2022年山东省单县北城第三初级中学中考数学考前最后一卷含解析
展开
这是一份2022年山东省单县北城第三初级中学中考数学考前最后一卷含解析,共20页。试卷主要包含了答题时请按要求用笔,已知二次函数y=a等内容,欢迎下载使用。
2021-2022中考数学模拟试卷
注意事项:
1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。
2.答题时请按要求用笔。
3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。
4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。
5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。
一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)
1.将抛物线向右平移 1 个单位长度,再向下平移 3 个单位长度,所得的抛物线的函数表达式为( )
A. B.
C. D.
2.观察下列图形,则第n个图形中三角形的个数是( )
A.2n+2 B.4n+4 C.4n﹣4 D.4n
3.如图给定的是纸盒的外表面,下面能由它折叠而成的是( )
A. B. C. D.
4.如图,A,B两点分别位于一个池塘的两端,小聪想用绳子测量A,B间的距离,但绳子不够长,一位同学帮他想了一个主意:先在地上取一个可以直接到达A,B的点C,找到AC,BC的中点D,E,并且测出DE的长为10m,则A,B间的距离为( )
A.15m B.25m C.30m D.20m
5.⊙O是一个正n边形的外接圆,若⊙O的半径与这个正n边形的边长相等,则n的值为( )
A.3 B.4 C.6 D.8
6.如图,E,B,F,C四点在一条直线上,EB=CF,∠A=∠D,再添一个条件仍不能证明△ABC≌△DEF的是( )
A.AB=DE B.DF∥AC C.∠E=∠ABC D.AB∥DE
7.已知二次函数y=a(x﹣2)2+c,当x=x1时,函数值为y1;当x=x2时,函数值为y2,若|x1﹣2|>|x2﹣2|,则下列表达式正确的是( )
A.y1+y2>0 B.y1﹣y2>0 C.a(y1﹣y2)>0 D.a(y1+y2)>0
8.如图,AB是⊙O的直径,点C,D,E在⊙O上,若∠AED=20°,则∠BCD的度数为( )
A.100° B.110° C.115° D.120°
9. “a是实数,|a|≥0”这一事件是( )
A.必然事件 B.不确定事件 C.不可能事件 D.随机事件
10.半径为的正六边形的边心距和面积分别是( )
A., B.,
C., D.,
11.如图,数轴上有三个点A、B、C,若点A、B表示的数互为相反数,则图中点C对应的数是( )
A.﹣2 B.0 C.1 D.4
12.如图,在△ABC中,AC的垂直平分线分别交AC、BC于E,D两点,EC=4,△ABC的周长为23,则△ABD的周长为( )
A.13 B.15 C.17 D.19
二、填空题:(本大题共6个小题,每小题4分,共24分.)
13.已知a2+a=1,则代数式3﹣a﹣a2的值为_____.
14.一个正多边形的一个外角为30°,则它的内角和为_____.
15.如图是某商品的标志图案,AC与BD是⊙O的两条直径,首尾顺次连接点A、B、C、D,得到四边形ABCD,若AC=10cm,∠BAC=36°,则图中阴影部分的面积为_____.
16.北京奥运会国家体育场“鸟巢”的建筑面积为258000平方米,那么258000用科学记数法可表示为 .
17.观察下列等式:
第1个等式:a1=;
第2个等式:a2=;
第3个等式:a3=;
…
请按以上规律解答下列问题:
(1)列出第5个等式:a5=_____;
(2)求a1+a2+a3+…+an=,那么n的值为_____.
18.分解因式:_____.
三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.
19.(6分)徐州至北京的高铁里程约为700km,甲、乙两人从徐州出发,分别乘坐“徐州号”高铁A与“复兴号”高铁B前往北京.已知A车的平均速度比B车的平均速度慢80km/h,A车的行驶时间比B车的行驶时间多40%,两车的行驶时间分别为多少?
20.(6分)有两把不同的锁和四把不同的钥匙,其中两把钥匙恰好分别能打开这两把锁,其余的钥匙不能打开这两把锁.现在任意取出一把钥匙去开任意一把锁.
(1)请用列表或画树状图的方法表示出上述试验所有可能结果;
(2)求一次打开锁的概率.
21.(6分)在大城市,很多上班族选择“低碳出行”,电动车和共享单车成为他们的代步工具.某人去距离家8千米的单位上班,骑共享单车虽然比骑电动车多用20分钟,但却能强身健体,已知他骑电动车的速度是骑共享单车的1.5倍,求骑共享单车从家到单位上班花费的时间.
22.(8分)某校检测学生跳绳水平,抽样调查了部分学生的“1分钟跳绳”成绩,并制成了下面的频数分布直方图(每小组含最小值,不含最大值)和扇形图
(1)D组的人数是 人,补全频数分布直方图,扇形图中m= ;
(2)本次调查数据中的中位数落在 组;
(3)如果“1分钟跳绳”成绩大于或等于120次为优秀,那么该校4500名学生中“1分钟跳绳”成绩为优秀的大约有多少人?
23.(8分)如图,Rt△ABC中,∠C=90°,⊙O是Rt△ABC的外接圆,过点C作⊙O的切线交BA的延长线于点E,BD⊥CE于点D,连接DO交BC于点M.
(1)求证:BC平分∠DBA;
(2)若,求的值.
24.(10分)某蔬菜生产基地的气温较低时,用装有恒温系统的大棚栽培一种新品种蔬菜.如图是试验阶段的某天恒温系统从开启到关闭后,大棚内的温度y (℃)与时间x(h)之间的函数关系,其中线段AB、BC表示恒温系统开启阶段,双曲线的一部分CD表示恒温系统关闭阶段.
请根据图中信息解答下列问题:求这天的温度y与时间x(0≤x≤24)的函数关系式;求恒温系统设定的恒定温度;若大棚内的温度低于10℃时,蔬菜会受到伤害.问这天内,恒温系统最多可以关闭多少小时,才能使蔬菜避免受到伤害?
25.(10分)如图,在Rt△ABC中,∠C=90°,以AC为直径作⊙O,交AB于D,过点O作OE∥AB,交BC于E.
(1)求证:ED为⊙O的切线;
(2)若⊙O的半径为3,ED=4,EO的延长线交⊙O于F,连DF、AF,求△ADF的面积.
26.(12分)如图,△ABC与△A1B1C1是位似图形.
(1)在网格上建立平面直角坐标系,使得点A的坐标为(-6,-1),点C1的坐标为(-3,2),则点B的坐标为____________;
(2)以点A为位似中心,在网格图中作△AB2C2,使△AB2C2和△ABC位似,且位似比为1∶2;
(3)在图上标出△ABC与△A1B1C1的位似中心P,并写出点P的坐标为________,计算四边形ABCP的周长为_______.
27.(12分)列方程或方程组解应用题:
为响应市政府“绿色出行”的号召,小张上班由自驾车改为骑公共自行车.已知小张家距上班地点10千米.他用骑公共自行车的方式平均每小时行驶的路程比他用自驾车的方式平均每小时行驶的路程少45千米,他从家出发到上班地点,骑公共自行车方式所用的时间是自驾车方式所用的时间的4倍.小张用骑公共自行车方式上班平均每小时行驶多少千米?
参考答案
一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)
1、A
【解析】
根据二次函数的平移规律即可得出.
【详解】
解:向右平移 1 个单位长度,再向下平移 3 个单位长度,所得的抛物线的函数表达式为
故答案为:A.
【点睛】
本题考查了二次函数的平移,解题的关键是熟知二次函数的平移规律.
2、D
【解析】
试题分析:由已知的三个图可得到一般的规律,即第n个图形中三角形的个数是4n,根据一般规律解题即可.
解:根据给出的3个图形可以知道:
第1个图形中三角形的个数是4,
第2个图形中三角形的个数是8,
第3个图形中三角形的个数是12,
从而得出一般的规律,第n个图形中三角形的个数是4n.
故选D.
考点:规律型:图形的变化类.
3、B
【解析】
将A、B、C、D分别展开,能和原图相对应的即为正确答案:
【详解】
A、展开得到,不能和原图相对应,故本选项错误;
B、展开得到,能和原图相对,故本选项正确;
C、展开得到,不能和原图相对应,故本选项错误;
D、展开得到,不能和原图相对应,故本选项错误.
故选B.
4、D
【解析】
根据三角形的中位线定理即可得到结果.
【详解】
解:由题意得AB=2DE=20cm,
故选D.
【点睛】
本题考查的是三角形的中位线,解答本题的关键是熟练掌握三角形的中位线定理:三角形的中位线平行于第三边,并且等于第三边的一半.
5、C
【解析】
根据题意可以求出这个正n边形的中心角是60°,即可求出边数.
【详解】
⊙O是一个正n边形的外接圆,若⊙O的半径与这个正n边形的边长相等,
则这个正n边形的中心角是60°,
n的值为6,
故选:C
【点睛】
考查正多边形和圆,求出这个正多边形的中心角度数是解题的关键.
6、A
【解析】
由EB=CF,可得出EF=BC,又有∠A=∠D,本题具备了一组边、一组角对应相等,为了再添一个条件仍不能证明△ABC≌△DEF,那么添加的条件与原来的条件可形成SSA,就不能证明△ABC≌△DEF了.
【详解】
∵EB=CF,
∴EB+BF=CF+BF,即EF=BC,
又∵∠A=∠D,
A、添加DE=AB与原条件满足SSA,不能证明△ABC≌△DEF,故A选项正确.
B、添加DF∥AC,可得∠DFE=∠ACB,根据AAS能证明△ABC≌△DEF,故B选项错误.
C、添加∠E=∠ABC,根据AAS能证明△ABC≌△DEF,故C选项错误.
D、添加AB∥DE,可得∠E=∠ABC,根据AAS能证明△ABC≌△DEF,故D选项错误,
故选A.
【点睛】
本题考查三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.注意:AAA、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.
7、C
【解析】
分a>1和a<1两种情况根据二次函数的对称性确定出y1与y2的大小关系,然后对各选项分析判断即可得解.
【详解】
解:①a>1时,二次函数图象开口向上,
∵|x1﹣2|>|x2﹣2|,
∴y1>y2,
无法确定y1+y2的正负情况,
a(y1﹣y2)>1,
②a<1时,二次函数图象开口向下,
∵|x1﹣2|>|x2﹣2|,
∴y1<y2,
无法确定y1+y2的正负情况,
a(y1﹣y2)>1,
综上所述,表达式正确的是a(y1﹣y2)>1.
故选:C.
【点睛】
本题主要考查二次函数的性质,利用了二次函数的对称性,关键要掌握根据二次项系数a的正负分情况讨论.
8、B
【解析】
连接AD,BD,由圆周角定理可得∠ABD=20°,∠ADB=90°,从而可求得∠BAD=70°,再由圆的内接四边形对角互补得到∠BCD=110°.
【详解】
如下图,连接AD,BD,
∵同弧所对的圆周角相等,∴∠ABD=∠AED=20°,
∵AB为直径,∴∠ADB=90°,
∴∠BAD=90°-20°=70°,
∴∠BCD=180°-70°=110°.
故选B
【点睛】
本题考查圆中的角度计算,熟练运用圆周角定理和内接四边形的性质是关键.
9、A
【解析】
根据数轴上某个数与原点的距离叫做这个数的绝对值的定义,由a是实数,得|a|≥0恒成立,因此,这一事件是必然事件.故选A.
10、A
【解析】
首先根据题意画出图形,易得△OBC是等边三角形,继而可得正六边形的边长为R,然后利用解直角三角形求得边心距,又由S正六边形=求得正六边形的面积.
【详解】
解:如图,O为正六边形外接圆的圆心,连接OB,OC,过点O作OH⊥BC于H,
∵六边形ABCDEF是正六边形,半径为,
∴∠BOC=,
∵OB=OC=R,
∴△OBC是等边三角形,
∴BC=OB=OC=R,
∵OH⊥BC,
∴在中,,
即,
∴,即边心距为;
∵,
∴S正六边形=,
故选:A.
【点睛】
本题考查了正多边形和圆的知识;求得正六边形的中心角为60°,得到等边三角形是正确解答本题的关键.
11、C
【解析】
【分析】首先确定原点位置,进而可得C点对应的数.
【详解】∵点A、B表示的数互为相反数,AB=6
∴原点在线段AB的中点处,点B对应的数为3,点A对应的数为-3,
又∵BC=2,点C在点B的左边,
∴点C对应的数是1,
故选C.
【点睛】本题主要考查了数轴,关键是正确确定原点位置.
12、B
【解析】
∵DE垂直平分AC,
∴AD=CD,AC=2EC=8,
∵C△ABC=AC+BC+AB=23,
∴AB+BC=23-8=15,
∴C△ABD=AB+AD+BD=AB+DC+BD=AB+BC=15.
故选B.
二、填空题:(本大题共6个小题,每小题4分,共24分.)
13、2
【解析】
∵,
∴,
故答案为2.
14、1800°
【解析】
试题分析:这个正多边形的边数为=12,
所以这个正多边形的内角和为(12﹣2)×180°=1800°.
故答案为1800°.
考点:多边形内角与外角.
15、10πcm1.
【解析】
根据已知条件得到四边形ABCD是矩形,求得图中阴影部分的面积=S扇形AOD+S扇形BOC=1S扇形AOD,根据等腰三角形的性质得到∠BAC=∠ABO=36°,由圆周角定理得到∠AOD=71°,于是得到结论.
【详解】
解:∵AC与BD是⊙O的两条直径,
∴∠ABC=∠ADC=∠DAB=∠BCD=90°,
∴四边形ABCD是矩形,
∴S△ABO=S△CDO =S△AOD=S△BOD,
∴图中阴影部分的面积=S扇形AOD+S扇形BOC=1S扇形AOD,
∵OA=OB,
∴∠BAC=∠ABO=36°,
∴∠AOD=71°,
∴图中阴影部分的面积=1×=10π,
故答案为10πcm1.
点睛:本题考查了扇形的面积,矩形的判定和性质,圆周角定理的推论,三角形外角的性质,熟练掌握扇形的面积公式是解题的关键.
16、2.58×1
【解析】
科学记数法就是将一个数字表示成(a×10的n次幂的形式),其中1≤|a|<10,n表示整数.即从左边第一位开始,在首位非零的后面加上小数点,再乘以10的n次幂.258 000=2.58×1.
17、 49
【解析】
(1)观察等式可得 然后根据此规律就可解决问题;
(2)只需运用以上规律,采用拆项相消法即可解决问题.
【详解】
(1)观察等式,可得以下规律:,
∴
(2)
解得:n=49.
故答案为:49.
【点睛】
属于规律型:数字的变化类,观察题目,找出题目中数字的变化规律是解题的关键.
18、
【解析】
分析:要将一个多项式分解因式的一般步骤是首先看各项有没有公因式,若有公因式,则把它提取出来,之后再观察是否是完全平方公式或平方差公式,若是就考虑用公式法继续分解因式.因此,
先提取公因式2后继续应用完全平方公式分解即可:.
三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.
19、A车行驶的时间为3.1小时,B车行驶的时间为2.1小时.
【解析】
设B车行驶的时间为t小时,则A车行驶的时间为1.4t小时,根据题意得:﹣=80,解分式方程即可,注意验根.
【详解】
解:设B车行驶的时间为t小时,则A车行驶的时间为1.4t小时,
根据题意得:﹣=80,
解得:t=2.1,
经检验,t=2.1是原分式方程的解,且符合题意,
∴1.4t=3.1.
答:A车行驶的时间为3.1小时,B车行驶的时间为2.1小时.
【点睛】
本题考核知识点:列分式方程解应用题.解题关键点:根据题意找出数量关系,列出方程.
20、(1)详见解析(2)
【解析】
设两把不同的锁分别为A、B,能把两锁打开的钥匙分别为、,其余两把钥匙分别为、,根据题意,可以画出树形图,再根据概率公式求解即可.
【详解】
(1)设两把不同的锁分别为A、B,能把两锁打开的钥匙分别为、,其余两把钥匙分别为、,根据题意,可以画出如下树形图:
由上图可知,上述试验共有8种等可能结果;
(2)由(1)可知,任意取出一把钥匙去开任意一把锁共有8种可能的结果,一次打开锁的结果有2种,且所有结果的可能性相等.
∴P(一次打开锁)=.
【点睛】
如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率.
21、骑共享单车从家到单位上班花费的时间是1分钟.
【解析】
试题分析:设骑共享单车从家到单位上班花费x分钟,找出题目中的等量关系,列出方程,求解即可.
试题解析:设骑共享单车从家到单位上班花费x分钟,
依题意得:
解得x=1.
经检验,x=1是原方程的解,且符合题意.
答:骑共享单车从家到单位上班花费的时间是1分钟.
22、(1)16、84°;(2)C;(3)该校4500名学生中“1分钟跳绳”成绩为优秀的大约有3000(人)
【解析】
(1)根据百分比=所长人数÷总人数,圆心角=百分比,计算即可;
(2)根据中位数的定义计算即可;
(3)用一半估计总体的思考问题即可;
【详解】
(1)由题意总人数人,
D组人数人;
B组的圆心角为;
(2)根据A组6人,B组14人,C组19人,D组16人,E组5人可知本次调查数据中的中位数落在C组;
(3)该校4500名学生中“1分钟跳绳”成绩为优秀的大约有人.
【点睛】
本题主要考查了数据的统计,熟练掌握扇形图圆心角度数求解方法,总体求解方法等相关内容是解决本题的关键.
23、 (1)证明见解析;(2)
【解析】
分析:
(1)如下图,连接OC,由已知易得OC⊥DE,结合BD⊥DE可得OC∥BD,从而可得∠1=∠2,结合由OB=OC所得的∠1=∠3,即可得到∠2=∠3,从而可得BC平分∠DBA;
(2)由OC∥BD可得△EBD∽△EOC和△DBM∽△OCM,由根据相似三角形的性质可得得,由,设EA=2k,AO=3k可得OC=OA=OB=3k,由此即可得到.
详解:
(1)证明:连结OC,
∵DE与⊙O相切于点C,
∴OC⊥DE.
∵BD⊥DE,
∴OC∥BD. .
∴∠1=∠2,
∵OB=OC,
∴∠1=∠3,
∴∠2=∠3,
即BC平分∠DBA. .
(2)∵OC∥BD,
∴△EBD∽△EOC,△DBM∽△OCM,.
∴,
∴,
∵,设EA=2k,AO=3k,
∴OC=OA=OB=3k.
∴.
点睛:(1)作出如图所示的辅助线,由“切线的性质”得到OC⊥DE结合BD⊥DE得到OC∥BD是解答第1小题的关键;(2)解答第2小题的关键是由OC∥BD得到△EBD∽△EOC和△DBM∽△OCM这样利用相似三角形的性质结合已知条件即可求得所求值了.
24、(1)y关于x的函数解析式为;(2)恒温系统设定恒温为20°C;(3)恒温系统最多关闭10小时,蔬菜才能避免受到伤害.
【解析】
分析:(1)应用待定系数法分段求函数解析式;
(2)观察图象可得;
(3)代入临界值y=10即可.
详解:(1)设线段AB解析式为y=k1x+b(k≠0)
∵线段AB过点(0,10),(2,14)
代入得
解得
∴AB解析式为:y=2x+10(0≤x<5)
∵B在线段AB上当x=5时,y=20
∴B坐标为(5,20)
∴线段BC的解析式为:y=20(5≤x<10)
设双曲线CD解析式为:y=(k2≠0)
∵C(10,20)
∴k2=200
∴双曲线CD解析式为:y=(10≤x≤24)
∴y关于x的函数解析式为:
(2)由(1)恒温系统设定恒温为20°C
(3)把y=10代入y=中,解得,x=20
∴20-10=10
答:恒温系统最多关闭10小时,蔬菜才能避免受到伤害.
点睛:本题为实际应用背景的函数综合题,考查求得一次函数、反比例函数和常函数关系式.解答时应注意临界点的应用.
25、(1)见解析;(2)△ADF的面积是.
【解析】
试题分析:(1)连接OD,CD,求出∠BDC=90°,根据OE∥AB和OA=OC求出BE=CE,推出DE=CE,根据SSS证△ECO≌△EDO,推出∠EDO=∠ACB=90°即可;
(2)过O作OM⊥AB于M,过F作FN⊥AB于N,求出OM=FN,求出BC、AC、AB的值,根据sin∠BAC=,求出OM,根据cos∠BAC=,求出AM,根据垂径定理求出AD,代入三角形的面积公式求出即可.
试题解析:
(1)证明:连接OD,CD,
∵AC是⊙O的直径,
∴∠CDA=90°=∠BDC,
∵OE∥AB,CO=AO,
∴BE=CE,
∴DE=CE,
∵在△ECO和△EDO中
,
∴△ECO≌△EDO,
∴∠EDO=∠ACB=90°,
即OD⊥DE,OD过圆心O,
∴ED为⊙O的切线.
(2)过O作OM⊥AB于M,过F作FN⊥AB于N,
则OM∥FN,∠OMN=90°,
∵OE∥AB,
∴四边形OMFN是矩形,
∴FN=OM,
∵DE=4,OC=3,由勾股定理得:OE=5,
∴AC=2OC=6,
∵OE∥AB,
∴△OEC∽△ABC,
∴,
∴,
∴AB=10,
在Rt△BCA中,由勾股定理得:BC==8,
sin∠BAC=,
即 ,
OM==FN,
∵cos∠BAC=,
∴AM=
由垂径定理得:AD=2AM=,
即△ADF的面积是AD×FN=××=.
答:△ADF的面积是.
【点睛】考查了切线的性质和判定,勾股定理,三角形的面积,垂径定理,直角三角形的斜边上中线性质,全等三角形的性质和判定等知识点的运用,通过做此题培养了学生的分析问题和解决问题的能力.
26、(1)作图见解析;点B的坐标为:(﹣2,﹣5);(2)作图见解析;(3)
【解析】
分析:(1)直接利用已知点位置得出B点坐标即可;
(2)直接利用位似图形的性质得出对应点位置进而得出答案;
(3)直接利用位似图形的性质得出对应点交点即可位似中心,再利用勾股定理得出四边形ABCP的周长.
详解:(1)如图所示:点B的坐标为:(﹣2,﹣5);
故答案为(﹣2,﹣5);
(2)如图所示:△AB2C2,即为所求;
(3)如图所示:P点即为所求,P点坐标为:(﹣2,1),四边形ABCP的周长为:+++=4+2+2+2=6+4.
故答案为6+4.
点睛:本题主要考查了位似变换以及勾股定理,正确利用位似图形的性质分析是解题的关键.
27、15千米.
【解析】
首先设小张用骑公共自行车方式上班平均每小时行驶x千米,根据题意可得等量关系:骑公共自行车方式所用的时间=自驾车方式所用的时间×4,根据等量关系,列出方程,再解即可.
【详解】
:解:设小张用骑公共自行车方式上班平均每小时行驶x千米,根据题意列方程得:
=4×
解得:x=15,经检验x=15是原方程的解且符合实际意义.
答:小张用骑公共自行车方式上班平均每小时行驶15千米.
相关试卷
这是一份2022届山东省昌乐县中考数学考前最后一卷含解析,共20页。试卷主要包含了下列计算正确的是等内容,欢迎下载使用。
这是一份2022届山东省聊城莘县联考中考数学考前最后一卷含解析,共16页。试卷主要包含了答题时请按要求用笔等内容,欢迎下载使用。
这是一份2022届江苏泰州周庄初级中学中考考前最后一卷数学试卷含解析,共22页。试卷主要包含了tan45º的值为,不等式组的正整数解的个数是等内容,欢迎下载使用。