年终活动
搜索
    上传资料 赚现金
    英语朗读宝

    2022届山东省郯城县中考数学考前最后一卷含解析

    2022届山东省郯城县中考数学考前最后一卷含解析第1页
    2022届山东省郯城县中考数学考前最后一卷含解析第2页
    2022届山东省郯城县中考数学考前最后一卷含解析第3页
    还剩19页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    2022届山东省郯城县中考数学考前最后一卷含解析

    展开

    这是一份2022届山东省郯城县中考数学考前最后一卷含解析,共22页。试卷主要包含了考生要认真填写考场号和座位序号,计算,化简的结果是等内容,欢迎下载使用。
    2021-2022中考数学模拟试卷
    注意事项
    1.考生要认真填写考场号和座位序号。
    2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B 铅笔作答;第二部分必须用黑色字迹的签字笔作答。
    3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。

    一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)
    1.某校对初中学生开展的四项课外活动进行了一次抽样调查(每人只参加其中的一项活动),调查结果如图所示,根据图形所提供的样本数据,可得学生参加科技活动的频率是(  )

    A.0.15 B.0.2 C.0.25 D.0.3
    2.若△ABC∽△A′B′C′,∠A=40°,∠C=110°,则∠B′等于( )
    A.30° B.50° C.40° D.70°
    3.如图,将△ABC绕点C顺时针旋转90°得到△EDC.若点A,D,E在同一条直线上,∠ACB=20°,则∠ADC的度数是  

    A.55° B.60° C.65° D.70°
    4.计算:得(  )
    A.- B.- C.- D.
    5.已知在一个不透明的口袋中有4个形状、大小、材质完全相同的球,其中1个红色球,3个黄色球.从口袋中随机取出一个球(不放回),接着再取出一个球,则取出的两个都是黄色球的概率为( )
    A. B. C. D.
    6.已知a﹣b=1,则a3﹣a2b+b2﹣2ab的值为(  )
    A.﹣2 B.﹣1 C.1 D.2
    7.如图是一个正方体的表面展开图,如果对面上所标的两个数互为相反数,那么图中的值是( ).

    A. B. C. D.
    8.化简的结果是(  )
    A.﹣ B.﹣ C.﹣ D.﹣
    9.一个空间几何体的主视图和左视图都是边长为2的正方形,俯视图是一个圆,那么这个几何体的表面积是(  )
    A.6π B.4π C.8π D.4
    10.如图,点D在△ABC边延长线上,点O是边AC上一个动点,过O作直线EF∥BC,交∠BCA的平分线于点F,交∠BCA的外角平分线于E,当点O在线段AC上移动(不与点A,C重合)时,下列结论不一定成立的是(  )

    A.2∠ACE=∠BAC+∠B B.EF=2OC C.∠FCE=90° D.四边形AFCE是矩形
    11.如图,在Rt△ABC中,∠ACB=90°,AC=BC=1,将绕点A逆时针旋转30°后得到Rt△ADE,点B经过的路径为弧BD,则图中阴影部分的面积是( )

    A. B. C.- D.
    12.一个几何体的俯视图如图所示,其中的数字表示该位置上小正方体的个数,那么这个几何体的主视图是(  )

    A. B. C. D.
    二、填空题:(本大题共6个小题,每小题4分,共24分.)
    13.已知抛物线y=x2-x-1与x轴的一个交点为(m,0),则代数式m2-m+2017的值为____.
    14.在△ABC中,∠ABC<20°,三边长分别为a,b,c,将△ABC沿直线BA翻折,得到△ABC1;然后将△ABC1沿直线BC1翻折,得到△A1BC1;再将△A1BC1沿直线A1B翻折,得到△A1BC2;…,若翻折4次后,得到图形A2BCAC1A1C2的周长为a+c+5b,则翻折11次后,所得图形的周长为_____________.(结果用含有a,b,c的式子表示)

    15.如图,在▱ABCD中,E在AB上,CE、BD交于F,若AE:BE=4:3,且BF=2,则DF=_____

    16.在一次射击训练中,某位选手五次射击的环数分别为5,8,7,6,1.则这位选手五次射击环数的方差为 .
    17.如图,正方形ABCD的边长是16,点E在边AB上,AE=3,点F是边BC上不与点B、C重合的一个动点,把△EBF沿EF折叠,点B落在B′处,若△CDB′恰为等腰三角形,则DB′的长为 .

    18.使有意义的的取值范围是__________.
    三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.
    19.(6分)有一项工作,由甲、乙合作完成,合作一段时间后,乙改进了技术,提高了工作效率.图①表示甲、乙合作完成的工作量y(件)与工作时间t(时)的函数图象.图②分别表示甲完成的工作量y甲(件)、乙完成的工作量y乙(件)与工作时间t(时)的函数图象.
    (1)求甲5时完成的工作量;
    (2)求y甲、y乙与t的函数关系式(写出自变量t的取值范围);
    (3)求乙提高工作效率后,再工作几个小时与甲完成的工作量相等?

    20.(6分)已知关于x的一元二次方程x2﹣(m+3)x+m+2=1.
    (1)求证:无论实数m取何值,方程总有两个实数根;
    (2)若方程两个根均为正整数,求负整数m的值.
    21.(6分)某公司生产的某种产品每件成本为40元,经市场调查整理出如下信息:
    ①该产品90天售量(n件)与时间(第x天)满足一次函数关系,部分数据如下表:
    时间(第x天)
    1
    2
    3
    10

    日销售量(n件)
    198
    196
    194
    ?

    ②该产品90天内每天的销售价格与时间(第x天)的关系如下表:
    时间(第x天)
    1≤x<50
    50≤x≤90
    销售价格(元/件)
    x+60
    100
    (1)求出第10天日销售量;
    (2)设销售该产品每天利润为y元,请写出y关于x的函数表达式,并求出在90天内该产品的销售利润最大?最大利润是多少?(提示:每天销售利润=日销售量×(每件销售价格-每件成本))
    (3)在该产品销售的过程中,共有多少天销售利润不低于5400元,请直接写出结果.
    22.(8分)在Rt△ABC中,∠BAC=,D是BC的中点,E是AD的中点.过点A作AF∥BC交BE的延长线于点F.
    求证:△AEF≌△DEB;证明四边形ADCF是菱形;若AC=4,AB=5,求菱形ADCFD 的面积.
    23.(8分)先化简,再求值:÷(﹣x+1),其中x=sin30°+2﹣1+.
    24.(10分)如图,在锐角△ABC中,小明进行了如下的尺规作图:
    ①分别以点A、B为圆心,以大于AB的长为半径作弧,两弧分别相交于点P、Q;
    ②作直线PQ分别交边AB、BC于点E、D.小明所求作的直线DE是线段AB的   ;联结AD,AD=7,sin∠DAC=,BC=9,求AC的长.

    25.(10分)如图,在△ABC中,AB=AC,以AB为直径作⊙O交BC于点D,过点D作⊙O的切线DE交AC于点E,交AB延长线于点F.
    (1)求证:BD=CD;
    (2)求证:DC2=CE•AC;
    (3)当AC=5,BC=6时,求DF的长.

    26.(12分)已知直线y=mx+n(m≠0,且m,n为常数)与双曲线y=(k<0)在第一象限交于A,B两点,C,D是该双曲线另一支上两点,且A、B、C、D四点按顺时针顺序排列.
    (1)如图,若m=﹣,n=,点B的纵坐标为,
    ①求k的值;
    ②作线段CD,使CD∥AB且CD=AB,并简述作法;
    (2)若四边形ABCD为矩形,A的坐标为(1,5),
    ①求m,n的值;
    ②点P(a,b)是双曲线y=第一象限上一动点,当S△APC≥24时,则a的取值范围是   .

    27.(12分)为了解中学生“平均每天体育锻炼时间”的情况,某地区教育部门随机调查了若干名中学生,根据调查结果制作统计图①和图②,请根据相关信息,解答下列问题:

    (1)本次接受随机抽样调查的中学生人数为_______,图①中m的值是_____ ;
    (2)求本次调查获取的样本数据的平均数、众数和中位数;
    (3)根据统计数据,估计该地区250000名中学生中,每天在校体育锻炼时间大于等于1.5h的人数.



    参考答案

    一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)
    1、B
    【解析】
    读图可知:参加课外活动的人数共有(15+30+20+35)=100人,
    其中参加科技活动的有20人,所以参加科技活动的频率是=0.2,
    故选B.
    2、A
    【解析】
    利用三角形内角和求∠B,然后根据相似三角形的性质求解.
    【详解】
    解:根据三角形内角和定理可得:∠B=30°,
    根据相似三角形的性质可得:∠B′=∠B=30°.
    故选:A.
    【点睛】
    本题考查相似三角形的性质,掌握相似三角形对应角相等是本题的解题关键.
    3、C
    【解析】
    根据旋转的性质和三角形内角和解答即可.
    【详解】
    ∵将△ABC绕点C顺时针旋转90°得到△EDC.
    ∴∠DCE=∠ACB=20°,∠BCD=∠ACE=90°,AC=CE,
    ∴∠ACD=90°-20°=70°,
    ∵点A,D,E在同一条直线上,
    ∴∠ADC+∠EDC=180°,
    ∵∠EDC+∠E+∠DCE=180°,
    ∴∠ADC=∠E+20°,
    ∵∠ACE=90°,AC=CE
    ∴∠DAC+∠E=90°,∠E=∠DAC=45°
    在△ADC中,∠ADC+∠DAC+∠DCA=180°,
    即45°+70°+∠ADC=180°,
    解得:∠ADC=65°,
    故选C.
    【点睛】
    此题考查旋转的性质,关键是根据旋转的性质和三角形内角和解答.
    4、B
    【解析】
    同级运算从左向右依次计算,计算过程中注意正负符号的变化.
    【详解】
    -
    故选B.
    【点睛】
    本题考查的是有理数的混合运算,熟练掌握运算法则是解题的关键.
    5、D
    【解析】
    试题分析:列举出所有情况,看取出的两个都是黄色球的情况数占总情况数的多少即可.
    试题解析:画树状图如下:

    共有12种情况,取出2个都是黄色的情况数有6种,所以概率为.
    故选D.
    考点:列表法与树状法.
    6、C
    【解析】
    先将前两项提公因式,然后把a﹣b=1代入,化简后再与后两项结合进行分解因式,最后再代入计算.
    【详解】
    a3﹣a2b+b2﹣2ab=a2(a﹣b)+b2﹣2ab=a2+b2﹣2ab=(a﹣b)2=1.
    故选C.
    【点睛】
    本题考查了因式分解的应用,四项不能整体分解,关键是利用所给式子的值,将前两项先分解化简后,再与后两项结合.
    7、D
    【解析】
    根据正方体平面展开图的特征得出每个相对面,再由相对面上的两个数互为相反数可得出x的值.
    【详解】
    解:“3”与“-3”相对,“y”与“-2”相对,“x”与“-8”相对, 故x=8,故选D.
    【点睛】
    本题主要考查了正方体相对面上的文字,解决本题的关键是要熟练掌握正方体展开图的特征.
    8、C
    【解析】
    试题解析:原式=.
    故选C.
    考点:二次根式的乘除法.
    9、A
    【解析】
    根据题意,可判断出该几何体为圆柱.且已知底面半径以及高,易求表面积.
    解答:解:根据题目的描述,可以判断出这个几何体应该是个圆柱,且它的底面圆的半径为1,高为2,
    那么它的表面积=2π×2+π×1×1×2=6π,故选A.
    10、D
    【解析】
    依据三角形外角性质,角平分线的定义,以及平行线的性质,即可得到2∠ACE=∠BAC+∠B,EF=2OC,∠FCE=90°,进而得到结论.
    【详解】
    解:∵∠ACD是△ABC的外角,
    ∴∠ACD=∠BAC+∠B,
    ∵CE平分∠DCA,
    ∴∠ACD=2∠ACE,
    ∴2∠ACE=∠BAC+∠B,故A选项正确;
    ∵EF∥BC,CF平分∠BCA,
    ∴∠BCF=∠CFE,∠BCF=∠ACF,
    ∴∠ACF=∠EFC,
    ∴OF=OC,
    同理可得OE=OC,
    ∴EF=2OC,故B选项正确;
    ∵CF平分∠BCA,CE平分∠ACD,
    ∴∠ECF=∠ACE+∠ACF=×180°=90°,故C选项正确;
    ∵O不一定是AC的中点,
    ∴四边形AECF不一定是平行四边形,
    ∴四边形AFCE不一定是矩形,故D选项错误,
    故选D.

    【点睛】
    本题考查三角形外角性质,角平分线的定义,以及平行线的性质.
    11、A
    【解析】
    先根据勾股定理得到AB=,再根据扇形的面积公式计算出S扇形ABD,由旋转的性质得到Rt△ADE≌Rt△ACB,于是S阴影部分=S△ADE+S扇形ABD-S△ABC=S扇形ABD.
    【详解】
    ∵∠ACB=90°,AC=BC=1,
    ∴AB=,
    ∴S扇形ABD=,
    又∵Rt△ABC绕A点逆时针旋转30°后得到Rt△ADE,
    ∴Rt△ADE≌Rt△ACB,
    ∴S阴影部分=S△ADE+S扇形ABD−S△ABC=S扇形ABD=,
    故选A.
    【点睛】
    本题考查扇形面积计算,熟记扇形面积公式,采用作差法计算面积是解题的关键.
    12、A
    【解析】
    一一对应即可.
    【详解】
    最左边有一个,中间有两个,最右边有三个,所以选A.
    【点睛】
    理解立体几何的概念是解题的关键.

    二、填空题:(本大题共6个小题,每小题4分,共24分.)
    13、1
    【解析】
    把点(m,0)代入y=x2﹣x﹣1,求出m2﹣m=1,代入即可求出答案.
    【详解】
    ∵二次函数y=x2﹣x﹣1的图象与x轴的一个交点为(m,0),∴m2﹣m﹣1=0,∴m2﹣m=1,∴m2﹣m+2017=1+2017=1.
    故答案为:1.
    【点睛】
    本题考查了抛物线与x轴的交点问题,求代数式的值的应用,解答此题的关键是求出m2﹣m=1,难度适中.
    14、2a+12b
    【解析】
    如图2,翻折4次时,左侧边长为c,如图2,翻折5次,左侧边长为a,所以翻折4次后,如图1,由折叠得:AC=A= ==,所以图形的周长为:a+c+5b,

    因为∠ABC<20°,所以,
    翻折9次后,所得图形的周长为: 2a+10b,故答案为: 2a+10b.
    15、.
    【解析】
    解:令AE=4x,BE=3x,
    ∴AB=7x.
    ∵四边形ABCD为平行四边形,
    ∴CD=AB=7x,CD∥AB,
    ∴△BEF∽△DCF.
    ∴,
    ∴DF=
    【点睛】
    本题考查平行四边形的性质及相似三角形的判定与性质,掌握定理正确推理论证是本题的解题关键.
    16、2.
    【解析】
    试题分析:五次射击的平均成绩为=(5+7+8+6+1)=7,
    方差S2=[(5﹣7)2+(8﹣7)2+(7﹣7)2+(6﹣7)2+(1﹣7)2]=2.
    考点:方差.
    17、36或4.
    【解析】
    (3)当B′D=B′C时,过B′点作GH∥AD,则∠B′GE=90°,
    当B′C=B′D时,AG=DH=DC=8,由AE=3,AB=36,得BE=3.
    由翻折的性质,得B′E=BE=3,
    ∴EG=AG﹣AE=8﹣3=5,
    ∴B′G===33,
    ∴B′H=GH﹣B′G=36﹣33=4,
    ∴DB′===;
    (3)当DB′=CD时,则DB′=36(易知点F在BC上且不与点C、B重合);
    (3)当CB′=CD时,
    ∵EB=EB′,CB=CB′,
    ∴点E、C在BB′的垂直平分线上,
    ∴EC垂直平分BB′,
    由折叠可知点F与点C重合,不符合题意,舍去.
    综上所述,DB′的长为36或.故答案为36或.

    考点:3.翻折变换(折叠问题);3.分类讨论.
    18、
    【解析】
    根据二次根式的被开方数为非负数求解即可.
    【详解】
    由题意可得:,解得:.
    所以答案为.
    【点睛】
    本题主要考查了二次根式的性质,熟练掌握相关概念是解题关键.

    三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.
    19、(1)1件;(2)y甲=30t(0≤t≤5);y乙=;(3)小时;
    【解析】
    (1)根据图①可得出总工作量为370件,根据图②可得出乙完成了220件,从而可得出甲5小时完成的工作量;(2)设y甲的函数解析式为y=kx+b,将点(0,0),(5,1)代入即可得出y甲与t的函数关系式;设y乙的函数解析式为y=mx(0≤t≤2),y=cx+d(2<t≤5),将点的坐标代入即可得出函数解析式;(3)联立y甲与改进后y乙的函数解析式即可得出答案.
    【详解】
    (1)由图①得,总工作量为370件,由图②可得出乙完成了220件,
    故甲5时完成的工作量是1.
    (2)设y甲的函数解析式为y=kt(k≠0),把点(5,1)代入可得:k=30
    故y甲=30t(0≤t≤5);
    乙改进前,甲乙每小时完成50件,所以乙每小时完成20件,
    当0≤t≤2时,可得y乙=20t;
    当2<t≤5时,设y=ct+d,将点(2,40),(5,220)代入可得:,
    解得:,
    故y乙=60t﹣80(2<t≤5).
    综上可得:y甲=30t(0≤t≤5);y乙=.
    (3)由题意得:,
    解得:t=,
    故改进后﹣2=小时后乙与甲完成的工作量相等.
    【点睛】
    本题考查了一次函数的应用,解题的关键是能读懂函数图象所表示的信息,另外要熟练掌握待定系数法求函数解析式的知识.
    20、 (1)见解析;(2) m=-1.
    【解析】
    (1)根据方程的系数结合根的判别式,即可得出△=1>1,由此即可证出:无论实数m取什么值,方程总有两个不相等的实数根;
    (2)利用分解因式法解原方程,可得x1=m,x2=m+1,在根据已知条件即可得出结论.
    【详解】
    (1)∵△=(m+3)2﹣4(m+2)
    =(m+1)2
    ∴无论m取何值,(m+1)2恒大于等于1
    ∴原方程总有两个实数根
    (2)原方程可化为:(x-1)(x-m-2)=1
    ∴x1=1, x2=m+2
    ∵方程两个根均为正整数,且m为负整数
    ∴m=-1.
    【点睛】
    本题考查了一元二次方程与根的判别式,解题的关键是熟练的掌握根的判别式与根据因式分解法解一元二次方程.
    21、(1)1件;(2)第40天,利润最大7200元;(3)46天
    【解析】
    试题分析:(1)根据待定系数法解出一次函数解析式,然后把x=10代入即可;
    (2)设利润为y元,则当1≤x<50时,y=﹣2x2+160x+4000;当50≤x≤90时,y=﹣120x+12000,分别求出各段上的最大值,比较即可得到结论;
    (3)直接写出在该产品销售的过程中,共有46天销售利润不低于5400元.
    试题解析:解:(1)∵n与x成一次函数,∴设n=kx+b,将x=1,m=198,x=3,m=194代入,得:, 解得:,
    所以n关于x的一次函数表达式为n=-2x+200;
    当x=10时,n=-2×10+200=1.
    (2)设销售该产品每天利润为y元,y关于x的函数表达式为:
    当1≤x<50时,y=-2x2+160x+4000=-2(x-40)2+7200,
    ∵-2<0,∴当x=40时,y有最大值,最大值是7200;
    当50≤x≤90时,y=-120x+12000,
    ∵-120<0,∴y随x增大而减小,即当x=50时,y的值最大,最大值是6000;
    综上所述:当x=40时,y的值最大,最大值是7200,即在90天内该产品第40天的销售利润最大,最大利润是7200元;
    (3)在该产品销售的过程中,共有46天销售利润不低于5400元.
    22、(1)证明详见解析;(2)证明详见解析;(3)1.
    【解析】
    (1)利用平行线的性质及中点的定义,可利用AAS证得结论;
    (2)由(1)可得AF=BD,结合条件可求得AF=DC,则可证明四边形ADCF为平行四边形,再利用直角三角形的性质可证得AD=CD,可证得四边形ADCF为菱形;
    (3)连接DF,可证得四边形ABDF为平行四边形,则可求得DF的长,利用菱形的面积公式可求得答案.
    【详解】
    (1)证明:∵AF∥BC,
    ∴∠AFE=∠DBE,
    ∵E是AD的中点,
    ∴AE=DE,
    在△AFE和△DBE中,

    ∴△AFE≌△DBE(AAS);
    (2)证明:由(1)知,△AFE≌△DBE,则AF=DB.
    ∵AD为BC边上的中线
    ∴DB=DC,
    ∴AF=CD.
    ∵AF∥BC,
    ∴四边形ADCF是平行四边形,
    ∵∠BAC=90°,D是BC的中点,E是AD的中点,
    ∴AD=DC=BC,
    ∴四边形ADCF是菱形;
    (3)连接DF,

    ∵AF∥BD,AF=BD,
    ∴四边形ABDF是平行四边形,
    ∴DF=AB=5,
    ∵四边形ADCF是菱形,
    ∴S菱形ADCF=AC▪DF=×4×5=1.
    【点睛】
    本题主要考查菱形的性质及判定,利用全等三角形的性质证得AF=CD是解题的关键,注意菱形面积公式的应用.
    23、-5
    【解析】
    根据分式的运算法则以及实数的运算法则即可求出答案.
    【详解】
    当x=sin30°+2﹣1+时,
    ∴x=++2=3,
    原式=÷==﹣5.
    【点睛】
    本题考查分式的运算法则,解题的关键是熟练运用分式的运算法则,本题属于基础题型.
    24、(1)线段AB的垂直平分线(或中垂线);(2)AC=5.
    【解析】
    (1)垂直平分线:经过某一条线段的中点,并且垂直于这条线段的直线,叫做这条线段的垂直平分线
    (2)根据题意垂直平分线定理可得AD=BD,得到CD=2,又因为已知sin∠DAC=,故可过点D作AC垂线,求得DF=1,利用勾股定理可求得AF,CF,即可求出AC长.
    【详解】
    (1)小明所求作的直线DE是线段AB的垂直平分线(或中垂线);
    故答案为线段AB的垂直平分线(或中垂线);
    (2)过点D作DF⊥AC,垂足为点F,如图,
    ∵DE是线段AB的垂直平分线,
    ∴AD=BD=7
    ∴CD=BC﹣BD=2,
    在Rt△ADF中,∵sin∠DAC=,
    ∴DF=1,
    在Rt△ADF中,AF=,
    在Rt△CDF中,CF=,
    ∴AC=AF+CF=.

    【点睛】
    本题考查了垂直平分线的尺规作图方法,三角函数和勾股定理求线段长度,解本题的关键是充分利用中垂线,将已知条件与未知条件结合起来解题.
    25、(1)详见解析;(2)详见解析;(3)DF=.
    【解析】
    (1)先判断出AD⊥BC,即可得出结论;
    (2)先判断出OD∥AC,进而判断出∠CED=∠ODE,判断出△CDE∽△CAD,即可得出结论;
    (3)先求出OD,再求出CD=3,进而求出CE,AE,DE,再判断出,即可得出结论.
    【详解】
    (1)连接AD,

    ∵AB是⊙O的直径,
    ∴∠ADB=90°,
    ∴AD⊥BC,
    ∵AB=AC,
    ∴BD=CD;
    (2)连接OD,
    ∵DE是⊙O的切线,
    ∴∠ODE=90°,
    由(1)知,BD=CD,
    ∵OA=OB,
    ∴OD∥AC,
    ∴∠CED=∠ODE=90°=∠ADC,
    ∵∠C=∠C,
    ∴△CDE∽△CAD,
    ∴,
    ∴CD2=CE•AC;
    (3)∵AB=AC=5,
    由(1)知,∠ADB=90°,OA=OB,
    ∴OD=AB=,
    由(1)知,CD=BC=3,
    由(2)知,CD2=CE•AC,
    ∵AC=5,
    ∴CE=,
    ∴AE=AC-CE=5-=,
    在Rt△CDE中,根据勾股定理得,DE=,
    由(2)知,OD∥AC,
    ∴,
    ∴,
    ∴DF=.
    【点睛】
    此题是圆的综合题,主要考查了圆的性质,等腰三角形的性质,相似三角形的判断和性质,勾股定理,判断出△CDE∽△CAD是解本题的关键.
    26、(1)①k= 5;②见解析,由此AO交双曲线于点C,延长BO交双曲线于点D,线段CD即为所求;(2)①;②0<a<1或a>5
    【解析】
    (1)①求出直线的解析式,利用待定系数法即可解决问题;②如图,由此AO交双曲线于点C,延长BO交双曲线于点D,线段CD即为所求;
    (2)①求出A,B两点坐标,利用待定系数法即可解决问题;②分两种情形求出△PAC的面积=24时a的值,即可判断.
    【详解】
    (1)①∵,,
    ∴直线的解析式为,
    ∵点B在直线上,纵坐标为,
    ∴,
    解得x=2
    ∴,
    ∴;
    ②如下图,由此AO交双曲线于点C,延长BO交双曲线于点D,线段CD即为所求;

    (2)①∵点在上,
    ∴k=5,
    ∵四边形ABCD是矩形,
    ∴OA=OB=OC=OD,
    ∴A,B关于直线y=x对称,
    ∴,
    则有:,解得;
    ②如下图,当点P在点A的右侧时,作点C关于y轴的对称点C′,连接AC,AC′,PC,PC′,PA.

    ∵A,C关于原点对称,,
    ∴,
    ∵,
    当时,
    ∴,
    ∴,
    ∴a=5或(舍弃),
    当点P在点A的左侧时,同法可得a=1,
    ∴满足条件的a的范围为或.
    【点睛】
    本题属于反比例函数与一次函数的综合问题,熟练掌握待定系数法解函数解析式以及交点坐标的求法是解决本题的关键.
    27、(1)250、12;(2)平均数:1.38h;众数:1.5h;中位数:1.5h;(3)160000人;
    【解析】
    (1) 根据题意, 本次接受调查的学生总人数为各个金额人数之和, 用总概率减去其他金额的概率即可求得m值.
    (2) 平均数为一组数据中所有数据之和再除以这组数据的个数; 众数是在一组数据中出现次数最多的数; 中位数是将一组数据按大小顺序排列, 处于最中间位置的一个数据, 或是最中间两个数据的平均数, 据此求解即可.
    (3) 根据样本估计总体, 用“每天在校体育锻炼时间大于等于1.5h的人数” 的概率乘以全校总人数求解即可.
    【详解】
    (1)本次接受随机抽样调查的中学生人数为60÷24%=250人,
    m=100﹣(24+48+8+8)=12,
    故答案为250、12;
    (2)平均数为=1.38(h),
    众数为1.5h,中位数为=1.5h;
    (3)估计每天在校体育锻炼时间大于等于1.5h的人数约为250000×=160000人.
    【点睛】
    本题主要考查数据的收集、 处理以及统计图表.

    相关试卷

    2022年山东省临沂中考考前最后一卷数学试卷含解析:

    这是一份2022年山东省临沂中考考前最后一卷数学试卷含解析,共23页。试卷主要包含了计算 的结果为,tan30°的值为等内容,欢迎下载使用。

    2022年山东省安丘市景芝中学中考数学考前最后一卷含解析:

    这是一份2022年山东省安丘市景芝中学中考数学考前最后一卷含解析,共18页。试卷主要包含了答题时请按要求用笔,-5的相反数是等内容,欢迎下载使用。

    2022届山东省昌乐县中考数学考前最后一卷含解析:

    这是一份2022届山东省昌乐县中考数学考前最后一卷含解析,共20页。试卷主要包含了下列计算正确的是等内容,欢迎下载使用。

    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map