2022年山东省枣庄台儿庄区四校联考中考联考数学试卷含解析
展开
这是一份2022年山东省枣庄台儿庄区四校联考中考联考数学试卷含解析,共19页。试卷主要包含了考生必须保证答题卡的整洁,估计的值在,下列各式计算正确的是,计算的结果为,点A关于原点对称的点的坐标是等内容,欢迎下载使用。
2021-2022中考数学模拟试卷
考生请注意:
1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。
2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。
3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。
一、选择题(每小题只有一个正确答案,每小题3分,满分30分)
1.下列说法中不正确的是( )
A.全等三角形的周长相等 B.全等三角形的面积相等
C.全等三角形能重合 D.全等三角形一定是等边三角形
2.在联欢会上,甲、乙、丙3人分别站在不在同一直线上的三点A、B、C上,他们在玩抢凳子的游戏,要在他们中间放一个木凳,谁先抢到凳子谁获胜,为使游戏公平,凳子应放的最恰当的位置是△ABC的( )
A.三条高的交点 B.重心 C.内心 D.外心
3.下列所述图形中,是轴对称图形但不是中心对称图形的是( )
A.线段 B.等边三角形 C.正方形 D.平行四边形
4.估计的值在( )
A.4和5之间 B.5和6之间 C.6和7之间 D.7和8之间
5.下列各式计算正确的是( )
A.a2+2a3=3a5 B.a•a2=a3 C.a6÷a2=a3 D.(a2)3=a5
6.计算的结果为( )
A.2 B.1 C.0 D.﹣1
7.点A(-2,5)关于原点对称的点的坐标是 ( )
A.(2,5) B.(2,-5) C.(-2,-5) D.(-5,-2)
8.在一幅长,宽的矩形风景画的四周镶一条金色纸边,制成一幅矩形挂图,如图所示,如果要使整幅挂图的面积是,设金色纸边的宽为,那么满足的方程是( )
A. B.
C. D.
9.已知x=2是关于x的一元二次方程x2﹣x﹣2a=0的一个解,则a的值为( )
A.0 B.﹣1 C.1 D.2
10.某公园有A、B、C、D四个入口,每个游客都是随机从一个入口进入公园,则甲、乙两位游客恰好从同一个入口进入公园的概率是( )
A. B. C. D.
二、填空题(共7小题,每小题3分,满分21分)
11.分解因式=________,=__________.
12.如图所示,在长为10m、宽为8m的长方形空地上,沿平行于各边的方向分割出三个全等的小长方形花圃则其中一个小长方形花圃的周长是______m.
13.如图,在矩形ABCD中,AB=8,AD=6,点E为AB上一点,AE=2,点F在AD上,将△AEF沿EF折叠,当折叠后点A的对应点A′恰好落在BC的垂直平分线上时,折痕EF的长为_____.
14.如图,在矩形ABCD中,E是AD上一点,把△ABE沿直线BE翻折,点A正好落在BC边上的点F处,如果四边形CDEF和矩形ABCD相似,那么四边形CDEF和矩形ABCD面积比是__.
15.当2≤x≤5时,二次函数y=﹣(x﹣1)2+2的最大值为_____.
16.一天晚上,小伟帮助妈妈清洗两个只有颜色不同的有盖茶杯,突然停电了,小伟只好把杯盖和茶杯随机地搭配在一起,则颜色搭配正确的概率是_____.
17.若将抛物线y=﹣4(x+2)2﹣3图象向左平移5个单位,再向上平移3个单位得到的抛物线的顶点坐标是_____.
三、解答题(共7小题,满分69分)
18.(10分)程大位是珠算发明家,他的名著《直指算法统宗》详述了传统的珠算规则,确立了算盘用书中有如下问题:一百馒头一百僧,大僧三个更无争,小僧三人分一个,大小和尚得几丁.意思是:有100个和尚分100个馒头,如果大和尚1人分3个,小和尚3人分1个,正好分完,大、小和尚各有多少人?
19.(5分)如图,已知ABCD是边长为3的正方形,点P在线段BC上,点G在线段AD上,PD=PG,DF⊥PG于点H,交AB于点F,将线段PG绕点P逆时针旋转90°得到线段PE,连接EF.
(1)求证:DF=PG;
(2)若PC=1,求四边形PEFD的面积.
20.(8分)如果一条抛物线与轴有两个交点,那么以该抛物线的顶点和这两个交点为顶点的三角形称为这条抛物线的“抛物线三角形”.
(1)“抛物线三角形”一定是 三角形;
(2)若抛物线的“抛物线三角形”是等腰直角三角形,求的值;
(3)如图,△是抛物线的“抛物线三角形”,是否存在以原点为对称中心的矩形?若存在,求出过三点的抛物线的表达式;若不存在,说明理由.
21.(10分)如图,直线与轴交于点,与轴交于点,且与双曲线的一个交点为,将直线在轴下方的部分沿轴翻折,得到一个“”形折线的新函数.若点是线段上一动点(不包括端点),过点作轴的平行线,与新函数交于另一点,与双曲线交于点.
(1)若点的横坐标为,求的面积;(用含的式子表示)
(2)探索:在点的运动过程中,四边形能否为平行四边形?若能,求出此时点的坐标;若不能,请说明理由.
22.(10分)观察下列算式:
① 1 × 3 - 22 =" 3" - 4 = -1
② 2 × 4 - 32 =" 8" - 9 = -1
③3 × 5 - 42 =" 15" - 16 = -1
④
……
(1)请你按以上规律写出第4个算式;
(2)把这个规律用含字母的式子表示出来;
(3)你认为(2)中所写出的式子一定成立吗?并说明理由.
23.(12分)从化市某中学初三(1)班数学兴趣小组为了解全校800名初三学生的“初中毕业选择升学和就业”情况,特对本班50名同学们进行调查,根据全班同学提出的3个主要观点:A高中,B中技,C就业,进行了调查(要求每位同学只选自己最认可的一项观点);并制成了扇形统计图(如图).请回答以下问题:
(1)该班学生选择 观点的人数最多,共有 人,在扇形统计图中,该观点所在扇形区域的圆心角是 度.
(2)利用样本估计该校初三学生选择“中技”观点的人数.
(3)已知该班只有2位女同学选择“就业”观点,如果班主任从该观点中,随机选取2位同学进行调查,那么恰好选到这2位女同学的概率是多少?(用树形图或列表法分析解答).
24.(14分)先化简,再求值:﹣1,其中a=2sin60°﹣tan45°,b=1.
参考答案
一、选择题(每小题只有一个正确答案,每小题3分,满分30分)
1、D
【解析】
根据全等三角形的性质可知A,B,C命题均正确,故选项均错误;
D.错误,全等三角也可能是直角三角,故选项正确.
故选D.
【点睛】
本题考查全等三角形的性质,两三角形全等,其对应边和对应角都相等.
2、D
【解析】
为使游戏公平,要使凳子到三个人的距离相等,于是利用线段垂直平分线上的点到线段两端的距离相等可知,要放在三边中垂线的交点上.
【详解】
∵三角形的三条垂直平分线的交点到中间的凳子的距离相等,
∴凳子应放在△ABC的三条垂直平分线的交点最适当.
故选D.
【点睛】
本题主要考查了线段垂直平分线的性质的应用;利用所学的数学知识解决实际问题是一种能力,要注意培养.想到要使凳子到三个人的距离相等是正确解答本题的关键.
3、B
【解析】
根据中心对称图形和轴对称图形的概念对各选项分析判断即可得解.
【详解】
解:A、线段,是轴对称图形,也是中心对称图形,故本选项不符合题意;
B、等边三角形,是轴对称图形但不是中心对称图形,故本选项符合题意;
C、正方形,是轴对称图形,也是中心对称图形,故本选项不符合题意;
D、平行四边形,不是轴对称图形,是中心对称图形,故本选项不符合题意.
故选:B.
【点睛】
本题考查了中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合.
4、C
【解析】
∵ ,
∴.
即的值在6和7之间.
故选C.
5、B
【解析】
根据幂的乘方,底数不变指数相乘;同底数幂相除,底数不变,指数相减;同底数幂相乘,底数不变指数相加,对各选项分析判断利用排除法求解
【详解】
A.a2与2a3不是同类项,故A不正确;
B.a•a2=a3,正确;
C.原式=a4,故C不正确;
D.原式=a6,故D不正确;
故选:B.
【点睛】
此题考查同底数幂的乘法,幂的乘方与积的乘方,解题的关键在于掌握运算法则.
6、B
【解析】
按照分式运算规则运算即可,注意结果的化简.
【详解】
解:原式=,故选择B.
【点睛】
本题考查了分式的运算规则.
7、B
【解析】
根据平面直角坐标系中任意一点P(x,y),关于原点的对称点是(-x,-y).
【详解】
根据中心对称的性质,得点P(−2,5)关于原点对称点的点的坐标是(2, −5).
故选:B.
【点睛】
考查关于原点对称的点的坐标特征,平面直角坐标系中任意一点P(x,y),关于原点的对称点是(-x,-y).
8、B
【解析】
根据矩形的面积=长×宽,我们可得出本题的等量关系应该是:(风景画的长+2个纸边的宽度)×(风景画的宽+2个纸边的宽度)=整个挂图的面积,由此可得出方程.
【详解】
由题意,设金色纸边的宽为,
得出方程:(80+2x)(50+2x)=5400,
整理后得:
故选:B.
【点睛】
本题主要考查了由实际问题得出一元二次方程,对于面积问题应熟记各种图形的面积公式,然后根据等量关系列出方程是解题关键.
9、C
【解析】
试题分析:把方程的解代入方程,可以求出字母系数a的值.
∵x=2是方程的解,∴4﹣2﹣2a=0,∴a=1.
故本题选C.
【考点】一元二次方程的解;一元二次方程的定义.
10、B
【解析】
画树状图列出所有等可能结果,从中确定出甲、乙两位游客恰好从同一个入口进入公园的结果数,再利用概率公式计算可得.
【详解】
画树状图如下:
由树状图知共有16种等可能结果,其中甲、乙两位游客恰好从同一个入口进入公园的结果有4种,
所以甲、乙两位游客恰好从同一个入口进入公园的概率为=,
故选B.
【点睛】
本题考查了列表法与树状图法:利用列表法或树状图法展示所有等可能的结果n,再从中选出符合事件A或B的结果数目m,然后利用概率公式求事件A或B的概率.
二、填空题(共7小题,每小题3分,满分21分)
11、
【解析】
此题考查因式分解
答案
点评:利用提公因式、平方差公式、完全平方公式分解因式
12、12
【解析】
由图形可看出:小矩形的2个长+一个宽=10m,小矩形的2个宽+一个长=8m,设出长和宽,列出方程组解之即可求得答案.
【详解】
解:设小长方形花圃的长为xm,宽为ym,由题意得,解得,所以其中一个小长方形花圃的周长是.
【点睛】
此题主要考查了二元一次方程组的应用,解题的关键是:数形结合,弄懂题意,找出等量关系,列出方程组.本题也可以让列出的两个方程相加,得3(x+y)=18,于是x+y=6,所以周长即为2(x+y)=12,问题得解.这种思路用了整体的数学思想,显得较为简捷.
13、4或4.
【解析】
①当AF<AD时,由折叠的性质得到A′E=AE=2,AF=A′F,∠FA′E=∠A=90°,过E作EH⊥MN于H,由矩形的性质得到MH=AE=2,根据勾股定理得到A′H=,根据勾股定理列方程即可得到结论;②当AF>AD时,由折叠的性质得到A′E=AE=2,AF=A′F,∠FA′E=∠A=90°,过A′作HG∥BC交AB于G,交CD于H,根据矩形的性质得到DH=AG,HG=AD=6,根据勾股定理即可得到结论.
【详解】
①当AF<AD时,如图1,将△AEF沿EF折叠,当折叠后点A的对应点A′恰好落在BC的垂直平分线上,
则A′E=AE=2,AF=A′F,∠FA′E=∠A=90°,
设MN是BC的垂直平分线,
则AM=AD=3,
过E作EH⊥MN于H,
则四边形AEHM是矩形,
∴MH=AE=2,
∵A′H=,
∴A′M=,
∵MF2+A′M2=A′F2,
∴(3-AF)2+()2=AF2,
∴AF=2,
∴EF==4;
②当AF>AD时,如图2,将△AEF沿EF折叠,当折叠后点A的对应点A′恰好落在BC的垂直平分线上,
则A′E=AE=2,AF=A′F,∠FA′E=∠A=90°,
设MN是BC的垂直平分线,
过A′作HG∥BC交AB于G,交CD于H,
则四边形AGHD是矩形,
∴DH=AG,HG=AD=6,
∴A′H=A′G=HG=3,
∴EG==,
∴DH=AG=AE+EG=3,
∴A′F==6,
∴EF==4,
综上所述,折痕EF的长为4或4,
故答案为:4或4.
【点睛】
本题考查了翻折变换-折叠问题,矩形的性质和判定,勾股定理,正确的作出辅助线是解题的关键.
14、
【解析】
由题意易得四边形ABFE是正方形,
设AB=1,CF=x,则有BC=x+1,CD=1,
∵四边形CDEF和矩形ABCD相似,
∴CD:BC=FC:CD,
即1:(x+1)=x:1,
∴x=或x=(舍去),
∴ =,
故答案为.
【点睛】本题考查了折叠的性质,相似多边形的性质等,熟练掌握相似多边形的面积比等于相似比的平方是解题的关键.
15、1.
【解析】
先根据二次函数的图象和性质判断出2≤x≤5时的增减性,然后再找最大值即可.
【详解】
对称轴为
∵a=﹣1<0,
∴当x>1时,y随x的增大而减小,
∴当x=2时,二次函数y=﹣(x﹣1)2+2的最大值为1,
故答案为:1.
【点睛】
本题主要考查二次函数在一定范围内的最大值,掌握二次函数的图象和性质是解题的关键.
16、
【解析】
分析:根据概率的计算公式.颜色搭配总共有4种可能,分别列出搭配正确和搭配错误的可能,进而求出各自的概率即可.
详解:用A和a分别表示第一个有盖茶杯的杯盖和茶杯;
用B和b分别表示第二个有盖茶杯的杯盖和茶杯、经过搭配所能产生的结果如下:
Aa、Ab、Ba、Bb.
所以颜色搭配正确的概率是.
故答案为:.
点睛:此题考查概率的求法:如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=.
17、(﹣7,0)
【解析】
直接利用平移规律“左加右减,上加下减”得出平移后的解析式进而得出答案.
【详解】
∵将抛物线y=-4(x+2)2-3图象向左平移5个单位,再向上平移3个单位,
∴平移后的解析式为:y=-4(x+7)2,
故得到的抛物线的顶点坐标是:(-7,0).
故答案为(-7,0).
【点睛】
此题主要考查了二次函数与几何变换,正确掌握平移规律是解题关键.
三、解答题(共7小题,满分69分)
18、大和尚有25人,小和尚有75人.
【解析】
设大和尚有x人,小和尚有y人,根据100个和尚吃100个馒头且1个大和尚分3个、3个小和尚分1个,即可得出关于x,y的二元一次方程组,解之即可得出结论.
【详解】
解:设大和尚有x人,小和尚有y人,
依题意,得:,
解得:.
答:大和尚有25人,小和尚有75人.
【点睛】
考查了二元一次方程组的应用,找准等量关系,正确列出二元一次方程组是解题的关键.
19、(1)证明见解析;(2)1.
【解析】
作PM⊥AD,在四边形ABCD和四边形ABPM证AD=PM;DF⊥PG,得出∠GDH+∠DGH=90°,推出∠ADF=∠MPG;还有两个直角即可证明△ADF≌△MPG,从而得出对应边相等
(2)由已知得,DG=2PC=2;△ADF≌△MPG得出DF=PD;根据旋转,得出∠EPG=90°,PE=PG从而得出四边形PEFD为平行四边形;根据勾股定理和等量代换求出边长DF的值;根据相似三角形得出对应边成比例求出GH的值,从而求出高PH 的值;最后根据面积公式得出
【详解】
解:(1)证明:∵四边形ABCD为正方形,
∴AD=AB,
∵四边形ABPM为矩形,
∴AB=PM,
∴AD=PM,
∵DF⊥PG,
∴∠DHG=90°,
∴∠GDH+∠DGH=90°,
∵∠MGP+∠MPG=90°,
∴∠GDH=∠MPG,
在△ADF和△MPG中,
∴△ADF≌△MPG(ASA),
∴DF=PG;
(2)作PM⊥DG于M,如图,
∵PD=PG,
∴MG=MD,
∵四边形ABCD为矩形,
∴PCDM为矩形,
∴PC=MD,
∴DG=2PC=2;
∵△ADF≌△MPG(ASA),
∴DF=PG,
而PD=PG,
∴DF=PD,
∵线段PG绕点P逆时针旋转90°得到线段PE,
∴∠EPG=90°,PE=PG,
∴PE=PD=DF,
而DF⊥PG,
∴DF∥PE,
即DF∥PE,且DF=PE,
∴四边形PEFD为平行四边形,
在Rt△PCD中,PC=1,CD=3,
∴PD==,
∴DF=PG=PD=,
∵四边形CDMP是矩形,
∴PM=CD=3,MD=PC=1,
∵PD=PG,PM⊥AD,
∴MG=MD=1,DG=2,
∵∠GDH=∠MPG,∠DHG=∠PMG=90°,
∴△DHG∽△PMG,
∴,
∴GH==,
∴PH=PG﹣GH=﹣=,
∴四边形PEFD的面积=DF•PH=×=1.
【点睛】
本题考查了平行四边形的面积、勾股定理、相似三角形判定、全等三角形性质,本题的关键是求边长和高的值
20、(1)等腰(2)(3)存在,
【解析】解:(1)等腰
(2)∵抛物线的“抛物线三角形”是等腰直角三角形,
∴该抛物线的顶点满足.
∴.
(3)存在.
如图,作△与△关于原点中心对称,
则四边形为平行四边形.
当时,平行四边形为矩形.
又∵,
∴△为等边三角形.
作,垂足为.
∴.
∴.
∴.
∴,.
∴,.
设过点三点的抛物线,则
解之,得
∴所求抛物线的表达式为.
21、(1);(2)不能成为平行四边形,理由见解析
【解析】
(1)将点B坐标代入一次函数上可得出点B的坐标,由点B的坐标,利用待定系数法可求出反比例函数解析式,根据点的坐标为,可以判断出,再由点P的横坐标可得出点P的坐标是,结合PD∥x轴可得出点D的坐标,再利用三角形的面积公式即可用含的式子表示出△MPD的面积;
(2)当P为BM的中点时,利用中点坐标公式可得出点P的坐标,结合PD∥x轴可得出点D的坐标,由折叠的性质可得出直线MN的解析式,利用一次函数图象上点的坐标特征可得出点C的坐标,由点P,C,D的坐标可得出PD≠PC,由此即可得出四边形BDMC不能成为平行四边形.
【详解】
解:(1)∵点在直线上,
∴.
∵点在的图像上,
∴,∴.
设,
则.
∵∴.
记的面积为,
∴
.
(2)当点为中点时,其坐标为,
∴.
∵直线在轴下方的部分沿轴翻折得表示的函数表达式是:,
∴,
∴,
∴与不能互相平分,
∴四边形不能成为平行四边形.
【点睛】
本题考查了一次函数图象上点的坐标特征、待定系数法求反比例函数解析式、反比例函数图象上点的坐标特征、三角形的面积、折叠的性质以及平行四边形的判定,解题的关键是:(1)利用一次(反比例)函数图象上点的坐标特征,找出点P,M,D的坐标;(2)利用平行四边形的对角线互相平分,找出四边形BDMC不能成为平行四边形.
22、⑴;
⑵答案不唯一.如;
⑶
.
【解析】
(1)根据①②③的算式中,变与不变的部分,找出规律,写出新的算式;
(2)将(1)中,发现的规律,由特殊到一般,得出结论;
(3)一定成立.利用整式的混合运算方法加以证明.
23、(4)A高中观点.4. 446;(4)456人;(4).
【解析】
试题分析:(4)全班人数乘以选择“A高中”观点的百分比即可得到选择“A高中”观点的人数,用460°乘以选择“A高中”观点的百分比即可得到选择“A高中”的观点所在扇形区域的圆心角的度数;
(4)用全校初三年级学生数乘以选择“B中技”观点的百分比即可估计该校初三学生选择“中技”观点的人数;
(4)先计算出该班选择“就业”观点的人数为4人,则可判断有4位女同学和4位男生选择“就业”观点,再列表展示44种等可能的结果数,找出出现4女的结果数,然后根据概率公式求解.
试题解析:(4)该班学生选择A高中观点的人数最多,共有60%×50=4(人),在扇形统计图中,该观点所在扇形区域的圆心角是60%×460°=446°;
(4)∵800×44%=456(人),
∴估计该校初三学生选择“中技”观点的人数约是456人;
(4)该班选择“就业”观点的人数=50×(4-60%-44%)=50×8%=4(人),则该班有4位女同学和4位男生选择“就业”观点,
列表如下:
共有44种等可能的结果数,其中出现4女的情况共有4种.
所以恰好选到4位女同学的概率=.
考点:4.列表法与树状图法;4.用样本估计总体;4.扇形统计图.
24、
【解析】
对待求式的分子、分母进行因式分解,并将除法化为乘法可得×-1,通过约分即可得到化简结果;先利用特殊角的三角函数值求出a的值,再将a、b的值代入化简结果中计算即可解答本题.
【详解】
原式=×-1
=-1
=
=,
当a═2sin60°﹣tan45°=2×﹣1=﹣1,b=1时,
原式=.
【点睛】
本题考查了分式的化简求值,解题的关键是熟练的掌握分式的化简求值运算法则.
相关试卷
这是一份2023-2024学年山东省枣庄台儿庄区四校联考九上数学期末预测试题含答案,共7页。
这是一份2022-2023学年山东省枣庄台儿庄区四校联考数学七下期末学业质量监测试题含答案,共7页。试卷主要包含了考生要认真填写考场号和座位序号等内容,欢迎下载使用。
这是一份山东省枣庄薛城区五校联考2022年中考联考数学试题含解析,共21页。