC=OC•AB,∴AE==.
    在Rt△ACE中,sin∠ACE===,∴∠ACE=45°,即∠ACB=45°;
    (3)作BH⊥CD于H,如图2,设H(m,n).
    ∵tan∠DCB=tan∠ACO,∴∠HCB=∠ACO,∴Rt△BCH∽Rt△ACO,∴==,即==,∴BH=,CH=,∴(m﹣)2+n2=()2=,①
    m2+(n﹣3)2=()2=,②
    ②﹣①得m=2n+,③,把③代入①得:(2n+﹣)2+n2=,整理得:80n2﹣48n﹣9=0,解得:n1=﹣,n2=.
    当n=﹣时,m=2n+=,此时H(,﹣),易得直线CD的解析式为y=﹣7x+3,解方程组得:或,此时D点坐标为(4,﹣25);
    当n=时,m=2n+=,此时H(),易得直线CD的解析式为y=﹣x+3,解方程组得:或,此时D点坐标为(1,2).
    综上所述:D点坐标为(1,2)或(4,﹣25).

    【点睛】
    本题是二次函数综合题.熟练掌握二次函数图象上点的坐标特征、二次函数的性质和相似三角形的判定的性质;会利用待定系数法求函数解析式,把求两函数交点问题转化为解方程组的问题;理解坐标与图形性质;会运用分类讨论的思想解决数学问题.
    27、(1)173;(2)点C位于点A的南偏东75°方向.
    【解析】
    试题分析:(1)作辅助线,过点A作AD⊥BC于点D,构造直角三角形,解直角三角形即可.
    (2)利用勾股定理的逆定理,判定△ABC为直角三角形;然后根据方向角的定义,即可确定点C相对于点A的方向.
    试题解析:解:(1)如答图,过点A作AD⊥BC于点D.
    由图得,∠ABC=75°﹣10°=60°.
    在Rt△ABD中,∵∠ABC=60°,AB=100,
    ∴BD=50,AD=50.
    ∴CD=BC﹣BD=200﹣50=1.
    在Rt△ACD中,由勾股定理得:
    AC=(km).
    答:点C与点A的距离约为173km.
    (2)在△ABC中,∵AB2+AC2=1002+(100)2=40000,BC2=2002=40000,
    ∴AB2+AC2=BC2. ∴∠BAC=90°.
    ∴∠CAF=∠BAC﹣∠BAF=90°﹣15°=75°.
    答:点C位于点A的南偏东75°方向.

    考点:1.解直角三角形的应用(方向角问题);2. 锐角三角函数定义;3.特殊角的三角函数值;4. 勾股定理和逆定理.

    相关试卷

    四川省达州市达川区达川区铭仁园学校2023-2024学年八年级下学期期中数学试题:

    这是一份四川省达州市达川区达川区铭仁园学校2023-2024学年八年级下学期期中数学试题,共19页。试卷主要包含了选择题,填空题,解答下列各题等内容,欢迎下载使用。

    2024年四川省 达州市达川区达州中学附属实验学校中考适应性考试数学试题(原卷版+解析版):

    这是一份2024年四川省 达州市达川区达州中学附属实验学校中考适应性考试数学试题(原卷版+解析版),文件包含2024年四川省达州市达川区达州中学附属实验学校中考适应性考试数学试题原卷版docx、2024年四川省达州市达川区达州中学附属实验学校中考适应性考试数学试题解析版docx等2份试卷配套教学资源,其中试卷共44页, 欢迎下载使用。

    2023-2024学年四川省达州市达川区达川第四中学九年级上册12月月考数学试题(含解析):

    这是一份2023-2024学年四川省达州市达川区达川第四中学九年级上册12月月考数学试题(含解析),共19页。试卷主要包含了单选题,填空题,解答题等内容,欢迎下载使用。

    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map