2022年浙江省宁波七中学教育集团中考数学五模试卷含解析
展开2021-2022中考数学模拟试卷
注意事项:
1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。
2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。
3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。
4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。
一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)
1.四个有理数﹣1,2,0,﹣3,其中最小的是( )
A.﹣1 B.2 C.0 D.﹣3
2.在平面直角坐标系xOy中,四条抛物线如图所示,其解析式中的二次项系数一定小于1的是( )
A.y1 B.y2 C.y3 D.y4
3.如图,过点A(4,5)分别作x轴、y轴的平行线,交直线y=﹣x+6于B、C两点,若函数y=(x>0)的图象△ABC的边有公共点,则k的取值范围是( )
A.5≤k≤20 B.8≤k≤20 C.5≤k≤8 D.9≤k≤20
4.计算的结果是( )
A. B. C. D.2
5.下列命题中假命题是( )
A.正六边形的外角和等于 B.位似图形必定相似
C.样本方差越大,数据波动越小 D.方程无实数根
6.如图是由5个大小相同的正方体组成的几何体,则该几何体的主视图是( )
A. B. C. D.
7.下列图形中,属于中心对称图形的是( )
A. B.
C. D.
8.已知正方形ABCD的边长为4cm,动点P从A出发,沿AD边以1cm/s的速度运动,动点Q从B出发,沿BC,CD边以2cm/s的速度运动,点P,Q同时出发,运动到点D均停止运动,设运动时间为x(秒),△BPQ的面积为y(cm2),则y与x之间的函数图象大致是( )
A. B. C. D.
9.下列图形中,是正方体表面展开图的是( )
A. B. C. D.
10.在Rt△ABC中,∠ACB=90°,AC=12,BC=9,D是AB的中点,G是△ABC的重心,如果以点D为圆心DG为半径的圆和以点C为圆心半径为r的圆相交,那么r的取值范围是( )
A.r<5 B.r>5 C.r<10 D.5<r<10
11.某种电子元件的面积大约为0.00000069平方毫米,将0.00000069这个数用科学记数法表示正确的是( )
A.0.69×10﹣6 B.6.9×10﹣7 C.69×10﹣8 D.6.9×107
12.如图,三棱柱ABC﹣A1B1C1的侧棱长和底面边长均为2,且侧棱AA1⊥底面ABC,其正(主)视图是边长为2的正方形,则此三棱柱侧(左)视图的面积为( )
A. B. C. D.4
二、填空题:(本大题共6个小题,每小题4分,共24分.)
13.抛物线y=2x2+3x+k﹣2经过点(﹣1,0),那么k=_____.
14.计算(-2)×3+(-3)=_______________.
15.已知点A(a,y1)、B(b,y2)在反比例函数y=的图象上,如果a<b<0,那么y1与y2的大小关系是:y1__y2;
16.如果一个正多边形的中心角等于,那么这个正多边形的边数是__________.
17.如图,在平面直角坐标系中有一正方形AOBC,反比例函数经过正方形AOBC对角线的交点,半径为()的圆内切于△ABC,则k的值为________.
18.已知二次函数中,函数y与x的部分对应值如下:
...
-1
0
1
2
3
...
...
10
5
2
1
2
...
则当时,x的取值范围是_________.
三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.
19.(6分)(10分)如图,AB是⊙O的直径,OD⊥弦BC于点F,交⊙O于点E,连结CE、AE、CD,若∠AEC=∠ODC.
(1)求证:直线CD为⊙O的切线;
(2)若AB=5,BC=4,求线段CD的长.
20.(6分)如图,某高速公路建设中需要确定隧道AB的长度.已知在离地面1500m高度C
处的飞机上,测量人员测得正前方A、B两点处的俯角分别为60°和45°.求隧道AB的长
(≈1.73).
21.(6分)计算:(﹣1)4﹣2tan60°+ .
22.(8分)如图,抛物线与y轴交于A点,过点A的直线与抛物线交于另一点B,过点B作BC⊥x轴,垂足为点C(3,0).
(1)求直线AB的函数关系式;
(2)动点P在线段OC上从原点出发以每秒一个单位的速度向C移动,过点P作PN⊥x轴,交直线AB于点M,交抛物线于点N. 设点P移动的时间为t秒,MN的长度为s个单位,求s与t的函数关系式,并写出t的取值范围;
(3)设在(2)的条件下(不考虑点P与点O,点C重合的情况),连接CM,BN,当t为何值时,四边形BCMN为平行四边形?问对于所求的t值,平行四边形BCMN是否菱形?请说明理由
23.(8分)菏泽市牡丹区中学生运动会即将举行,各个学校都在积极地做准备,某校为奖励在运动会上取得好成绩的学生,计划购买甲、乙两种奖品共100件,已知甲种奖品的单价是30元,乙种奖品的单价是20元.
(1)若购买这批奖品共用2800元,求甲、乙两种奖品各购买了多少件?
(2)若购买这批奖品的总费用不超过2900元,则最多购买甲种奖品多少件?
24.(10分)在四张编号为A,B,C,D的卡片(除编号外,其余完全相同)的正面分别写上如图所示的正整数后,背面向上,洗匀放好.
(1)我们知道,满足a2+b2=c2的三个正整数a,b,c成为勾股数,嘉嘉从中随机抽取一张,求抽到的卡片上的数是勾股数的概率P1;
(2)琪琪从中随机抽取一张(不放回),再从剩下的卡片中随机抽取一张(卡片用A,B,C,D表示).请用列表或画树形图的方法求抽到的两张卡片上的数都是勾股数的概率P2,并指出她与嘉嘉抽到勾股数的可能性一样吗?
25.(10分)先化简,再求值:1+÷(1﹣),其中x=2cos30°+tan45°.
26.(12分) (1)解方程组
(2)若点是平面直角坐标系中坐标轴上的点,( 1 )中的解分别为点的横、纵坐标,求的最小值及取得最小值时点的坐标.
27.(12分)如图,已知∠AOB=45°,AB⊥OB,OB=1.
(1)利用尺规作图:过点M作直线MN∥OB交AB于点N(不写作法,保留作图痕迹);
(1)若M为AO的中点,求AM的长.
参考答案
一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)
1、D
【解析】
解:∵-1<-1<0<2,∴最小的是-1.故选D.
2、A
【解析】
由图象的点的坐标,根据待定系数法求得解析式即可判定.
【详解】
由图象可知:
抛物线y1的顶点为(-2,-2),与y轴的交点为(0,1),根据待定系数法求得y1=(x+2)2-2;
抛物线y2的顶点为(0,-1),与x轴的一个交点为(1,0),根据待定系数法求得y2=x2-1;
抛物线y3的顶点为(1,1),与y轴的交点为(0,2),根据待定系数法求得y3=(x-1)2+1;
抛物线y4的顶点为(1,-3),与y轴的交点为(0,-1),根据待定系数法求得y4=2(x-1)2-3;
综上,解析式中的二次项系数一定小于1的是y1
故选A.
【点睛】
本题考查了二次函数的图象,二次函数的性质以及待定系数法求二次函数的解析式,根据点的坐标求得解析式是解题的关键.
3、A
【解析】
若反比例函数与三角形交于A(4,5),则k=20;
若反比例函数与三角形交于C(4,2),则k=8;若反比例函数与三角形交于B(1,5),则k=5.故.
故选A.
4、C
【解析】
化简二次根式,并进行二次根式的乘法运算,最后合并同类二次根式即可.
【详解】
原式=3﹣2·=3﹣=.
故选C.
【点睛】
本题主要考查二次根式的化简以及二次根式的混合运算.
5、C
【解析】
试题解析:A、正六边形的外角和等于360°,是真命题;
B、位似图形必定相似,是真命题;
C、样本方差越大,数据波动越小,是假命题;
D、方程x2+x+1=0无实数根,是真命题;
故选:C.
考点:命题与定理.
6、A
【解析】
试题分析:观察图形可知,该几何体的主视图是.故选A.
考点:简单组合体的三视图.
7、B
【解析】
A、将此图形绕任意点旋转180度都不能与原图重合,所以这个图形不是中心对称图形.
【详解】
A、将此图形绕任意点旋转180度都不能与原图重合,所以这个图形不是中心对称图形;
B、将此图形绕中心点旋转180度与原图重合,所以这个图形是中心对称图形;
C、将此图形绕任意点旋转180度都不能与原图重合,所以这个图形不是中心对称图形;
D、将此图形绕任意点旋转180度都不能与原图重合,所以这个图形不是中心对称图形.
故选B.
【点睛】
本题考查了轴对称与中心对称图形的概念:
中心对称图形是要寻找对称中心,旋转180度后与原图重合.
8、B
【解析】
根据题意,Q点分别在BC、CD上运动时,形成不同的三角形,分别用x表示即可.
【详解】
(1)当0≤x≤2时,
BQ=2x
当2≤x≤4时,如下图
由上可知
故选:B.
【点睛】
本题是双动点问题,解答时要注意讨论动点在临界两侧时形成的不同图形,并要根据图形列出函数关系式.
9、C
【解析】
利用正方体及其表面展开图的特点解题.
【详解】
解:A、B、D经过折叠后,下边没有面,所以不可以围成正方体,C能折成正方体.
故选C.
【点睛】
本题考查了正方体的展开图,解题时牢记正方体无盖展开图的各种情形.
10、D
【解析】
延长CD交⊙D于点E,
∵∠ACB=90°,AC=12,BC=9,∴AB==15,
∵D是AB中点,∴CD=,
∵G是△ABC的重心,∴CG==5,DG=2.5,
∴CE=CD+DE=CD+DF=10,
∵⊙C与⊙D相交,⊙C的半径为r,
∴ ,
故选D.
【点睛】本题考查了三角形的重心的性质、直角三角形斜边中线等于斜边一半、两圆相交等,根据知求出CG的长是解题的关键.
11、B
【解析】
试题解析:0.00 000 069=6.9×10-7,
故选B.
点睛:绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10-n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.
12、B
【解析】
分析:易得等边三角形的高,那么左视图的面积=等边三角形的高×侧棱长,把相关数值代入即可求解.
详解:∵三棱柱的底面为等边三角形,边长为2,作出等边三角形的高CD后,
∴等边三角形的高CD=,∴侧(左)视图的面积为2×,
故选B.
点睛:本题主要考查的是由三视图判断几何体.解决本题的关键是得到求左视图的面积的等量关系,难点是得到侧面积的宽度.
二、填空题:(本大题共6个小题,每小题4分,共24分.)
13、3.
【解析】
试题解析:把(-1,0)代入得:
2-3+k-2=0,
解得:k=3.
故答案为3.
14、-9
【解析】
根据有理数的计算即可求解.
【详解】
(-2)×3+(-3)=-6-3=-9
【点睛】
此题主要考查有理数的混合运算,解题的关键是熟知有理数的运算法则.
15、>
【解析】
根据反比例函数的性质求解.
【详解】
反比例函数y=的图象分布在第一、三象限,在每一象限y随x的增大而减小,
而a<b<0,
所以y1>y2
故答案为:>
【点睛】
本题考查了反比例函数图象上点的坐标特征:反比例函数y=(k为常数,k≠0)的图象是双曲线,图象上的点(x,y)的横纵坐标的积是定值k,即xy=k.也考查了反比例函数的性质.
16、12.
【解析】
根据正n边形的中心角的度数为进行计算即可得到答案.
【详解】
解:根据正n边形的中心角的度数为,则n=360÷30=12,故这个正多边形的边数为12,
故答案为:12.
【点睛】
本题考查的是正多边形内角和中心角的知识,掌握中心角的计算公式是解题的关键.
17、1
【解析】
试题解析:设正方形对角线交点为D,过点D作DM⊥AO于点M,DN⊥BO于点N;
设圆心为Q,切点为H、E,连接QH、QE.
∵在正方形AOBC中,反比例函数y=经过正方形AOBC对角线的交点,
∴AD=BD=DO=CD,NO=DN,HQ=QE,HC=CE,
QH⊥AC,QE⊥BC,∠ACB=90°,
∴四边形HQEC是正方形,
∵半径为(1-2)的圆内切于△ABC,
∴DO=CD,
∵HQ2+HC2=QC2,
∴2HQ2=QC2=2×(1-2)2,
∴QC2=18-32=(1-1)2,
∴QC=1-1,
∴CD=1-1+(1-2)=2,
∴DO=2,
∵NO2+DN2=DO2=(2)2=8,
∴2NO2=8,
∴NO2=1,
∴DN×NO=1,
即:xy=k=1.
【点睛】此题主要考查了正方形的性质以及三角形内切圆的性质以及待定系数法求反比例函数解析式,根据已知求出CD的长度,进而得出DN×NO=1是解决问题的关键.
18、0
根据二次函数的对称性及已知数据可知该二次函数的对称轴为x=2,结合表格中所给数据可得出答案.
【详解】
由表可知,二次函数的对称轴为直线x=2,
所以,x=4时,y=5,
所以,y<5时,x的取值范围为0
此题主要考查了二次函数的性质,利用图表得出二次函数的图象即可得出函数值得取值范围,同学们应熟练掌握.
三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.
19、(1)证明见试题解析;(2).
【解析】
试题分析:(1)利用圆周角定理结合等腰三角形的性质得出∠OCF+∠DCB=90°,即可得出答案;
(2)利用圆周角定理得出∠ACB=90°,利用相似三角形的判定与性质得出DC的长.
试题解析:(1)连接OC,∵∠CEA=∠CBA,∠AEC=∠ODC,∴∠CBA=∠ODC,又∵∠CFD=∠BFO,∴∠DCB=∠BOF,∵CO=BO,∴∠OCF=∠B,∵∠B+∠BOF=90°,∴∠OCF+∠DCB=90°,∴直线CD为⊙O的切线;
(2)连接AC,∵AB是⊙O的直径,∴∠ACB=90°,∴∠DCO=∠ACB,又∵∠D=∠B,∴△OCD∽△ACB,∵∠ACB=90°,AB=5,BC=4,∴AC=3,∴,即,解得;DC=.
考点:切线的判定.
20、简答:∵OA,
OB=OC=1500,
∴AB=(m).
答:隧道AB的长约为635m.
【解析】
试题分析:首先过点C作CO⊥AB,根据Rt△AOC求出OA的长度,根据Rt△CBO求出OB的长度,然后进行计算.
试题解析:如图,过点C作CO⊥直线AB,垂足为O,则CO="1500m"
∵BC∥OB ∴∠DCA=∠CAO=60°,∠DCB=∠CBO=45°
∴在Rt△CAO 中,OA==1500×=500m
在Rt△CBO 中,OB=1500×tan45°=1500m
∴AB=1500-500≈1500-865=635(m)
答:隧道AB的长约为635m.
考点:锐角三角函数的应用.
21、1
【解析】
首先利用乘方、二次根式的性质以及特殊角的三角函数值、零指数幂的性质分别化简求出答案.
解:原式==1.
“点睛”此题主要考查了实数运算,正确化简各数是解题关键.
,
22、(1);(2) (0≤t≤3);(3)t=1或2时;四边形BCMN为平行四边形;t=1时,平行四边形BCMN是菱形,t=2时,平行四边形BCMN不是菱形,理由见解析.
【解析】
(1)由A、B在抛物线上,可求出A、B点的坐标,从而用待定系数法求出直线AB的函数关系式.
(2)用t表示P、M、N 的坐标,由等式得到函数关系式.
(3)由平行四边形对边相等的性质得到等式,求出t.再讨论邻边是否相等.
【详解】
解:(1)x=0时,y=1,
∴点A的坐标为:(0,1),
∵BC⊥x轴,垂足为点C(3,0),
∴点B的横坐标为3,
当x=3时,y=,
∴点B的坐标为(3,),
设直线AB的函数关系式为y=kx+b, ,
解得,,
则直线AB的函数关系式
(2)当x=t时,y=t+1,
∴点M的坐标为(t,t+1),
当x=t时,
∴点N的坐标为
(0≤t≤3);
(3)若四边形BCMN为平行四边形,则有MN=BC,
∴,
解得t1=1,t2=2,
∴当t=1或2时,四边形BCMN为平行四边形,
①当t=1时,MP=,PC=2,
∴MC==MN,此时四边形BCMN为菱形,
②当t=2时,MP=2,PC=1,
∴MC=≠MN,此时四边形BCMN不是菱形.
【点睛】
本题考查的是二次函数的性质、待定系数法求函数解析式、菱形的判定,正确求出二次函数的解析式、利用配方法把一般式化为顶点式、求出函数的最值是解题的关键,注意菱形的判定定理的灵活运用.
23、(1)甲80件,乙20件;(2)x≤90
【解析】
(1)甲种奖品购买了x件,乙种奖品购买了(100﹣x)件,利用共用2800元,列出方程后求解即可;
(2) 设甲种奖品购买了x件,乙种奖品购买了(100﹣x)件,根据购买这批奖品的总费用不超过2900元列不等式求解即可.
【详解】
解:(1)设甲种奖品购买了x件,乙种奖品购买了(100﹣x)件,
根据题意得30x+20(100﹣x)=2800,
解得x=80,
则100﹣x=20,
答:甲种奖品购买了80件,乙种奖品购买了20件;
(2)设甲种奖品购买了x件,乙种奖品购买了(100﹣x)件,
根据题意得:30x+20(100﹣x)≤2900,
解得:x≤90,
【点睛】
本题主要考查一元一次方程与一元一次不等式的应用,根据已知条件正确列出方程与不等式是解题的关键.
24、(1);(2)淇淇与嘉嘉抽到勾股数的可能性不一样.
【解析】
试题分析:
(1)根据等可能事件的概率的定义,分别确定总的可能性和是勾股数的情况的个数;
(2)用列表法列举出所有的情况和两张卡片上的数都是勾股数的情况即可.
试题解析:
(1)嘉嘉随机抽取一张卡片共出现4种等可能结果,其中抽到的卡片上的数是勾股数的结果有3种,所以嘉嘉抽取一张卡片上的数是勾股数的概率P1=;
(2)列表法:
A
B
C
D
A
(A,B)
(A,C)
(A,D)
B
(B,A)
(B,C)
(B,D)
C
(C,A)
(C,B)
(C,D)
D
(D,A)
(D,B)
(D,C)
由列表可知,两次抽取卡片的所有可能出现的结果有12种,其中抽到的两张卡片上的数都是勾股数的有6种,
∴P2=,
∵P1=,P2=,P1≠P2
∴淇淇与嘉嘉抽到勾股数的可能性不一样.
25、
【解析】
先化简分式,再计算x的值,最后把x的值代入化简后的分式,计算出结果.
【详解】
原式=
=1+
=1+
=
当x=2cos30°+tan45°
=2×+1
=+1时.
=
【点睛】
本题主要考查了分式的加减及锐角三角函数值.解决本题的关键是掌握分式的运算法则和运算顺序.
26、(1);(2)当坐标为时,取得最小值为.
【解析】
(1)用加减消元法解二元一次方程组;(2)利用(1)确定出B的坐标,进而得到AB取得最小值时A的坐标,以及AB的最小值.
【详解】
解:(1)
①②得:
解得:
把代入②得,
则方程组的解为
(2 )由题意得:,
当坐标为时,取得最小值为.
【点睛】
此题考查了二元一次方程组的解,以及坐标与图形性质,熟练掌握运算法则及数形结合思想解题是解本题的关键.
27、(1)详见解析;(1).
【解析】
(1)以点M为顶点,作∠AMN=∠O即可;
(1)由∠AOB=45°,AB⊥OB,可知△AOB为等腰为等腰直角三角形,根据勾股定理求出OA的长,即可求出AM的值.
【详解】
(1)作图如图所示;
(1)由题知△AOB为等腰Rt△AOB,且OB=1,
所以,AO=OB=1
又M为OA的中点,
所以,AM=1=
【点睛】
本题考查了尺规作图,等腰直角三角形的判定,勾股定理等知识,熟练掌握作一个角等于已知角是解(1)的关键,证明△AOB为等腰为等腰直角三角形是解(1)的关键.
2023年浙江省杭州市拱墅区大关中学教育集团中考数学三模试卷(含解析): 这是一份2023年浙江省杭州市拱墅区大关中学教育集团中考数学三模试卷(含解析),共22页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
2023年浙江省宁波七中教育集团中考数学三模试卷(含解析): 这是一份2023年浙江省宁波七中教育集团中考数学三模试卷(含解析),共22页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
2023年浙江省杭州市拱墅区大关中学教育集团中考数学二模试卷(含解析): 这是一份2023年浙江省杭州市拱墅区大关中学教育集团中考数学二模试卷(含解析),共20页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。