2022年山东省聊城冠县联考初中数学毕业考试模拟冲刺卷含解析
展开2021-2022中考数学模拟试卷
注意事项
1.考试结束后,请将本试卷和答题卡一并交回.
2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.
3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.
4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.
5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.
一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)
1.如图,△ABC中,∠C=90°,D、E是AB、BC上两点,将△ABC沿DE折叠,使点B落在AC边上点F处,并且DF∥BC,若CF=3,BC=9,则AB的长是( )
A. B.15 C. D.9
2.将1、、、按如图方式排列,若规定(m、n)表示第m排从左向右第n个数,则(6,5)与(13,6)表示的两数之积是( )
A. B.6 C. D.
3.一元一次不等式2(1+x)>1+3x的解集在数轴上表示为( )
A. B. C. D.
4.自2013年10月习近平总书记提出“精准扶贫”的重要思想以来.各地积极推进精准扶贫,加大帮扶力度.全国脱贫人口数不断增加.仅2017年我国减少的贫困人口就接近1100万人.将1100万人用科学记数法表示为( )
A.1.1×103人 B.1.1×107人 C.1.1×108人 D.11×106人
5.如图,是由几个大小相同的小立方块所搭几何体的俯视图,其中小正方形中的数字表示在该位置的小立方块的个数,则这个几何体的主视图是( )
A. B. C. D.
6.肥皂泡的泡壁厚度大约是0.00000071米,数字0.00000071用科学记数法表示为( )
A.7.1×107 B.0.71×10﹣6 C.7.1×10﹣7 D.71×10﹣8
7.已知抛物线y=ax2﹣(2a+1)x+a﹣1与x轴交于A(x1,0),B(x2,0)两点,若x1<1,x2>2,则a的取值范围是( )
A.a<3 B.0<a<3 C.a>﹣3 D.﹣3<a<0
8.下列四个几何体中,主视图与左视图相同的几何体有( )
A.1个 B.2个 C.3个 D.4个
9.一次数学测试后,随机抽取九年级某班5名学生的成绩如下:91,78,1,85,1.关于这组数据说法错误的是( )
A.极差是20 B.中位数是91 C.众数是1 D.平均数是91
10.下列图形中,阴影部分面积最大的是
A. B. C. D.
11.如图,点C是直线AB,DE之间的一点,∠ACD=90°,下列条件能使得AB∥DE的是( )
A.∠α+∠β=180° B.∠β﹣∠α=90° C.∠β=3∠α D.∠α+∠β=90°
12.已知关于x的一元二次方程mx2+2x-1=0有两个不相等的实数根,则m的取值范围是( ).
A.m>-1且m≠0 B.m<1且m≠0 C.m<-1 D.m>1
二、填空题:(本大题共6个小题,每小题4分,共24分.)
13.如图,在平面直角坐标系中,已知点A(1,1),以点O为旋转中心,将点A逆时针旋转到点B的位置,则的长为_____.
14.已知三角形两边的长分别为1、5,第三边长为整数,则第三边的长为_____.
15.计算:+(|﹣3|)0=_____.
16.如图,直线m∥n,以直线m上的点A为圆心,适当长为半径画弧,分别交直线m,n于点B、C,连接AC、BC,若∠1=30°,则∠2=_____.
17.一个圆锥的三视图如图,则此圆锥的表面积为______.
18.如图,等腰△ABC的周长为21,底边BC=5,AB的垂直平分线DE交AB于点D,交AC于点E,则△BEC的周长为____.
三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.
19.(6分)如图,抛物线y=ax2+bx+c(a>0)的顶点为M,直线y=m与抛物线交于点A,B,若△AMB为等腰直角三角形,我们把抛物线上A,B两点之间的部分与线段AB 围成的图形称为该抛物线对应的准蝶形,线段AB称为碟宽,顶点M 称为碟顶.
由定义知,取AB中点N,连结MN,MN与AB的关系是_____.抛物线y=对应的准蝶形必经过B(m,m),则m=_____,对应的碟宽AB是_____.抛物线y=ax2﹣4a﹣(a>0)对应的碟宽在x 轴上,且AB=1.
①求抛物线的解析式;
②在此抛物线的对称轴上是否有这样的点P(xp,yp),使得∠APB为锐角,若有,请求出yp的取值范围.若没有,请说明理由.
20.(6分)为了丰富校园文化,促进学生全面发展.我市某区教育局在全区中小学开展“书法、武术、黄梅戏进校园”活动.今年3月份,该区某校举行了“黄梅戏”演唱比赛,比赛成绩评定为A,B,C,D,E五个等级,该校部分学生参加了学校的比赛,并将比赛结果绘制成如下两幅不完整的统计图,请根据图中信息,解答下列问题.
(1)求该校参加本次“黄梅戏”演唱比赛的学生人数;
(2)求扇形统计图B等级所对应扇形的圆心角度数;
(3)已知A等级的4名学生中有1名男生,3名女生,现从中任意选取2名学生作为全校训练的示范者,请你用列表法或画树状图的方法,求出恰好选1名男生和1名女生的概率.
21.(6分)徐州至北京的高铁里程约为700km,甲、乙两人从徐州出发,分别乘坐“徐州号”高铁A与“复兴号”高铁B前往北京.已知A车的平均速度比B车的平均速度慢80km/h,A车的行驶时间比B车的行驶时间多40%,两车的行驶时间分别为多少?
22.(8分)为了提高学生书写汉字的能力,增强保护汉子的意识,某校举办了首届“汉字听写大赛”,学生经选拔后进入决赛,测试同时听写100个汉字,每正确听写出一个汉字得1分,本次决赛,学生成绩为(分),且,将其按分数段分为五组,绘制出以下不完整表格:
组别
成绩(分)
频数(人数)
频率
一
2
0.04
二
10
0.2
三
14
b
四
a
0.32
五
8
0.16
请根据表格提供的信息,解答以下问题:本次决赛共有 名学生参加;直接写出表中a= ,b= ;请补全下面相应的频数分布直方图;
若决赛成绩不低于80分为优秀,则本次大赛的优秀率为 .
23.(8分)两家超市同时采取通过摇奖返现金搞促销活动,凡在超市购物满100元的顾客均可以参加摇奖一次.小明和小华对两家超市摇奖的50名顾客获奖情况进行了统计并制成了图表(如图)
奖金金额
获奖人数
20元
15元
10元
5元
商家甲超市
5
10
15
20
乙超市
2
3
20
25
(1)在甲超市摇奖的顾客获得奖金金额的中位数是 ,在乙超市摇奖的顾客获得奖金金额的众数是 ;
(2)请你补全统计图1;
(3)请你分别求出在甲、乙两超市参加摇奖的50名顾客平均获奖多少元?
(4)图2是甲超市的摇奖转盘,黄区20元、红区15元、蓝区10元、白区5元,如果你购物消费了100元后,参加一次摇奖,那么你获得奖金10元的概率是多少?
24.(10分)如图,在平面直角坐标系中,一次函数与反比例函数的图像交于点和点,且经过点.
求反比例函数和一次函数的表达式;求当时自变量的取值范围.
25.(10分)如图,平面直角坐标系xOy中,已知点A(0,3),点B(,0),连接AB,若对于平面内一点C,当△ABC是以AB为腰的等腰三角形时,称点C是线段AB的“等长点”.
(1)在点C1(﹣2,3+2),点C2(0,﹣2),点C3(3+,﹣)中,线段AB的“等长点”是点________;
(2)若点D(m,n)是线段AB的“等长点”,且∠DAB=60°,求点D的坐标;
(3)若直线y=kx+3k上至少存在一个线段AB的“等长点”,求k的取值范围.
26.(12分)如图,的直角顶点P在第四象限,顶点A、B分别落在反比例函数图象的两支上,且轴于点C,轴于点D,AB分别与x轴,y轴相交于点F和已知点B的坐标为.
填空:______;
证明:;
当四边形ABCD的面积和的面积相等时,求点P的坐标.
27.(12分)如图,一棵大树在一次强台风中折断倒下,未折断树杆与地面仍保持垂直的关系,而折断部分与未折断树杆形成的夹角.树杆旁有一座与地面垂直的铁塔,测得米,塔高米.在某一时刻的太阳照射下,未折断树杆落在地面的影子长为米,且点、、、在同一条直线上,点、、也在同一条直线上.求这棵大树没有折断前的高度.(结果精确到,参考数据:,,).
参考答案
一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)
1、C
【解析】
由折叠得到EB=EF,∠B=∠DFE,根据CE+EB=9,得到CE+EF=9,设EF=x,得到CE=9-x,在直角三角形CEF中,利用勾股定理列出关于x的方程,求出方程的解得到x的值,确定出EF与CE的长,由FD与BC平行,得到一对内错角相等,等量代换得到一对同位角相等,进而确定出EF与AB平行,由平行得比例,即可求出AB的长.
【详解】
由折叠得到EB=EF,∠B=∠DFE,
在Rt△ECF中,设EF=EB=x,得到CE=BC-EB=9-x,
根据勾股定理得:EF2=FC2+EC2,即x2=32+(9-x)2,
解得:x=5,
∴EF=EB=5,CE=4,
∵FD∥BC,
∴∠DFE=∠FEC,
∴∠FEC=∠B,
∴EF∥AB,
∴,
则AB===,
故选C.
【点睛】
此题考查了翻折变换(折叠问题),涉及的知识有:勾股定理,平行线的判定与性质,平行线分线段成比例,熟练掌握折叠的性质是解本题的关键.
2、B
【解析】
根据数的排列方法可知,第一排:1个数,第二排2个数.第三排3个数,第四排4个数,…第m-1排有(m-1)个数,从第一排到(m-1)排共有:1+2+3+4+…+(m-1)个数,根据数的排列方法,每四个数一个轮回,根据题目意思找出第m排第n个数到底是哪个数后再计算.
【详解】
第一排1个数,第二排2个数.第三排3个数,第四排4个数,
…第m-1排有(m-1)个数,从第一排到(m-1)排共有:1+2+3+4+…+(m-1)个数,
根据数的排列方法,每四个数一个轮回,
由此可知:(1,5)表示第1排从左向右第5个数是,
(13,1)表示第13排从左向右第1个数,可以看出奇数排最中间的一个数都是1,
第13排是奇数排,最中间的也就是这排的第7个数是1,那么第1个就是,
则(1,5)与(13,1)表示的两数之积是1.
故选B.
3、B
【解析】
按照解一元一次不等式的步骤求解即可.
【详解】
去括号,得2+2x>1+3x;移项合并同类项,得x<1,所以选B.
【点睛】
数形结合思想是初中常用的方法之一.
4、B
【解析】
科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.
【详解】
解:1100万=11000000=1.1×107.
故选B.
【点睛】
此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.
5、C
【解析】
由俯视图知该几何体共2列,其中第1列前一排1个正方形、后1排2个正方形,第2列只有前排2个正方形,据此可得.
【详解】
由俯视图知该几何体共2列,其中第1列前一排1个正方形、后1排2个正方形,第2列只有前排2个正方形,
所以其主视图为:
故选C.
【点睛】
考查了三视图的知识,主视图是从物体的正面看得到的视图.
6、C
【解析】
科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.
【详解】
0.00000071的小数点向或移动7位得到7.1,
所以0.00000071用科学记数法表示为7.1×10﹣7,
故选C.
【点睛】
本题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.
7、B
【解析】
由已知抛物线求出对称轴,
解:抛物线:,对称轴,由判别式得出a的取值范围.
,,
∴,
①,.
②由①②得.
故选B.
8、D
【解析】
解:①正方体的主视图与左视图都是正方形;
②球的主视图与左视图都是圆;
③圆锥主视图与左视图都是三角形;
④圆柱的主视图和左视图都是长方形;
故选D.
9、D
【解析】
试题分析:因为极差为:1﹣78=20,所以A选项正确;
从小到大排列为:78,85,91,1,1,中位数为91,所以B选项正确;
因为1出现了两次,最多,所以众数是1,所以C选项正确;
因为,所以D选项错误.
故选D.
考点:①众数②中位数③平均数④极差.
10、C
【解析】
分别根据反比例函数系数k的几何意义以及三角形面积求法以及梯形面积求法得出即可:
【详解】
A、根据反比例函数系数k的几何意义,阴影部分面积和为:xy=1.
B、根据反比例函数系数k的几何意义,阴影部分面积和为:.
C、如图,过点M作MA⊥x轴于点A,过点N作NB⊥x轴于点B,
根据反比例函数系数k的几何意义,S△OAM=S△OAM=,从而阴影部分面积和为梯形MABN的面积:.
D、根据M,N点的坐标以及三角形面积求法得出,阴影部分面积为:.
综上所述,阴影部分面积最大的是C.故选C.
11、B
【解析】
延长AC交DE于点F,根据所给条件如果能推出∠α=∠1,则能使得AB∥DE,否则不能使得AB∥DE;
【详解】
延长AC交DE于点F.
A. ∵∠α+∠β=180°,∠β=∠1+90°,
∴∠α=90°-∠1,即∠α≠∠1,
∴不能使得AB∥DE;
B. ∵∠β﹣∠α=90°,∠β=∠1+90°,
∴∠α=∠1,
∴能使得AB∥DE;
C.∵∠β=3∠α,∠β=∠1+90°,
∴3∠α=90°+∠1,即∠α≠∠1,
∴不能使得AB∥DE;
D.∵∠α+∠β=90°,∠β=∠1+90°,
∴∠α=-∠1,即∠α≠∠1,
∴不能使得AB∥DE;
故选B.
【点睛】
本题考查了平行线的判定方法:①两同位角相等,两直线平行; ②内错角相等,两直线平行;③同旁内角互补,两直线平行;④平行于同一直线的两条直线互相平行;同一平面内,垂直于同一直线的两条直线互相平行.
12、A
【解析】
∵一元二次方程mx2+2x-1=0有两个不相等的实数根,
∴m≠0,且22-4×m×(﹣1)>0,
解得:m>﹣1且m≠0.
故选A.
【点睛】
本题考查一元二次方程ax2+bx+c=0(a≠0)根的判别式:
(1)当△=b2﹣4ac>0时,方程有两个不相等的实数根;
(2)当△=b2﹣4ac=0时,方程有有两个相等的实数根;
(3)当△=b2﹣4ac<0时,方程没有实数根.
二、填空题:(本大题共6个小题,每小题4分,共24分.)
13、.
【解析】
由点A(1,1),可得OA的长,点A在第一象限的角平分线上,可得∠AOB=45°,,再根据弧长公式计算即可.
【详解】
∵A(1,1),
∴OA=,点A在第一象限的角平分线上,
∵以点O为旋转中心,将点A逆时针旋转到点B的位置,
∴∠AOB=45°,
∴的长为=,
故答案为:.
【点睛】
本题考查坐标与图形变化——旋转,弧长公式,熟练掌握旋转的性质以及弧长公式是解题的关键.本题中求出OA=以及∠AOB=45°也是解题的关键.
14、2
【解析】
分析:根据三角形的三边关系“任意两边之和>第三边,任意两边之差<第三边”,求得第三边的取值范围,再进一步根据第三边是整数求解.
详解:根据三角形的三边关系,得
第三边>4,而<1.
又第三条边长为整数,
则第三边是2.
点睛:此题主要是考查了三角形的三边关系,同时注意整数这一条件.
15、
【解析】
原式= .
16、75°
【解析】
试题解析:∵直线l1∥l2,
∴
故答案为
17、55cm2
【解析】
由正视图和左视图判断出圆锥的半径和母线长,然后根据圆锥的表面积公式求解即可.
【详解】
由三视图可知,半径为5cm,圆锥母线长为6cm,
∴表面积=π×5×6+π×52=55πcm2,
故答案为: 55πcm2.
【点睛】
本题考查了圆锥的计算,由该三视图中的数据确定圆锥的底面直径和母线长是解本题的关键,本题体现了数形结合的数学思想.如果圆锥的底面半径为r,母线长为l,那么圆锥的表面积=πrl+πr2.
18、3
【解析】
试题分析:因为等腰△ABC的周长为33,底边BC=5,所以AB=AC=8,又DE垂直平分AB,所以AE=BE,所以△BEC的周长为=BE+CE+BC=AE+CE+BC=AC+BC=8+5=3.
考点:3.等腰三角形的性质;3.垂直平分线的性质.
三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.
19、(1)MN与AB的关系是:MN⊥AB,MN=AB,(2)2,4;(2)①y=x2﹣2;②在此抛物线的对称轴上有这样的点P,使得∠APB 为锐角,yp的取值范围是yp<﹣2或yp>2.
【解析】
(1)直接利用等腰直角三角形的性质分析得出答案;
(2)利用已知点为B(m,m),代入抛物线解析式进而得出m的值,即可得出AB的值;
(2)①根据题意得出抛物线必过(2,0),进而代入求出答案;
②根据y=x2﹣2的对称轴上P(0,2),P(0,﹣2)时,∠APB 为直角,进而得出答案.
【详解】
(1)MN与AB的关系是:MN⊥AB,MN=AB,
如图1,∵△AMB是等腰直角三角形,且N为AB的中点,
∴MN⊥AB,MN=AB,
故答案为MN⊥AB,MN=AB;
(2)∵抛物线y=对应的准蝶形必经过B(m,m),
∴m=m2,
解得:m=2或m=0(不合题意舍去),
当m=2则,2=x2,
解得:x=±2,
则AB=2+2=4;
故答案为2,4;
(2)①由已知,抛物线对称轴为:y轴,
∵抛物线y=ax2﹣4a﹣(a>0)对应的碟宽在x 轴上,且AB=1.
∴抛物线必过(2,0),代入y=ax2﹣4a﹣(a>0),
得,9a﹣4a﹣=0,
解得:a=,
∴抛物线的解析式是:y=x2﹣2;
②由①知,如图2,y=x2﹣2的对称轴上P(0,2),P(0,﹣2)时,∠APB 为直角,
∴在此抛物线的对称轴上有这样的点P,使得∠APB 为锐角,yp的取值范围是yp<﹣2或yp>2.
【点睛】
此题主要考查了二次函数综合以及等腰直角三角形的性质,正确应用等腰直角三角形的性质是解题关键.
20、(1)50;(2)115.2°;(3).
【解析】
(1)先求出参加本次比赛的学生人数;(2)由(1)求出的学生人数,即可求出B等级所对应扇形的圆心角度数;(3)首先根据题意列表或画出树状图,然后由求得所有等可能的结果,再利用概率公式即可求得答案.
解:(1)参加本次比赛的学生有:(人)
(2)B等级的学生共有:(人).
∴所占的百分比为:
∴B等级所对应扇形的圆心角度数为:.
(3)列表如下:
男
女1
女2
女3
男
﹣﹣﹣
(女,男)
(女,男)
(女,男)
女1
(男,女)
﹣﹣﹣
(女,女)
(女,女)
女2
(男,女)
(女,女)
﹣﹣﹣
(女,女)
女3
(男,女)
(女,女)
(女,女)
﹣﹣﹣
∵共有12种等可能的结果,选中1名男生和1名女生结果的有6种.
∴P(选中1名男生和1名女生).
“点睛”本题考查了列表法与树状图法:通过列表法或树状图法展示所有等可能的结果求出n,再从中选出符合事件A或B的结果数目m,然后根据概率公式求出事件A或B的概率.通过扇形统计图求出扇形的圆心角度数,应用数形结合的思想是解决此类题目的关键.
21、A车行驶的时间为3.1小时,B车行驶的时间为2.1小时.
【解析】
设B车行驶的时间为t小时,则A车行驶的时间为1.4t小时,根据题意得:﹣=80,解分式方程即可,注意验根.
【详解】
解:设B车行驶的时间为t小时,则A车行驶的时间为1.4t小时,
根据题意得:﹣=80,
解得:t=2.1,
经检验,t=2.1是原分式方程的解,且符合题意,
∴1.4t=3.1.
答:A车行驶的时间为3.1小时,B车行驶的时间为2.1小时.
【点睛】
本题考核知识点:列分式方程解应用题.解题关键点:根据题意找出数量关系,列出方程.
22、(1)50;(2)a=16,b=0.28;(3)答案见解析;(4)48%.
【解析】
试题分析:(1)根据第一组别的人数和百分比得出样本容量;(2)根据样本容量以及频数、频率之间的关系得出a和b的值,(3)根据a的值将图形补全;(4)根据图示可得:优秀的人为第四和第五组的人,将两组的频数相加乘以100%得出答案.
试题解析:(1)2÷0.04=50
(2)50×0.32=16 14÷50=0.28
(3)
(4)(0.32+0.16)×100%=48%
考点:频数分布直方图
23、(1)10,5元;(2)补图见解析;(3)在甲、乙两超市参加摇奖的50名顾客平均获奖分别为10元、8.2元;(4).
【解析】
(1)根据中位数、众数的定义解答即可;(2)根据表格中的数据补全统计图即可;(3)根据计算平均数的公式求解即可;(4)根据扇形统计图,结合概率公式求解即可.
【详解】
(1)在甲超市摇奖的顾客获得奖金金额的中位数是=10元,在乙超市摇奖的顾客获得奖金金额的众数5元,
故答案为:10元、5元;
(2)补全图形如下:
(3)在甲超市平均获奖为=10(元),
在乙超市平均获奖为=8.2(元);
(4)获得奖金10元的概率是=.
【点睛】
本题考查了中位数及众数的定义、平均数的计算公式及简单概率的求法,熟知这些知识点是解决本题的关键.
24、 (1) ,;(2)或.
【解析】
(1)把点A坐标代入可求出m的值即可得反比例函数解析式;把点A、点C代入可求出k、b的值,即可得一次函数解析式;(2)联立一次函数和反比例函数解析式可求出点B的坐标,根据图象,求出一次函数图象在反比例函数图象的上方时,x的取值范围即可.
【详解】
(1)把代入得.
∴反比例函数的表达式为
把和代入得,
解得
∴一次函数的表达式为.
(2)由得
∴当或时,.
【点睛】
本题考查了一次函数和反比例函数的交点问题,解决问题的关键是掌握待定系数法求函数解析式.求反比例函数与一次函数的交点坐标时,把两个函数关系式联立成方程组求解,若方程组有解,则两者有交点,若方程组无解,则两者无交点.
25、(1)C1,C3;(2)D(﹣,0)或D(,3);(3)﹣≤k≤
【解析】
(1)直接利用线段AB的“等长点”的条件判断;
(2)分两种情况讨论,利用对称性和垂直的性质即可求出m,n;
(3)先判断出直线y=kx+3与圆A,B相切时,如图2所示,利用相似三角形的性质即可求出结论.
【详解】
(1)∵A(0,3),B(,0),
∴AB=2,
∵点C1(﹣2,3+2),
∴AC1==2,
∴AC1=AB,
∴C1是线段AB的“等长点”,
∵点C2(0,﹣2),
∴AC2=5,BC2==,
∴AC2≠AB,BC2≠AB,
∴C2不是线段AB的“等长点”,
∵点C3(3+,﹣),
∴BC3==2,
∴BC3=AB,
∴C3是线段AB的“等长点”;
故答案为C1,C3;
(2)如图1,
在Rt△AOB中,OA=3,OB=,
∴AB=2,tan∠OAB==,
∴∠OAB=30°,
当点D在y轴左侧时,
∵∠DAB=60°,
∴∠DAO=∠DAB﹣∠BAO=30°,
∵点D(m,n)是线段AB的“等长点”,
∴AD=AB,
∴D(﹣,0),
∴m=,n=0,
当点D在y轴右侧时,
∵∠DAB=60°,
∴∠DAO=∠BAO+∠DAB=90°,
∴n=3,
∵点D(m,n)是线段AB的“等长点”,
∴AD=AB=2,
∴m=2;
∴D(,3)
(3)如图2,
∵直线y=kx+3k=k(x+3),
∴直线y=kx+3k恒过一点P(﹣3,0),
∴在Rt△AOP中,OA=3,OP=3,
∴∠APO=30°,
∴∠PAO=60°,
∴∠BAP=90°,
当PF与⊙B相切时交y轴于F,
∴PA切⊙B于A,
∴点F就是直线y=kx+3k与⊙B的切点,
∴F(0,﹣3),
∴3k=﹣3,
∴k=﹣,
当直线y=kx+3k与⊙A相切时交y轴于G切点为E,
∴∠AEG=∠OPG=90°,
∴△AEG∽△POG,
∴,
∴=,解得:k=或k=(舍去)
∵直线y=kx+3k上至少存在一个线段AB的“等长点”,
∴﹣≤k≤,
【点睛】
此题是一次函数综合题,主要考查了新定义,锐角三角函数,直角三角形的性质,等腰三角形的性质,对称性,解(1)的关键是理解新定义,解(2)的关键是画出图形,解(3)的关键是判断出直线和圆A,B相切时是分界点.
26、(1)1;(2)证明见解析;(1)点坐标为.
【解析】
由点B的坐标,利用反比例函数图象上点的坐标特征可求出k值;
设A点坐标为,则D点坐标为,P点坐标为,C点坐标为,进而可得出PB,PC,PA,PD的长度,由四条线段的长度可得出,结合可得出∽,由相似三角形的性质可得出,再利用“同位角相等,两直线平行”可证出;
由四边形ABCD的面积和的面积相等可得出,利用三角形的面积公式可得出关于a的方程,解之取其负值,再将其代入P点的坐标中即可求出结论.
【详解】
解:点在反比例函数的图象,
.
故答案为:1.
证明:反比例函数解析式为,
设A点坐标为
轴于点C,轴于点D,
点坐标为,P点坐标为,C点坐标为,
,,,,
,,
.
又,
∽,
,
.
解:四边形ABCD的面积和的面积相等,
,
,
整理得:,
解得:,舍去,
点坐标为.
【点睛】
本题考查了反比例函数图象上点的坐标特征、相似三角形的判定与性质、平行线的判定以及三角形的面积,解题关键是:根据点的坐标,利用反比例函数图象上点的坐标特征求出k值;利用相似三角形的判定定理找出∽;由三角形的面积公式,找出关于a的方程.
27、米.
【解析】
试题分析:要求这棵大树没有折断前的高度,只要求出AB和AC的长度即可,根据题目中的条件可以求得AB和AC的长度,即可得到结论.
试题解析:解:∵AB⊥EF,DE⊥EF,∴∠ABC=90°,AB∥DE,∴△FAB∽△FDE,∴ ,∵FB=4米,BE=6米,DE=9米,∴,得AB=3.6米,∵∠ABC=90°,∠BAC=53°,cos∠BAC=,∴AC= ==6米,∴AB+AC=3.6+6=9.6米,即这棵大树没有折断前的高度是9.6米.
点睛:本题考查直角三角形的应用,解题的关键是明确题意,找出所求问题需要的条件,利用锐角三角函数进行解答.
山东省莱州市2022年初中数学毕业考试模拟冲刺卷含解析: 这是一份山东省莱州市2022年初中数学毕业考试模拟冲刺卷含解析,共24页。试卷主要包含了考生必须保证答题卡的整洁,下列实数中,在2和3之间的是等内容,欢迎下载使用。
2022届山东省莱阳市市级名校初中数学毕业考试模拟冲刺卷含解析: 这是一份2022届山东省莱阳市市级名校初中数学毕业考试模拟冲刺卷含解析,共19页。试卷主要包含了已知抛物线y=ax2﹣,如图,A(4,0),B,如果a﹣b=5,那么代数式等内容,欢迎下载使用。
2021-2022学年山东省青岛市局属四校联考初中数学毕业考试模拟冲刺卷含解析: 这是一份2021-2022学年山东省青岛市局属四校联考初中数学毕业考试模拟冲刺卷含解析,共19页。试卷主要包含了答题时请按要求用笔,下列计算正确的是,下列运算中,计算结果正确的是等内容,欢迎下载使用。