终身会员
搜索
    上传资料 赚现金

    2022年泰州市重点中学中考试题猜想数学试卷含解析

    立即下载
    加入资料篮
    2022年泰州市重点中学中考试题猜想数学试卷含解析第1页
    2022年泰州市重点中学中考试题猜想数学试卷含解析第2页
    2022年泰州市重点中学中考试题猜想数学试卷含解析第3页
    还剩15页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    2022年泰州市重点中学中考试题猜想数学试卷含解析

    展开

    这是一份2022年泰州市重点中学中考试题猜想数学试卷含解析,共18页。试卷主要包含了考生要认真填写考场号和座位序号等内容,欢迎下载使用。


    2021-2022中考数学模拟试卷
    注意事项
    1.考生要认真填写考场号和座位序号。
    2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B 铅笔作答;第二部分必须用黑色字迹的签字笔作答。
    3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。

    一、选择题(共10小题,每小题3分,共30分)
    1.在中,,,,则的值是( )
    A. B. C. D.
    2.一枚质地均匀的骰子,其六个面上分别标有数字1,2,3,4,5,6,投掷一次,朝上一面的数字是偶数的概率为( ).
    A. B. C. D.
    3.下列说法:①平分弦的直径垂直于弦;②在n次随机实验中,事件A出现m次,则事件A发生的频率,就是事件A的概率;③各角相等的圆外切多边形一定是正多边形;④各角相等的圆内接多边形一定是正多边形;⑤若一个事件可能发生的结果共有n种,则每一种结果发生的可能性是.其中正确的个数(  )
    A.1 B.2 C.3 D.4
    4.将一圆形纸片对折后再对折,得到下图,然后沿着图中的虚线剪开,得到两部分,其中一部分展开后的平面图形是(  )

    A. B. C. D.
    5.已知二次函数y=ax2+bx+c的图象如图所示,有以下结论:①a+b+c<0;②a﹣b+c>1;③abc>0;④4a﹣2b+c<0;⑤c﹣a>1,其中所有正确结论的序号是(  )

    A.①② B.①③④ C.①②③⑤ D.①②③④⑤
    6.为了解中学300名男生的身高情况,随机抽取若干名男生进行身高测量,将所得数据整理后,画出频数分布直方图(如图).估计该校男生的身高在169.5cm~174.5cm之间的人数有( )

    A.12 B.48 C.72 D.96
    7.如图,平行四边形ABCD中,点A在反比例函数y=(k≠0)的图象上,点D在y轴上,点B、点C在x轴上.若平行四边形ABCD的面积为10,则k的值是(  )

    A.﹣10 B.﹣5 C.5 D.10
    8.如图,AB是⊙O的直径,点C、D是圆上两点,且∠AOC=126°,则∠CDB=(  )

    A.54° B.64° C.27° D.37°
    9.某车间有26名工人,每人每天可以生产800个螺钉或1000个螺母,1个螺钉需要配2个螺母,为使每天生产的螺钉和螺母刚好配套.设安排x名工人生产螺钉,则下面所列方程正确的是( )
    A.2×1000(26﹣x)=800x B.1000(13﹣x)=800x
    C.1000(26﹣x)=2×800x D.1000(26﹣x)=800x
    10.如果一个扇形的弧长等于它的半径,那么此扇形称为“等边扇形”.将半径为5的“等边扇形”围成一个圆锥,则圆锥的侧面积为(  )
    A. B.π C.50 D.50π
    二、填空题(本大题共6个小题,每小题3分,共18分)
    11.如图,在平面直角坐标系中,Rt△ABO的顶点O与原点重合,顶点B在x轴上,∠ABO=90°,OA与反比例函数y=的图象交于点D,且OD=2AD,过点D作x轴的垂线交x轴于点C.若S四边形ABCD=10,则k的值为   .

    12.阅读下面材料:
    在数学课上,老师提出如下问题:

    小亮的作法如下:

    老师说:“小亮的作法正确”
    请回答:小亮的作图依据是______.
    13.如图,用黑白两种颜色的纸片,按黑色纸片数逐渐增加1的规律拼成如图图案,则第4个图案中有__________白色纸片,第n个图案中有__________张白色纸片.

    14.受益于电子商务发展和法治环境改善等多重因素,快递业务迅猛发展.预计达州市2018年快递业务量将达到5.5亿件,数据5.5亿用科学记数法表示为_____.
    15.一个不透明的袋子中装有6个球,其中2个红球、4个黑球,这些球除颜色外无其他差别.现从袋子中随机摸出一个球,则它是黑球的概率是______.
    16.如图,在扇形AOB中,∠AOB=90°,点C为OA的中点,CE⊥OA交于点E,以点O为圆心,OC的长为半径作交OB于点D,若OA=2,则阴影部分的面积为 .

    三、解答题(共8题,共72分)
    17.(8分)如图,△ACB与△ECD都是等腰直角三角形,∠ACB=∠ECD=90°,点D为AB边上的一点,
    (1)求证:△ACE≌△BCD;
    (2)若DE=13,BD=12,求线段AB的长.

    18.(8分)某家电销售商场电冰箱的销售价为每台1600元,空调的销售价为每台1400元,每台电冰箱的进价比每台空调的进价多300元,商场用9000元购进电冰箱的数量与用7200元购进空调数量相等.
    (1)求每台电冰箱与空调的进价分别是多少?
    (2)现在商场准备一次购进这两种家电共100台,设购进电冰箱x台,这100台家电的销售利润为Y元,要求购进空调数量不超过电冰箱数量的2倍,总利润不低于16200元,请分析合理的方案共有多少种?
    (3)实际进货时,厂家对电冰箱出厂价下调K(0<K<150)元,若商场保持这两种家电的售价不变,请你根据以上信息及(2)中条件,设计出使这100台家电销售总利润最大的进货方案.
    19.(8分)某商场,为了吸引顾客,在“白色情人节”当天举办了商品有奖酬宾活动,凡购物满200元者,有两种奖励方案供选择:一是直接获得20元的礼金券,二是得到一次摇奖的机会.已知在摇奖机内装有2个红球和2个白球,除颜色外其它都相同,摇奖者必须从摇奖机内一次连续摇出两个球,根据球的颜色(如表)决定送礼金券的多少.

    两红
    一红一白
    两白
    礼金券(元)
    18
    24
    18
    (1)请你用列表法(或画树状图法)求一次连续摇出一红一白两球的概率.
    (2)如果一名顾客当天在本店购物满200元,若只考虑获得最多的礼品券,请你帮助分析选择哪种方案较为实惠.
    20.(8分)如图,在Rt△ABC中,,点在边上,⊥,点为垂足,,∠DAB=450,tanB=.
    (1)求的长;
    (2)求的余弦值.

    21.(8分)为支持农村经济建设,某玉米种子公司对某种种子的销售价格规定如下:每千克的价格为a元,如果一次购买2千克以上的种子,超过2千克部分的种子价格打8折,某农户对购买量和付款金额这两个变量的对应关系用列表做了分析,并绘制出了函数图象,如图所示,其中函数图象中A点的左边为(2,10),请你结合表格和图象,回答问题:
    购买量x(千克)
    1
    1.5
    2
    2.5
    3
    付款金额y(元)
    a
    7.5
    10
    12
    b

    (1)由表格得:a= ; b= ;
    (2)求y关于x的函数解析式;
    (3)已知甲农户将8元钱全部用于购买该玉米种子,乙农户购买4千克该玉米种子,如果他们两人合起来购买,可以比分开购买节约多少钱?
    22.(10分)计算:﹣22+2cos60°+(π﹣3.14)0+(﹣1)2018
    23.(12分)如图,已知一次函数的图象与反比例函数的图象交于点,与轴、轴交于两点,过作垂直于轴于点.已知.
    (1)求一次函数和反比例函数的表达式;
    (2)观察图象:当时,比较.

    24.已知:如图,E、F是四边形ABCD的对角线AC上的两点,AF=CE,DF=BE,DF∥BE.

    求证:(1)△AFD≌△CEB.(2)四边形ABCD是平行四边形.



    参考答案

    一、选择题(共10小题,每小题3分,共30分)
    1、D
    【解析】
    首先根据勾股定理求得AC的长,然后利用正弦函数的定义即可求解.
    【详解】
    ∵∠C=90°,BC=1,AB=4,
    ∴,
    ∴,
    故选:D.
    【点睛】
    本题考查了三角函数的定义,求锐角的三角函数值的方法:利用锐角三角函数的定义,转化成直角三角形的边长的比.
    2、B
    【解析】
    朝上的数字为偶数的有3种可能,再根据概率公式即可计算.
    【详解】
    依题意得P(朝上一面的数字是偶数)=
    故选B.
    【点睛】
    此题主要考查概率的计算,解题的关键是熟知概率公式进行求解.
    3、A
    【解析】
    根据垂径定理、频率估计概率、圆的内接多边形、外切多边形的性质与正多边形的定义、概率的意义逐一判断可得.
    【详解】
    ①平分弦(不是直径)的直径垂直于弦,故此结论错误;
    ②在n次随机实验中,事件A出现m次,则事件A发生的频率,试验次数足够大时可近似地看做事件A的概率,故此结论错误;
    ③各角相等的圆外切多边形是正多边形,此结论正确;
    ④各角相等的圆内接多边形不一定是正多边形,如圆内接矩形,各角相等,但不是正多边形,故此结论错误;
    ⑤若一个事件可能发生的结果共有n种,再每种结果发生的可能性相同是,每一种结果发生的可能性是.故此结论错误;
    故选:A.
    【点睛】
    本题主要考查命题的真假,解题的关键是掌握垂径定理、频率估计概率、圆的内接多边形、外切多边形的性质与正多边形的定义、概率的意义.
    4、C
    【解析】
    严格按照图中的方法亲自动手操作一下,即可很直观地呈现出来.
    【详解】
    根据题意知,剪去的纸片一定是一个四边形,且对角线互相垂直.
    故选C.
    【点睛】
    本题主要考查学生的动手能力及空间想象能力.对于此类问题,学生只要亲自动手操作,答案就会很直观地呈现.
    5、C
    【解析】
    根据二次函数的性质逐项分析可得解.
    【详解】
    解:由函数图象可得各系数的关系:a<0,b<0,c>0,
    则①当x=1时,y=a+b+c<0,正确;
    ②当x=-1时,y=a-b+c>1,正确;
    ③abc>0,正确;
    ④对称轴x=-1,则x=-2和x=0时取值相同,则4a-2b+c=1>0,错误;
    ⑤对称轴x=-=-1,b=2a,又x=-1时,y=a-b+c>1,代入b=2a,则c-a>1,正确.
    故所有正确结论的序号是①②③⑤.
    故选C
    6、C
    【解析】
    解:根据图形,
    身高在169.5cm~174.5cm之间的人数的百分比为:,
    ∴该校男生的身高在169.5cm~174.5cm之间的人数有300×24%=72(人).
    故选C.
    7、A
    【解析】
    作AE⊥BC于E,由四边形ABCD为平行四边形得AD∥x轴,则可判断四边形ADOE为矩形,所以S平行四边形ABCD=S矩形ADOE,根据反比例函数k的几何意义得到S矩形ADOE=|−k|,利用反比例函数图象得到.
    【详解】
    作AE⊥BC于E,如图,

    ∵四边形ABCD为平行四边形,
    ∴AD∥x轴,
    ∴四边形ADOE为矩形,
    ∴S平行四边形ABCD=S矩形ADOE,
    而S矩形ADOE=|−k|,
    ∴|−k|=1,
    ∵k<0,
    ∴k=−1.
    故选A.
    【点睛】
    本题考查了反比例函数y=(k≠0)系数k的几何意义:从反比例函数y=(k≠0)图象上任意一点向x轴和y轴作垂线,垂线与坐标轴所围成的矩形面积为|k|.
    8、C
    【解析】
    由∠AOC=126°,可求得∠BOC的度数,然后由圆周角定理,求得∠CDB的度数.
    【详解】
    解:∵∠AOC=126°,
    ∴∠BOC=180°﹣∠AOC=54°,
    ∵∠CDB=∠BOC=27°
    故选:C.
    【点睛】
    此题考查了圆周角定理.注意在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.
    9、C
    【解析】
    试题分析:此题等量关系为:2×螺钉总数=螺母总数.据此设未知数列出方程即可
    【详解】
    .故选C.
    解:设安排x名工人生产螺钉,则(26-x)人生产螺母,由题意得
    1000(26-x)=2×800x,故C答案正确,考点:一元一次方程.
    10、A
    【解析】
    根据新定义得到扇形的弧长为5,然后根据扇形的面积公式求解.
    【详解】
    解:圆锥的侧面积=•5•5=.
    故选A.
    【点睛】
    本题考查圆锥的计算:圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长.

    二、填空题(本大题共6个小题,每小题3分,共18分)
    11、﹣1
    【解析】
    ∵OD=2AD,
    ∴,
    ∵∠ABO=90°,DC⊥OB,
    ∴AB∥DC,
    ∴△DCO∽△ABO,
    ∴,
    ∴,
    ∵S四边形ABCD=10,
    ∴S△ODC=8,
    ∴OC×CD=8,
    OC×CD=1,
    ∴k=﹣1,
    故答案为﹣1.
    12、两点确定一条直线;同圆或等圆中半径相等
    【解析】
    根据尺规作图的方法,两点之间确定一条直线的原理即可解题.
    【详解】
    解:∵两点之间确定一条直线,CD和AB都是圆的半径,
    ∴AB=CD,依据是两点确定一条直线;同圆或等圆中半径相等.
    【点睛】
    本题考查了尺规作图:一条线段等于已知线段,属于简单题,熟悉尺规作图方法是解题关键.
    13、13 3n+1
    【解析】
    分析:观察图形发现:白色纸片在4的基础上,依次多3个;根据其中的规律得出第n个图案中有白色纸片即可.
    详解:∵第1个图案中有白色纸片3×1+1=4张
    第2个图案中有白色纸片3×2+1=7张,
    第3图案中有白色纸片3×3+1=10张,
    ∴第4个图案中有白色纸片3×4+1=13张
    第n个图案中有白色纸片3n+1张,
    故答案为:13、3n+1.
    点睛:考查学生的探究能力,解题时必须仔细观察规律,通过归纳得出结论.
    14、5.5×1.
    【解析】
    分析:科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>10时,n是正数;当原数的绝对值<1时,n是负数.
    详解:5.5亿=5 5000 0000=5.5×1,
    故答案为5.5×1.
    点睛:此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.
    15、
    【解析】
    根据概率的概念直接求得.
    【详解】
    解:4÷6=.
    故答案为:.
    【点睛】
    本题用到的知识点为:概率=所求情况数与总情况数之比.
    16、.
    【解析】
    试题解析:连接OE、AE,

    ∵点C为OA的中点,
    ∴∠CEO=30°,∠EOC=60°,
    ∴△AEO为等边三角形,
    ∴S扇形AOE=
    ∴S阴影=S扇形AOB-S扇形COD-(S扇形AOE-S△COE)
    =
    =
    =.

    三、解答题(共8题,共72分)
    17、(3)证明见解析; (3)AB=3.
    【解析】
    (3)由等腰直角三角形得出AC=BC,CE=CD,∠ACB=∠ECD=90°,得出∠BCD=∠ACE,根据SAS推出△ACE≌△BCD即可;
    (3)求出AD=5,根据全等得出AE=BD=33,在Rt△AED中,由勾股定理求出DE即可.
    【详解】
    证明:(3)如图,

    ∵△ACB与△ECD都是等腰直角三角形,
    ∴AC=BC,CE=CD,
    ∵∠ACB=∠ECD=90°,
    ∴∠ACB﹣∠ACD=∠DCE﹣∠ACD,
    ∴∠BCD=∠ACE,在△BCD和△ACE中,
    ∵BC=AC,∠BCD=∠ACE,CD=CE,
    ∴△BCD≌△ACE(SAS);
    (3)由(3)知△BCD≌△ACE,
    则∠DBC=∠EAC,AE=BD=33,
    ∵∠CAD+∠DBC=90°,
    ∴∠EAC+∠CAD=90°,即∠EAD=90°,
    ∵AE=33,ED=33,
    ∴AD==5,
    ∴AB=AD+BD=33+5=3.
    【点睛】
    本题考查了全等三角形的判定与性质,也考查了等腰直角三角形的性质和勾股定理的应用.

    考点:3.全等三角形的判定与性质;3.等腰直角三角形.
    18、(1)每台空调的进价为1200元,每台电冰箱的进价为1500元;(2)共有5种方案;
    (3)当100<k<150时,购进电冰箱38台,空调62台,总利润最大;当0<k<100时,购进电冰箱34台,空调66台,总利润最大,当k=100时,无论采取哪种方案,y1恒为20000元.
    【解析】
    (1)用“用9000元购进电冰箱的数量与用7200元购进空调数量相等”建立方程即可;(2)建立不等式组求出x的范围,代入即可得出结论;(3)建立y1=(k﹣100)x+20000,分三种情况讨论即可.
    【详解】
    (1)设每台空调的进价为m元,则每台电冰箱的进价(m+300)元,
    由题意得,,
    ∴m=1200,
    经检验,m=1200是原分式方程的解,也符合题意,
    ∴m+300=1500元,
    答:每台空调的进价为1200元,每台电冰箱的进价为1500元;
    (2)由题意,y=(1600﹣1500)x+(1400﹣1200)(100﹣x)=﹣100x+20000,
    ∵,
    ∴33≤x≤38,
    ∵x为正整数,
    ∴x=34,35,36,37,38,
    即:共有5种方案;
    (3)设厂家对电冰箱出厂价下调k(0<k<150)元后,这100台家电的销售总利润为y1元,
    ∴y1=(1600﹣1500+k)x+(1400﹣1200)(100﹣x)=(k﹣100)x+20000,
    当100<k<150时,y1随x的最大而增大,
    ∴x=38时,y1取得最大值,
    即:购进电冰箱38台,空调62台,总利润最大,
    当0<k<100时,y1随x的最大而减小,
    ∴x=34时,y1取得最大值,
    即:购进电冰箱34台,空调66台,总利润最大,
    当k=100时,无论采取哪种方案,y1恒为20000元.
    【点睛】
    本题考查了一次函数的应用,分式方程的应用,不等式组的应用,根据题意找出等量关系是解题的关键.
    19、 (1)见解析 (2)选择摇奖
    【解析】
    试题分析:(1)画树状图列出所有等可能结果,再让所求的情况数除以总情况数即为所求的概率;
    (2)算出相应的平均收益,比较大小即可.
    试题解析:
    (1)树状图为:

    ∴一共有6种情况,摇出一红一白的情况共有4种,
    ∴摇出一红一白的概率=;
    (2)∵两红的概率P=,两白的概率P=,一红一白的概率P=,
    ∴摇奖的平均收益是:×18+×24+×18=22,
    ∵22>20,
    ∴选择摇奖.
    【点睛】主要考查的是概率的计算,画树状图法适合两步或两步以上完成的事件;解题时要注意此题是放回实验还是不放回实验.用到的知识点为:概率=所求情况数与总情况数之比.
    20、 (1)3;(2)
    【解析】
    分析:(1)由题意得到三角形ADE为等腰直角三角形,在直角三角形DEB中,利用锐角三角函数定义求出DE与BE之比,设出DE与BE,由AB=7求出各自的值,确定出DE即可;
    (2)在直角三角形中,利用勾股定理求出AD与BD的长,根据tanB的值求出cosB的值,确定出BC的长,由BC﹣BD求出CD的长,利用锐角三角函数定义求出所求即可.
    详解:(1)∵DE⊥AB,∴∠DEA=90°.又∵∠DAB=41°,∴DE=AE.在Rt△DEB中,∠DEB=90°,tanB==,设DE=3x,那么AE=3x,BE=4x.∵AB=7,∴3x+4x=7,解得:x=1,∴DE=3;
    (2)在Rt△ADE中,由勾股定理,得:AD=3,同理得:BD=1.在Rt△ABC中,由tanB=,可得:cosB=,∴BC=,∴CD=,∴cos∠CDA==,即∠CDA的余弦值为.
    点睛:本题考查了解直角三角形,涉及的知识有:锐角三角函数定义,勾股定理,等腰直角三角形的判定与性质,熟练掌握各自的性质是解答本题的关键.
    21、(1)5,1 (2)当0<x≤2时,y=5x,当x>2时,y关于x的函数解析式为y=4x+2 (3)1.6元.
    【解析】
    (1)结合函数图象与表格即可得出购买量为函数的自变量,再根据购买2千克花了10元钱即可得出a值,结合超过2千克部分的种子价格打8折可得出b值;
    (2)分段函数,当0≤x≤2时,设线段OA的解析式为y=kx;当x>2时,设关系式为y=k1x+b,然后将(2,10),且x=3时,y=1,代入关系式即可求出k,b的值,从而确定关系式;
    (3)代入(2)的解析式即可解答.
    【详解】
    解:(1)结合函数图象以及表格即可得出购买量是函数的自变量x,
    ∵10÷2=5,
    ∴a=5,b=2×5+5×0.8=1.
    故答案为a=5,b=1.
    (2)当0≤x≤2时,设线段OA的解析式为y=kx,
    ∵y=kx的图象经过(2,10),
    ∴2k=10,解得k=5,
    ∴y=5x;
    当x>2时,设y与x的函数关系式为:y=x+b
    ∵y=kx+b的图象经过点(2,10),且x=3时,y=1,
    ,解得,
    ∴当x>2时,y与x的函数关系式为:y=4x+2.
    ∴y关于x的函数解析式为: ;
    (3)甲农户将8元钱全部用于购买该玉米种子,即5x=8,解得x=1.6,即甲农户购买玉米种子1.6千克;如果他们两人合起来购买,共购买玉米种子(1.6+4)=5.6千克,这时总费用为:y=4×5.6+2=24.4元.
    (8+4×4+2)−24.4=1.6(元).
    答:如果他们两人合起来购买,可以比分开购买节约1.6元.
    【点睛】
    本题主要考查了一次函数的应用和待定系数法求一次函数解析式,根据已知得出图表中点的坐标是解题的关键.注意:求正比例函数,只要一对x,y的值就可以;而求一次函数y=kx+b,则需要两组x,y的值.
    22、-1
    【解析】
    原式利用乘方的意义,特殊角的三角函数值,零指数幂法则计算即可求出值.
    【详解】
    解:原式=﹣4+1+1+1=﹣1.
    【点睛】
    此题考查了实数的运算,熟练掌握运算法则是解本题的关键.
    23、(1);(2)
    【解析】
    (1)由一次函数的解析式可得出D点坐标,从而得出OD长度,再由△ODC与△BAC相似及AB与BC的长度得出C、B、A的坐标,进而算出一次函数与反比例函数的解析式;
    (2)以A点为分界点,直接观察函数图象的高低即可知道答案.
    【详解】
    解:(1)对于一次函数y=kx-2,令x=0,则y=-2,即D(0,-2),
    ∴OD=2,
    ∵AB⊥x轴于B,
    ∴ ,
    ∵AB=1,BC=2,
    ∴OC=4,OB=6,
    ∴C(4,0),A(6,1)
    将C点坐标代入y=kx-2得4k-2=0,
    ∴k=,
    ∴一次函数解析式为y=x-2;
    将A点坐标代入反比例函数解析式得m=6,
    ∴反比例函数解析式为y=;
    (2)由函数图象可知:
    当0<x<6时,y1<y2;
    当x=6时,y1=y2;
    当x>6时,y1>y2;
    【点睛】
    本题考查了反比例函数与一次函数的交点问题.熟悉函数图象上点的坐标特征和待定系数法解函数解析式的方法是解答本题的关键,同时注意对数形结合思想的认识和掌握.
    24、证明见解析
    【解析】
    证明:(1)∵DF∥BE,
    ∴∠DFE=∠BEF.
    又∵AF=CE,DF=BE,
    ∴△AFD≌△CEB(SAS).
    (2)由(1)知△AFD≌△CEB,
    ∴∠DAC=∠BCA,AD=BC,
    ∴AD∥BC.
    ∴四边形ABCD是平行四边形(一组对边平行且相等的四边形是平行四边形).
    (1)利用两边和它们的夹角对应相等的两三角形全等(SAS),这一判定定理容易证明△AFD≌△CEB.
    (2)由△AFD≌△CEB,容易证明AD=BC且AD∥BC,可根据一组对边平行且相等的四边形是平行四边形.

    相关试卷

    潍坊市重点中学2021-2022学年中考试题猜想数学试卷含解析:

    这是一份潍坊市重点中学2021-2022学年中考试题猜想数学试卷含解析,共22页。试卷主要包含了如图,点A,B在双曲线y=等内容,欢迎下载使用。

    山西省重点中学2022年中考试题猜想数学试卷含解析:

    这是一份山西省重点中学2022年中考试题猜想数学试卷含解析,共26页。

    江苏省泰州市海陵区重点名校2022年中考试题猜想数学试卷含解析:

    这是一份江苏省泰州市海陵区重点名校2022年中考试题猜想数学试卷含解析,共19页。试卷主要包含了计算-3-1的结果是等内容,欢迎下载使用。

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单
        欢迎来到教习网
        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        使用学贝下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        返回
        顶部
        Baidu
        map