2022年山西省朔州市第三中学中考联考数学试题含解析
展开2021-2022中考数学模拟试卷
注意事项:
1. 答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。
2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。
3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。
4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。
一、选择题(共10小题,每小题3分,共30分)
1.如图,中,E是BC的中点,设,那么向量用向量表示为( )
A. B. C. D.
2.二次函数y=ax2+bx﹣2(a≠0)的图象的顶点在第三象限,且过点(1,0),设t=a﹣b﹣2,则t值的变化范围是( )
A.﹣2<t<0 B.﹣3<t<0 C.﹣4<t<﹣2 D.﹣4<t<0
3.PM2.5是指大气中直径小于或等于2.5μm(1μm=0.000001m)的颗粒物,也称为可入肺颗粒物,它们含有大量的有毒、有害物质,对人体健康和大气环境质量有很大危害.2.5μm用科学记数法可表示为( )
A. B. C. D.
4.不等式组的解集是( )
A.x>﹣1 B.x≤2 C.﹣1<x<2 D.﹣1<x≤2
5.如图所示,直线a∥b,∠1=35°,∠2=90°,则∠3的度数为( )
A.125° B.135° C.145° D.155°
6.等腰三角形的两边长分别为5和11,则它的周长为( )
A.21 B.21或27 C.27 D.25
7.如图,I是∆ABC的内心,AI向延长线和△ABC的外接圆相交于点D,连接BI,BD,DC下列说法中错误的一项是( )
A.线段DB绕点D顺时针旋转一定能与线段DC重合
B.线段DB绕点D顺时针旋转一定能与线段DI熏合
C.∠CAD绕点A顺时针旋转一定能与∠DAB重合
D.线段ID绕点I顺时针旋转一定能与线段IB重合
8.已知3a﹣2b=1,则代数式5﹣6a+4b的值是( )
A.4 B.3 C.﹣1 D.﹣3
9.如图,在正方形ABCD和正方形CEFG中,点D在CG上,BC=1,CE=3,连接AF交CG于M点,则FM=( )
A. B. C. D.
10.统计学校排球队员的年龄,发现有12、13、14、15等四种年龄,统计结果如下表:
年龄(岁)
12
13
14
15
人数(个)
2
4
6
8
根据表中信息可以判断该排球队员年龄的平均数、众数、中位数分别为( )
A.13、15、14 B.14、15、14 C.13.5、15、14 D.15、15、15
二、填空题(本大题共6个小题,每小题3分,共18分)
11.在一个不透明的袋子里装有除颜色外其它均相同的红、蓝小球各一个,每次从袋中摸出一个小球记下颜色后再放回,摸球三次,“仅有一次摸到红球”的概率是_____.
12.如图,是由一些大小相同的小正方体搭成的几何体分别从正面看和从上面看得到的平面图形,则搭成该几何体的小正方体最多是_______个.
13.如图,在菱形ABCD中,点E、F在对角线BD上,BE=DF=BD,若四边形AECF为正方形,则tan∠ABE=_____.
14.如图,矩形ABCD中,AB=2AD,点A(0,1),点C、D在反比例函数y=(k>0)的图象上,AB与x轴的正半轴相交于点E,若E为AB的中点,则k的值为_____.
15.将直线y=x沿y轴向上平移2个单位长度后,所得直线的函数表达式为_________,这两条直线间的距离为_____.
16.在平面直角坐标系xOy中,点A、B为反比例函数 (x>0)的图象上两点,A点的横坐标与B点的纵坐标均为1,将 (x>0)的图象绕原点O顺时针旋转90°,A点的对应点为A′,B点的对应点为B′.此时点B′的坐标是_____.
三、解答题(共8题,共72分)
17.(8分)如图,一次函数y=-x+5的图象与反比例函数y= (k≠0)在第一象限的图象交于A(1,n)和B两点.求反比例函数的解析式;在第一象限内,当一次函数y=-x+5的值大于反比例函数y= (k≠0)的值时,写出自变量x的取值范围.
18.(8分)抛物线y=﹣x2+(m﹣1)x+m与y轴交于(0,3)点.
(1)求出m的值并画出这条抛物线;
(2)求它与x轴的交点和抛物线顶点的坐标;
(3)x取什么值时,抛物线在x轴上方?
(4)x取什么值时,y的值随x值的增大而减小?
19.(8分)如图,在△ABC中,∠C = 90°,E是BC上一点,ED⊥AB,垂足为D.
求证:△ABC∽△EBD.
20.(8分)某网店销售甲、乙两种羽毛球,已知甲种羽毛球每筒的售价比乙种羽毛球每筒的售价多15元,健民体育活动中心从该网店购买了2筒甲种羽毛球和3筒乙种羽毛球,共花费255元.该网店甲、乙两种羽毛球每筒的售价各是多少元?根据健民体育活动中心消费者的需求量,活动中心决定用不超过2550元钱购进甲、乙两种羽毛球共50筒,那么最多可以购进多少筒甲种羽毛球?
21.(8分)如图,△ABC三个顶点的坐标分别为A(1,1),B(4,2),C(3,4). 请画出△ABC向左平移5个单位长度后得到的△ABC; 请画出△ABC关于原点对称的△ABC; 在轴上求作一点P,使△PAB的周长最小,请画出△PAB,并直接写出P的坐标.
22.(10分)如图,AB为⊙O的直径,AC、DC为弦,∠ACD=60°,P为AB延长线上的点,∠APD=30°.
求证:DP是⊙O的切线;若⊙O的半径为3cm,求图中阴影部分的面积.
23.(12分)菏泽市牡丹区中学生运动会即将举行,各个学校都在积极地做准备,某校为奖励在运动会上取得好成绩的学生,计划购买甲、乙两种奖品共100件,已知甲种奖品的单价是30元,乙种奖品的单价是20元.
(1)若购买这批奖品共用2800元,求甲、乙两种奖品各购买了多少件?
(2)若购买这批奖品的总费用不超过2900元,则最多购买甲种奖品多少件?
24.八年级(1)班学生在完成课题学习“体质健康测试中的数据分析”后,利用课外活动时间积极参加体育锻炼,每位同学从篮球、跳绳、立定跳远、长跑、铅球中选一项进行训练,训练后都进行了测试.现将项目选择情况及训练后篮球定时定点投篮测试成绩整理后作出如下统计图.
请你根据上面提供的信息回答下列问题:扇形图中跳绳部分的扇形圆心角为 度,该班共有学生 人, 训练后篮球定时定点投篮平均每个人的进球数是 .老师决定从选择铅球训练的3名男生和1名女生中任选两名学生先进行测试,请用列表或画树形图的方法求恰好选中两名男生的概率.
参考答案
一、选择题(共10小题,每小题3分,共30分)
1、A
【解析】
根据,只要求出即可解决问题.
【详解】
解:四边形ABCD是平行四边形,
,
,
,
,
,
,
故选:A.
【点睛】
本题考查平面向量,解题的关键是熟练掌握三角形法则,属于中考常考题型.
2、D
【解析】
由二次函数的解析式可知,当x=1时,所对应的函数值y=a+b-2,把点(1,0)代入y=ax2+bx-2,a+b-2=0,然后根据顶点在第三象限,可以判断出a与b的符号,进而求出t=a-b-2的变化范围.
【详解】
解:∵二次函数y=ax2+bx-2的顶点在第三象限,且经过点(1,0)
∴该函数是开口向上的,a>0
∵y=ax2+bx﹣2过点(1,0),
∴a+b-2=0.
∵a>0,
∴2-b>0.
∵顶点在第三象限,
∴-<0.
∴b>0.
∴2-a>0.
∴0 ∴0 ∴t=a-b-2.
∴﹣4<t<0.
【点睛】
本题考查大小二次函数的图像,熟练掌握图像的性质是解题的关键.
3、C
【解析】
试题分析:大于0而小于1的数用科学计数法表示,10的指数是负整数,其绝对值等于第一个不是0的数字前所有0的个数.
考点:用科学计数法计数
4、D
【解析】
由﹣x<1得,∴x>﹣1,由3x﹣5≤1得,3x≤6,∴x≤2,∴不等式组的解集为﹣1<x≤2,故选D
5、A
【解析】
分析:如图求出∠5即可解决问题.
详解:
∵a∥b,
∴∠1=∠4=35°,
∵∠2=90°,
∴∠4+∠5=90°,
∴∠5=55°,
∴∠3=180°-∠5=125°,
故选:A.
点睛:本题考查平行线的性质、三角形内角和定理,邻补角的性质等知识,解题的关键是灵活运用所学知识解决问题.
6、C
【解析】
试题分析:分类讨论:当腰取5,则底边为11,但5+5<11,不符合三角形三边的关系;当腰取11,则底边为5,根据等腰三角形的性质得到另外一边为11,然后计算周长.
解:当腰取5,则底边为11,但5+5<11,不符合三角形三边的关系,所以这种情况不存在;
当腰取11,则底边为5,则三角形的周长=11+11+5=1.
故选C.
考点:等腰三角形的性质;三角形三边关系.
7、D
【解析】
解:∵I是△ABC的内心,∴AI平分∠BAC,BI平分∠ABC,∴∠BAD=∠CAD,∠ABI=∠CBI,故C正确,不符合题意;
∴=,∴BD=CD,故A正确,不符合题意;
∵∠DAC=∠DBC,∴∠BAD=∠DBC.∵∠IBD=∠IBC+∠DBC,∠BID=∠ABI+∠BAD,∴∠DBI=∠DIB,∴BD=DI,故B正确,不符合题意.
故选D.
点睛:本题考查了三角形的内切圆和内心的,以及等腰三角形的判定与性质,同弧所对的圆周角相等.
8、B
【解析】
先变形,再整体代入,即可求出答案.
【详解】
∵3a﹣2b=1,
∴5﹣6a+4b=5﹣2(3a﹣2b)=5﹣2×1=3,
故选:B.
【点睛】
本题考查了求代数式的值,能够整体代入是解此题的关键.
9、C
【解析】
由正方形的性质知DG=CG-CD=2、AD∥GF,据此证△ADM∽△FGM得 , 求出GM的长,再利用勾股定理求解可得答案.
【详解】
解:∵四边形ABCD和四边形CEFG是正方形,
∴AD=CD=BC=1、CE=CG=GF=3,∠ADM=∠G=90°,
∴DG=CG-CD=2,AD∥GF,
则△ADM∽△FGM,
∴,即 ,
解得:GM= ,
∴FM= = = ,
故选:C.
【点睛】
本题主要考查相似三角形的判定与性质,解题的关键是熟练掌握正方形的性质、相似三角形的判定与性质及勾股定理等知识点.
10、B
【解析】
根据加权平均数、众数、中位数的计算方法求解即可.
【详解】
,
15出现了8次,出现的次数最多,故众数是15,
从小到大排列后,排在10、11两个位置的数是14,14,故中位数是14.
故选B.
【点睛】
本题考查了平均数、众数与中位数的意义.数据x1、x2、……、xn的加权平均数:(其中w1、w2、……、wn分别为x1、x2、……、xn的权数).一组数据中出现次数最多的数据叫做众数.中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(或最中间两个数的平均数),叫做这组数据的中位数.
二、填空题(本大题共6个小题,每小题3分,共18分)
11、
【解析】
摸三次有可能有:红红红、红红蓝、红蓝红、红蓝蓝、蓝红红、蓝红蓝、蓝蓝红、蓝蓝蓝共计8种可能,其中仅有一个红坏的有:红蓝蓝、蓝红蓝、蓝蓝红共计3种,所以“仅有一次摸到红球”的概率是.
故答案是:.
12、7
【解析】
首先利用从上面看而得出的俯视图得出该几何体的第一层是由几个小正方体组成,然后进一步根据其从正面看得出的主视图得知其第二层最多可以放几个小正方体,然后进一步计算即可得出答案.
【详解】
根据俯视图可得出第一层由5个小正方体组成;再结合主视图,该正方体第二层最多可放2个小正方体,
∴,
∴最多是7个,
故答案为:7.
【点睛】
本题主要考查了三视图的运用,熟练掌握三视图的特性是解题关键.
13、
【解析】
利用正方形对角线相等且互相平分,得出EO=AO=BE,进而得出答案.
【详解】
解:∵四边形AECF为正方形,
∴EF与AC相等且互相平分,
∴∠AOB=90°,AO=EO=FO,
∵BE=DF=BD,
∴BE=EF=FD,
∴EO=AO=BE,
∴tan∠ABE= = .
故答案为:
【点睛】
此题主要考查了正方形的性质以及锐角三角函数关系,正确得出EO=AO=BE是解题关键.
14、
【解析】
解:如图,作DF⊥y轴于F,过B点作x轴的平行线与过C点垂直与x轴的直线交于G,CG交x轴于K,作BH⊥x轴于H,∵四边形ABCD是矩形,∴∠BAD=90°,∴∠DAF+∠OAE=90°,∵∠AEO+∠OAE=90°,∴∠DAF=∠AEO,∵AB=2AD,E为AB的中点,∴AD=AE,在△ADF和△EAO中,∵∠DAF=∠AEO,∠AFD=∠AOE=90°,AD=AE,∴△ADF≌△EAO(AAS),∴DF=OA=1,AF=OE,∴D(1,k),∴AF=k﹣1,同理;△AOE≌△BHE,△ADF≌△CBG,∴BH=BG=DF=OA=1,EH=CG=OE=AF=k﹣1,∴OK=2(k﹣1)+1=2k﹣1,CK=k﹣2,∴C(2k﹣1,k﹣2),∴(2k﹣1)(k﹣2)=1k,解得k1=,k2=,∵k﹣1>0,∴k=.故答案为.
点睛:本题考查了矩形的性质和反比例函数图象上点的坐标特征.图象上的点(x,y)的横纵坐标的积是定值k,即xy=k.
15、y=x+1
【解析】
已知直线 y=x 沿y 轴向上平移1 个单位长度,根据一次函数图象的平移规律即可求得平移后的解析式为y=x+1.再利用等面积法求得这两条直线间的距离即可.
【详解】
∵直线 y=x 沿y轴向上平移1个单位长度,
∴所得直线的函数关系式为:y=x+1.
∴A(0,1),B(1,0),
∴AB=1,
过点 O 作 OF⊥AB 于点 F,
则AB•OF=OA•OB,
∴OF=,
即这两条直线间的距离为.
故答案为y=x+1,.
【点睛】
本题考查了一次函数图象与几何变换:一次函数y=kx+b(k、b为常数,k≠0)的图象为直线,当直线平移时 k 不变,当向上平移m个单位,则平移后直线的解析式为 y=kx+b+m.
16、(1,-4)
【解析】
利用旋转的性质即可解决问题.
【详解】
如图,
由题意A(1,4),B(4,1),A根据旋转的性质可知′(4,-1),B′(1,-4);
所以,B′(1,-4);
故答案为(1,-4).
【点睛】
本题考查反比例函数的旋转变换,解题的关键是灵活运用所学知识解决问题.
三、解答题(共8题,共72分)
17、(1);(2)1<x<1.
【解析】
(1)将点A的坐标(1,1)代入,即可求出反比例函数的解析式;
(2)一次函数y=-x+5的值大于反比例函数y=,即反比例函数的图象在一次函数的图象的下方时自变量的取值范围即可.
【详解】
解:(1)∵一次函数y=﹣x+5的图象过点A(1,n),
∴n=﹣1+5,解得:n=1,
∴点A的坐标为(1,1).
∵反比例函数y=(k≠0)过点A(1,1),
∴k=1×1=1,
∴反比例函数的解析式为y=.
联立,解得:或,
∴点B的坐标为(1,1).
(2)观察函数图象,发现:
当1<x<1.时,反比例函数图象在一次函数图象下方,
∴当一次函数y=﹣x+5的值大于反比例函数y=(k≠0)的值时,x的取值范围为1<x<1.
【点睛】
本题考查了反比例函数和一次函数的交点问题,以及用待定系数法求反比例函数和一次函数的解析式,是基础知识要熟练掌握.解题的关键是:(1)联立两函数解析式成二元一次方程组;(2)求出点C的坐标;(3)根据函数图象上下关系结合交点横坐标解决不等式.本题属于基础题,难度不大,解决该题型题目时,联立两函数解析式成方程组,解方程组求出交点的坐标是关键.
18、(1);(2),;(1);(2)
【解析】
试题分析:(1)由抛物线y=﹣x2+(m﹣1)x+m与y轴交于(0,1)得:m=1.
∴抛物线为y=﹣x2+2x+1=﹣(x﹣1)2+2.
列表得:
X
﹣1
0
1
2
1
y
0
1
2
1
0
图象如下.
(2)由﹣x2+2x+1=0,得:x1=﹣1,x2=1.
∴抛物线与x轴的交点为(﹣1,0),(1,0).
∵y=﹣x2+2x+1=﹣(x﹣1)2+2
∴抛物线顶点坐标为(1,2).
(1)由图象可知:
当﹣1<x<1时,抛物线在x轴上方.
(2)由图象可知:
当x>1时,y的值随x值的增大而减小
考点: 二次函数的运用
19、证明见解析
【解析】
试题分析:先根据垂直的定义得出∠EDB=90°,故可得出∠EDB=∠C.再由∠B=∠B,根据有两个角相等的两三角形相似即可得出结论.
试题解析:
解:∵ED⊥AB,
∴∠EDB=90°.
∵∠C=90°,
∴∠EDB=∠C.
∵∠B=∠B,
∴∽.
点睛:本题考查的是相似三角形的判定,熟知有两组角对应相等的两个三角形相似是解答此题的关键.
20、(1)该网店甲种羽毛球每筒的售价为60元,乙种羽毛球每筒的售价为45元;(2)最多可以购进1筒甲种羽毛球.
【解析】
(1)设该网店甲种羽毛球每筒的售价为x元,乙种羽毛球每筒的售价为y元,根据“甲种羽毛球每筒的售价比乙种羽毛球每筒的售价多15元,购买了2筒甲种羽毛球和3筒乙种羽毛球共花费255元”,即可得出关于x,y的二元一次方程组,解之即可得出结论;
(2)设购进甲种羽毛球m筒,则购进乙种羽毛球(50﹣m)筒,根据总价=单价×数量结合总费用不超过2550元,即可得出关于m的一元一次不等式,解之取其最大值即可得出结论.
【详解】
(1)设该网店甲种羽毛球每筒的售价为x元,乙种羽毛球每筒的售价为y元,
依题意,得:,
解得:.
答:该网店甲种羽毛球每筒的售价为60元,乙种羽毛球每筒的售价为45元.
(2)设购进甲种羽毛球m筒,则购进乙种羽毛球(50﹣m)筒,
依题意,得:60m+45(50﹣m)≤2550,
解得:m≤1.
答:最多可以购进1筒甲种羽毛球.
【点睛】
本题考查了二元一次方程组的应用以及一元一次不等式的应用,解题的关键是:(1)找准等量关系,正确列出二元一次方程组;(2)根据各数量之间的关系,正确列出一元一次不等式.
21、(1)图形见解析;
(2)图形见解析;
(3)图形见解析,点P的坐标为:(2,0)
【解析】
(1)按题目的要求平移就可以了
关于原点对称的点的坐标变化是:横、纵坐标都变为相反数,找到对应点后按顺序连接即可
(3)AB的长是不变的,要使△PAB的周长最小,即要求PA+PB最小,转为了已知直线与直线一侧的两点,在直线上找一个点,使这点到已知两点的线段之和最小,方法是作A、B两点中的某点关于该直线的对称点,然后连接对称点与另一点.
【详解】
(1)△A1B1C1如图所示;
(2)△A2B2C2如图所示;
(3)△PAB如图所示,点P的坐标为:(2,0)
【点睛】
1、图形的平移;2、中心对称;3、轴对称的应用
22、(1)证明见解析;(2).
【解析】
(1)连接OD,求出∠AOD,求出∠DOB,求出∠ODP,根据切线判定推出即可.
(2)求出OP、DP长,分别求出扇形DOB和△ODP面积,即可求出答案.
【详解】
解:(1)证明:连接OD,
∵∠ACD=60°,
∴由圆周角定理得:∠AOD=2∠ACD=120°.
∴∠DOP=180°﹣120°=60°.
∵∠APD=30°,
∴∠ODP=180°﹣30°﹣60°=90°.
∴OD⊥DP.
∵OD为半径,
∴DP是⊙O切线.
(2)∵∠ODP=90°,∠P=30°,OD=3cm,
∴OP=6cm,由勾股定理得:DP=3cm.
∴图中阴影部分的面积
23、(1)甲80件,乙20件;(2)x≤90
【解析】
(1)甲种奖品购买了x件,乙种奖品购买了(100﹣x)件,利用共用2800元,列出方程后求解即可;
(2) 设甲种奖品购买了x件,乙种奖品购买了(100﹣x)件,根据购买这批奖品的总费用不超过2900元列不等式求解即可.
【详解】
解:(1)设甲种奖品购买了x件,乙种奖品购买了(100﹣x)件,
根据题意得30x+20(100﹣x)=2800,
解得x=80,
则100﹣x=20,
答:甲种奖品购买了80件,乙种奖品购买了20件;
(2)设甲种奖品购买了x件,乙种奖品购买了(100﹣x)件,
根据题意得:30x+20(100﹣x)≤2900,
解得:x≤90,
【点睛】
本题主要考查一元一次方程与一元一次不等式的应用,根据已知条件正确列出方程与不等式是解题的关键.
24、(1)36 , 40, 1;(2).
【解析】
(1)先求出跳绳所占比例,再用比例乘以360°即可,用篮球的人数除以所占比例即可;根据加权平均数的概念计算训练后篮球定时定点投篮人均进球数.
(2)画出树状图,根据概率公式求解即可.
【详解】
(1)扇形图中跳绳部分的扇形圆心角为360°×(1-10%-20%-10%-10%)=36度;
该班共有学生(2+1+7+4+1+1)÷10%=40人;
训练后篮球定时定点投篮平均每个人的进球数是=1,
故答案为:36,40,1.
(2)三名男生分别用A1,A2,A3表示,一名女生用B表示.根据题意,可画树形图如下:
由上图可知,共有12种等可能的结果,选中两名学生恰好是两名男生(记为事件M)
的结果有6种,
∴P(M)==.
山西省朔州市右玉县2022年中考一模数学试题含解析: 这是一份山西省朔州市右玉县2022年中考一模数学试题含解析,共21页。试卷主要包含了方程的解是.等内容,欢迎下载使用。
山西省朔州市朔城区第四中学2022年中考四模数学试题含解析: 这是一份山西省朔州市朔城区第四中学2022年中考四模数学试题含解析,共22页。试卷主要包含了下列说法正确的是等内容,欢迎下载使用。
2022年山西省朔州市朔城区四中学中考四模数学试题含解析: 这是一份2022年山西省朔州市朔城区四中学中考四模数学试题含解析,共20页。试卷主要包含了答题时请按要求用笔,下列运算正确的是等内容,欢迎下载使用。