2022年辽宁省营口市中考押题数学预测卷含解析
展开1.考生要认真填写考场号和座位序号。
2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B 铅笔作答;第二部分必须用黑色字迹的签字笔作答。
3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。
一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)
1.给出下列各数式,① ② ③ ④ 计算结果为负数的有( )
A.1个B.2个C.3个D.4个
2.下列二次根式中,为最简二次根式的是( )
A.B.C.D.
3.若一个圆锥的底面半径为3cm,母线长为5cm,则这个圆锥的全面积为( )
A.15πcm2B.24πcm2C.39πcm2D.48πcm2
4.如图,已知,那么下列结论正确的是( )
A.B.C.D.
5.某班要从9名百米跑成绩各不相同的同学中选4名参加4×100米接力赛,而这9名同学只知道自己的成绩,要想让他们知道自己是否入选,老师只需公布他们成绩的( )
A.平均数B.中位数C.众数D.方差
6.如图,等腰三角形ABC底边BC的长为4 cm,面积为12 cm2,腰AB的垂直平分线EF交AB于点E,交AC于点F,若D为BC边上的中点,M为线段EF上一点,则△BDM的周长最小值为( )
A.5 cmB.6 cmC.8 cmD.10 cm
7.甲队修路120 m与乙队修路100 m所用天数相同,已知甲队比乙队每天多修10 m,设甲队每天修路xm.依题意,下面所列方程正确的是
A. B. C. D.
8.小明同学在学习了全等三角形的相关知识后发现,只用两把完全相同的长方形直尺就可以作出一个角的平分线.如图:一把直尺压住射线OB,另一把直尺压住射线OA并且与第一把直尺交于点P,小明说:“射线OP就是∠BOA的角平分线.”他这样做的依据是( )
A.角的内部到角的两边的距离相等的点在角的平分线上
B.角平分线上的点到这个角两边的距离相等
C.三角形三条角平分线的交点到三条边的距离相等
D.以上均不正确
9.七年级1班甲、乙两个小组的14名同学身高(单位:厘米)如下:
以下叙述错误的是( )
A.甲组同学身高的众数是160
B.乙组同学身高的中位数是161
C.甲组同学身高的平均数是161
D.两组相比,乙组同学身高的方差大
10.如图,已知直线a∥b∥c,直线m,n与a,b,c分别交于点A,C,E,B,D,F,若AC=4,CE=6,BD=3,则DF的值是( )
A.4B.4.5C.5D.5.5
11.如图1是一座立交桥的示意图(道路宽度忽略不计),A为人口,F,G为出口,其中直行道为AB,CG,EF,且AB=CG=EF;弯道为以点O为圆心的一段弧,且,,所对的圆心角均为90°.甲、乙两车由A口同时驶入立交桥,均以10m/s的速度行驶,从不同出口驶出,其间两车到点O的距离y(m)与时间x(s)的对应关系如图2所示.结合题目信息,下列说法错误的是( )
A.甲车在立交桥上共行驶8sB.从F口出比从G口出多行驶40mC.甲车从F口出,乙车从G口出D.立交桥总长为150m
12.如图,矩形ABCD的对角线AC,BD相交于点O,点M是AB的中点,若OM=4,AB=6,则BD的长为( )
A.4B.5C.8D.10
二、填空题:(本大题共6个小题,每小题4分,共24分.)
13.已知关于 x 的函数 y=(m﹣1)x2+2x+m 图象与坐标轴只有 2 个交点,则m=_______.
14.如图,已知等腰直角三角形 ABC 的直角边长为 1,以 Rt△ABC 的斜边 AC 为直角 边,画第二个等腰直角三角形 ACD,再以 Rt△ACD 的斜边 AD 为直角边,画第三个等腰直 角三角形 ADE……依此类推,直到第五个等腰直角三角形 AFG,则由这五个等腰直角三角
形所构成的图形的面积为__________.
15.已知A(0,3),B(2,3)是抛物线上两点,该抛物线的顶点坐标是_________.
16.如图,AB=AC,要使△ABE≌△ACD,应添加的条件是 (添加一个条件即可).
17.关于x的分式方程=2的解为正实数,则实数a的取值范围为_____.
18.一个正n边形的中心角等于18°,那么n=_____.
三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.
19.(6分)为了贯彻落实市委政府提出的“精准扶贫”精神,某校特制定了一系列帮扶A、B两贫困村的计划,现决定从某地运送152箱鱼苗到A、B两村养殖,若用大小货车共15辆,则恰好能一次性运完这批鱼苗,已知这两种大小货车的载货能力分别为12箱/辆和8箱/辆,其运往A、B两村的运费如表:
(1)求这15辆车中大小货车各多少辆?
(2)现安排其中10辆货车前往A村,其余货车前往B村,设前往A村的大货车为x辆,前往A、B两村总费用为y元,试求出y与x的函数解析式.
(3)在(2)的条件下,若运往A村的鱼苗不少于100箱,请你写出使总费用最少的货车调配方案,并求出最少费用.
20.(6分)如图,矩形的两边、的长分别为3、8,是的中点,反比例函数的图象经过点,与交于点.
若点坐标为,求的值及图象经过、两点的一次函数的表达式;若,求反比例函数的表达式.
21.(6分)已知,关于x的方程x2+2x-k=0有两个不相等的实数根.
(1)求k的取值范围;
(2)若x1,x2是这个方程的两个实数根,求的值;
(3)根据(2)的结果你能得出什么结论?
22.(8分). 在一个不透明的布袋中装有三个小球,小球上分别标有数字﹣1、0、2,它们除了数字不同外,其他都完全相同.随机地从布袋中摸出一个小球,则摸出的球为标有数字2的小球的概率为 ;小丽先从布袋中随机摸出一个小球,记下数字作为平面直角坐标系内点M的横坐标.再将此球放回、搅匀,然后由小华再从布袋中随机摸出一个小球,记下数字作为平面直角坐标系内点M的纵坐标,请用树状图或表格列出点M所有可能的坐标,并求出点M落在如图所示的正方形网格内(包括边界)的概率.
23.(8分)许昌芙蓉湖位于许昌市水系建设总体规划中部,上游接纳清泥河来水,下游为鹿鸣湖等水系供水,承担着承上启下的重要作用,是利用有限的水资源、形成良好的水生态环境打造生态宜居城市的重要部分.某校课外兴趣小组想测量位于芙蓉湖两端的A,B两点之间的距离他沿着与直线AB平行的道路EF行走,走到点C处,测得∠ACF=45°,再向前走300米到点D处,测得∠BDF=60°.若直线AB与EF之间的距离为200米,求A,B两点之间的距离(结果保留一位小数)
24.(10分)已知点A、B分别是x轴、y轴上的动点,点C、D是某个函数图象上的点,当四边形ABCD(A、B、C、D各点依次排列)为正方形时,称这个正方形为此函数图象的伴侣正方形.如图,正方形ABCD是一次函数y=x+1图象的其中一个伴侣正方形.
(1)若某函数是一次函数y=x+1,求它的图象的所有伴侣正方形的边长;
(2)若某函数是反比例函数(k>0),它的图象的伴侣正方形为ABCD,点D(2,m)(m<2)在反比例函数图象上,求m的值及反比例函数解析式;
(3)若某函数是二次函数y=ax2+c(a≠0),它的图象的伴侣正方形为ABCD,C、D中的一个点坐标为(3,4).写出伴侣正方形在抛物线上的另一个顶点坐标_____,写出符合题意的其中一条抛物线解析式_____,并判断你写出的抛物线的伴侣正方形的个数是奇数还是偶数?_____.(本小题只需直接写出答案)
25.(10分)如图,将连续的奇数1,3,5,7…按如图中的方式排成一个数,用一个十字框框住5个数,这样框出的任意5个数中,四个分支上的数分别用a,b,c,d表示,如图所示.
(1)计算:若十字框的中间数为17,则a+b+c+d=______.
(2)发现:移动十字框,比较a+b+c+d与中间的数.猜想:十字框中a、b、c、d的和是中间的数的______;
(3)验证:设中间的数为x,写出a、b、c、d的和,验证猜想的正确性;
(4)应用:设M=a+b+c+d+x,判断M的值能否等于2020,请说明理由.
26.(12分)如图,已知抛物线的顶点为A(1,4),抛物线与y轴交于点B(0,3),与x轴交于C、D两点.点P是x轴上的一个动点.
求此抛物线的解析式;求C、D两点坐标及△BCD的面积;若点P在x轴上方的抛物线上,满足S△PCD=S△BCD,求点P的坐标.
27.(12分)如图,在平面直角坐标系中,已知△ABC三个顶点的坐标分别是A(2,2),B(4,0),C(4,﹣4).请在图中,画出△ABC向左平移6个单位长度后得到的△A1B1C1; 以点O为位似中心,将△ABC缩小为原来的,得到△A2B2C2,请在图中y轴右侧,画出△A2B2C2,并求出∠A2C2B2的正弦值.
参考答案
一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)
1、B
【解析】
∵①;②;③;④;
∴上述各式中计算结果为负数的有2个.
故选B.
2、B
【解析】
最简二次根式必须满足以下两个条件:1.被开方数的因数是(整数),因式是( 整式 )(分母中不含根号)2.被开方数中不含能开提尽方的( 因数 )或( 因式 ).
【详解】
A. =3, 不是最简二次根式;
B. ,最简二次根式;
C. =,不是最简二次根式;
D. =,不是最简二次根式.
故选:B
【点睛】
本题考核知识点:最简二次根式.解题关键点:理解最简二次根式条件.
3、B
【解析】
试题分析:底面积是:9πcm1,
底面周长是6πcm,则侧面积是:×6π×5=15πcm1.
则这个圆锥的全面积为:9π+15π=14πcm1.
故选B.
考点:圆锥的计算.
4、A
【解析】
已知AB∥CD∥EF,根据平行线分线段成比例定理,对各项进行分析即可.
【详解】
∵AB∥CD∥EF,
∴.
故选A.
【点睛】
本题考查平行线分线段成比例定理,找准对应关系,避免错选其他答案.
5、B
【解析】
总共有9名同学,只要确定每个人与成绩的第五名的成绩的多少即可判断,然后根据中位数定义即可判断.
【详解】
要想知道自己是否入选,老师只需公布第五名的成绩,
即中位数.
故选B.
6、C
【解析】
连接AD,由于△ABC是等腰三角形,点D是BC边的中点,故AD⊥BC,再根据三角形的面积公式求出AD的长,再根据EF是线段AB的垂直平分线可知,点B关于直线EF的对称点为点A,故AD的长为BM+MD的最小值,由此即可得出结论.
【详解】
如图,连接AD.
∵△ABC是等腰三角形,点D是BC边的中点,∴AD⊥BC,∴S△ABC=BC•AD=×4×AD=12,解得:AD=6(cm).
∵EF是线段AB的垂直平分线,∴点B关于直线EF的对称点为点A,∴AD的长为BM+MD的最小值,∴△BDM的周长最短=(BM+MD)+BD=AD+BC=6+×4=6+2=8(cm).
故选C.
【点睛】
本题考查的是轴对称﹣最短路线问题,熟知等腰三角形三线合一的性质是解答此题的关键.
7、A
【解析】
分析:甲队每天修路xm,则乙队每天修(x-10)m,因为甲、乙两队所用的天数相同,所以,。故选A。
8、A
【解析】
过两把直尺的交点C作CF⊥BO与点F,由题意得CE⊥AO,因为是两把完全相同的长方形直尺,可得CE=CF,再根据角的内部到角的两边的距离相等的点在这个角的平分线上可得OP平分∠AOB
【详解】
如图所示:过两把直尺的交点C作CF⊥BO与点F,由题意得CE⊥AO,
∵两把完全相同的长方形直尺,
∴CE=CF,
∴OP平分∠AOB(角的内部到角的两边的距离相等的点在这个角的平分线上),
故选A.
【点睛】
本题主要考查了基本作图,关键是掌握角的内部到角的两边的距离相等的点在这个角的平分线上这一判定定理.
9、D
【解析】
根据众数、中位数和平均数及方差的定义逐一判断可得.
【详解】
A.甲组同学身高的众数是160,此选项正确;
B.乙组同学身高的中位数是161,此选项正确;
C.甲组同学身高的平均数是161,此选项正确;
D.甲组的方差为,乙组的方差为,甲组的方差大,此选项错误.
故选D.
【点睛】
本题考查了众数、中位数和平均数及方差,掌握众数、中位数和平均数及方差的定义和计算公式是解题的关键.
10、B
【解析】
试题分析:根据平行线分线段成比例可得,然后根据AC=1,CE=6,BD=3,可代入求解DF=1.2.
故选B
考点:平行线分线段成比例
11、C
【解析】
分析:结合2个图象分析即可.
详解:A.根据图2甲的图象可知甲车在立交桥上共行驶时间为:,故正确.
B.3段弧的长度都是:从F口出比从G口出多行驶40m,正确.
C.分析图2可知甲车从G口出,乙车从F口出,故错误.
D.立交桥总长为:故正确.
故选C.
点睛:考查图象问题,观察图象,读懂图象是解题的关键.
12、D
【解析】
利用三角形中位线定理求得AD的长度,然后由勾股定理来求BD的长度.
【详解】
解:∵矩形ABCD的对角线AC,BD相交于点O,
∴∠BAD=90°,点O是线段BD的中点,
∵点M是AB的中点,
∴OM是△ABD的中位线,
∴AD=2OM=1.
∴在直角△ABD中,由勾股定理知:BD=.
故选:D.
【点睛】
本题考查了三角形中位线定理和矩形的性质,利用三角形中位线定理求得AD的长度是解题的关键.
二、填空题:(本大题共6个小题,每小题4分,共24分.)
13、1 或 0 或
【解析】
分两种情况讨论:当函数为一次函数时,必与坐标轴有两个交点;
当函数为二次函数时,将(0,0)代入解析式即可求出m的值.
【详解】
解:(1)当 m﹣1=0 时,m=1,函数为一次函数,解析式为 y=2x+1,与 x 轴
交点坐标为(﹣ ,0);与 y 轴交点坐标(0,1).符合题意.
(2)当 m﹣1≠0 时,m≠1,函数为二次函数,与坐标轴有两个交点,则过原点,且与 x 轴有两个不同的交点,
于是△=4﹣4(m﹣1)m>0,
解得,(m﹣)2<,
解得 m< 或 m> .
将(0,0)代入解析式得,m=0,符合题意.
(3)函数为二次函数时,还有一种情况是:与 x 轴只有一个交点,与 Y 轴交于交于另一点,
这时:△=4﹣4(m﹣1)m=0,
解得:m= .
故答案为1 或 0 或.
【点睛】
此题考查一次函数和二次函数的性质,解题关键是必须分两种情况讨论,不可盲目求解.
14、12.2
【解析】
∵△ABC是边长为1的等腰直角三角形,∴S△ABC=×1×1==11-1;
AC==,AD==1,∴S△ACD==1=11-1
∴第n个等腰直角三角形的面积是1n-1.∴S△AEF=14-1=4,S△AFG=12-1=8,
由这五个等腰直角三角形所构成的图形的面积为+1+1+4+8=12.2.故答案为12.2.
15、(1,4).
【解析】
试题分析:把A(0,3),B(2,3)代入抛物线可得b=2,c=3,所以=,即可得该抛物线的顶点坐标是(1,4).
考点:抛物线的顶点.
16、AE=AD(答案不唯一).
【解析】
要使△ABE≌△ACD,已知AB=AC,∠A=∠A,则可以添加AE=AD,利用SAS来判定其全等;或添加∠B=∠C,利用ASA来判定其全等;或添加∠AEB=∠ADC,利用AAS来判定其全等.等(答案不唯一).
17、a<2且a≠1
【解析】
将a看做已知数,表示出分式方程的解,根据解为非负数列出关于a的不等式,求出不等式的解集即可得到a的范围.
【详解】
分式方程去分母得:x+a-2a=2(x-1),
解得:x=2-a,
∵分式方程的解为正实数,
∴2-a>0,且2-a≠1,
解得:a<2且a≠1.
故答案为:a<2且a≠1.
【点睛】
分式方程的解.
18、20
【解析】
由正n边形的中心角为18°,可得方程18n=360,解方程即可求得答案.
【详解】
∵正n边形的中心角为18°,
∴18n=360,
∴n=20.
故答案为20.
【点睛】
本题考查的知识点是正多边形和圆,解题的关键是熟练的掌握正多边形和圆.
三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.
19、(1)大货车用8辆,小货车用7辆;(2)y=100x+1.(3)见解析.
【解析】
(1)设大货车用x辆,小货车用y辆,根据大、小两种货车共15辆,运输152箱鱼苗,列方程组求解;
(2)设前往A村的大货车为x辆,则前往B村的大货车为(8-x)辆,前往A村的小货车为(10-x)辆,前往B村的小货车为[7-(10-x)]辆,根据表格所给运费,求出y与x的函数关系式;
(3)结合已知条件,求x的取值范围,由(2)的函数关系式求使总运费最少的货车调配方案.
【详解】
(1)设大货车用x辆,小货车用y辆,根据题意得:
解得:.∴大货车用8辆,小货车用7辆.
(2)y=800x+900(8-x)+400(10-x)+600[7-(10-x)]=100x+1.(3≤x≤8,且x为整数).
(3)由题意得:12x+8(10-x)≥100,解得:x≥5,又∵3≤x≤8,∴5≤x≤8且为整数,
∵y=100x+1,k=100>0,y随x的增大而增大,∴当x=5时,y最小,
最小值为y=100×5+1=9900(元).
答:使总运费最少的调配方案是:5辆大货车、5辆小货车前往A村;3辆大货车、2辆小货车前往B村.最少运费为9900元.
20、(1),;(2).
【解析】
分析:(1)由已知求出A、E的坐标,即可得出m的值和一次函数函数的解析式;
(2)由,得到,由,得到.设点坐标为,则点坐标为,代入反比例函数解析式即可得到结论.
详解:(1)∵为的中点,
∴.
∵反比例函数图象过点,
∴.
设图象经过、两点的一次函数表达式为:,
∴,
解得,
∴.
(2)∵,
∴.
∵,
∴,
∴.
设点坐标为,则点坐标为.
∵两点在图象上,
∴,
解得:,
∴,
∴,
∴.
点睛:本题考查了矩形的性质以及反比例函数一次函数的解析式.解题的关键是求出点A、E、F的坐标.
21、(1)k>-1;(2)2;(3)k>-1时,的值与k无关.
【解析】
(1)由题意得该方程的根的判别式大于零,列出不等式解答即可.
(2)将要求的代数式通分相加转化为含有两根之和与两根之积的形式,再根据根与系数的关系代数求值即可.
(3)结合(1)和(2)结论可见,k>-1时,的值为定值2,与k无关.
【详解】
(1)∵方程有两个不等实根,
∴△>0,
即4+4k>0,∴k>-1
(2)由根与系数关系可知
x1+x2=-2 ,x1x2=-k,
∴
(3)由(1)可知,k>-1时,
的值与k无关.
【点睛】
本题考查了一元二次方程的根的判别式,根与系数的关系等知识,熟练掌握相关知识点是解答关键.
22、(1);(2)列表见解析,.
【解析】
试题分析:(1)一共有3种等可能的结果总数,摸出标有数字2的小球有1种可能,因此摸出的球为标有数字2的小球的概率为;(2)利用列表得出共有9种等可能的结果数,再找出点M落在如图所示的正方形网格内(包括边界)的结果数,可求得结果.
试题解析:(1)P(摸出的球为标有数字2的小球)=;(2)列表如下:
共有9种等可能的结果数,其中点M落在如图所示的正方形网格内(包括边界)的结果数为6,
∴P(点M落在如图所示的正方形网格内)==.
考点:1列表或树状图求概率;2平面直角坐标系.
23、215.6米.
【解析】
过A点做EF的垂线,交EF于M点,过B点做EF的垂线,交EF于N点,
根据Rt△ACM和三角函数求出CM、DN,然后根据即可求出A、B两点间的距离.
【详解】
解:过A点做EF的垂线,交EF于M点,过B点做EF的垂线,交EF于N点
在Rt△ACM中,∵,
∴AM=CM=200米,
又∵CD=300米,所以米,
在Rt△BDN中,∠BDF=60°,BN=200米
∴米,
∴米
即A,B两点之间的距离约为215.6米.
【点睛】
本题主要考查三角函数,正确做辅助线是解题的关键.
24、(1);(2);(3)(﹣1,3);(7,﹣3);(﹣4,7);(4,1),对应的抛物线分别为 ; ;,偶数.
【解析】
(1)设正方形ABCD的边长为a,当点A在x轴负半轴、点B在y轴正半轴上时,可知3a=,求出a,
(2)作DE、CF分别垂直于x、y轴,可知ADE≌△BAO≌△CBF,列出m的等式解出m,
(3)本问的抛物线解析式不止一个,求出其中一个.
【详解】
解:(1)∵正方形ABCD是一次函数y=x+1图象的其中一个伴侣正方形.
当点A在x轴正半轴、点B在y轴负半轴上时,
∴AO=1,BO=1,
∴正方形ABCD的边长为 ,
当点A在x轴负半轴、点B在y轴正半轴上时,
设正方形的边长为a,得3a=,
∴ ,
所以伴侣正方形的边长为或;
(2)作DE、CF分别垂直于x、y轴,
知△ADE≌△BAO≌△CBF,
此时,m<2,DE=OA=BF=m
OB=CF=AE=2﹣m
∴OF=BF+OB=2
∴C点坐标为(2﹣m,2),
∴2m=2(2﹣m)
解得m=1,
反比例函数的解析式为y= ,
(3)根据题意画出图形,如图所示:
过C作CF⊥x轴,垂足为F,过D作DE⊥CF,垂足为E,
∴△CED≌△DGB≌△AOB≌△AFC,
∵C(3,4),即CF=4,OF=3,
∴EG=3,DE=4,故DG=DE﹣GE=DE﹣OF=4﹣3=1,
则D坐标为(﹣1,3);
设过D与C的抛物线的解析式为:y=ax2+b,
把D和C的坐标代入得: ,
解得 ,
∴满足题意的抛物线的解析式为y=x2+ ;
同理可得D的坐标可以为:(7,﹣3);(﹣4,7);(4,1),;
对应的抛物线分别为 ; ;,
所求的任何抛物线的伴侣正方形个数为偶数.
【点睛】
本题考查了二次函数的综合题.灵活运用相关知识是解题关键.
25、(1)68 ;(2)4倍;(3)4x,猜想正确,见解析;(4)M的值不能等于1,见解析.
【解析】
(1)直接相加即得到答案;
(2)根据(1)猜想a+b+c+d=4x;
(3)用x表示a、b、c、d,相加后即等于4x;
(4)得到方程5x=1,求出的x不符合数表里数的特征,故不能等于1.
【详解】
(1)5+15+19+29=68,
故答案为68;
(2)根据(1)猜想a+b+c+d=4x,
答案为:4倍;
(3)a=x-12,b=x-2,c=x+2,d=x+12,
∴a+b+c+d=x-12+x-2+x+2+x+12=4x,
∴猜想正确;
(4)M=a+b+c+d+x=4x+x=5x,
若M=5x=1,解得:x=404,
但整个数表所有的数都为奇数,故不成立,
∴M的值不能等于1.
【点睛】
本题考查了一元一次方程的应用.当解得方程的解后,要观察是否满足题目和实际要求再进行取舍.
26、 (1)y=﹣(x﹣1)2+4;(2)C(﹣1,0),D(3,0);6;(3)P(1+,),或P(1﹣,)
【解析】
(1)设抛物线顶点式解析式y=a(x-1)2+4,然后把点B的坐标代入求出a的值,即可得解;
(2)令y=0,解方程得出点C,D坐标,再用三角形面积公式即可得出结论;
(3)先根据面积关系求出点P的坐标,求出点P的纵坐标,代入抛物线解析式即可求出点P的坐标.
【详解】
解:(1)、∵抛物线的顶点为A(1,4),
∴设抛物线的解析式y=a(x﹣1)2+4,
把点B(0,3)代入得,a+4=3,
解得a=﹣1,
∴抛物线的解析式为y=﹣(x﹣1)2+4;
(2)由(1)知,抛物线的解析式为y=﹣(x﹣1)2+4;
令y=0,则0=﹣(x﹣1)2+4,
∴x=﹣1或x=3, ∴C(﹣1,0),D(3,0);
∴CD=4,
∴S△BCD=CD×|yB|=×4×3=6;
(3)由(2)知,S△BCD=CD×|yB|=×4×3=6;CD=4,
∵S△PCD=S△BCD,
∴S△PCD=CD×|yP|=×4×|yP|=3,
∴|yP|= ,
∵点P在x轴上方的抛物线上,
∴yP>0,
∴yP= ,
∵抛物线的解析式为y=﹣(x﹣1)2+4;
∴=﹣(x﹣1)2+4,
∴x=1±,
∴P(1+ , ),或P(1﹣,).
【点睛】
本题考查的是二次函数的综合应用,熟练掌握二次函数的性质是解题的关键.
27、(1)见解析(2)
【解析】
试题分析:(1)直接利用平移的性质得出对应点位置进而得出答案;
(2)利用位似图形的性质得出对应点位置,再利用锐角三角三角函数关系得出答案.
试题解析:(1)如图所示:△A1B1C1,即为所求;
(2)如图所示:△A2B2C2,即为所求,由图形可知,∠A2C2B2=∠ACB,过点A作AD⊥BC交BC的延长线于点D,由A(2,2),C(4,﹣4),B(4,0),易得D(4,2),故AD=2,CD=6,AC==,∴sin∠ACB===,即sin∠A2C2B2=.
考点:作图﹣位似变换;作图﹣平移变换;解直角三角形.
甲组
158
159
160
160
160
161
169
乙组
158
159
160
161
161
163
165
车型
目的地
A村(元/辆)
B村(元/辆)
大货车
800
900
小货车
400
600
小华
小丽
-1
0
2
-1
(-1,-1)
(-1,0)
(-1,2)
0
(0,-1)
(0,0)
(0,2)
2
(2,-1)
(2,0)
(2,2)
辽宁省抚顺县达标名校2021-2022学年中考押题数学预测卷含解析: 这是一份辽宁省抚顺县达标名校2021-2022学年中考押题数学预测卷含解析,共26页。试卷主要包含了已知∠BAC=45,在平面直角坐标系中,点P,下列图形不是正方体展开图的是,若分式有意义,则a的取值范围为等内容,欢迎下载使用。
辽宁省沈阳市皇姑区2021-2022学年中考押题数学预测卷含解析: 这是一份辽宁省沈阳市皇姑区2021-2022学年中考押题数学预测卷含解析,共18页。试卷主要包含了考生必须保证答题卡的整洁,计算的结果为,如图等内容,欢迎下载使用。
2022届辽宁省辽阳市第九中学中考押题数学预测卷含解析: 这是一份2022届辽宁省辽阳市第九中学中考押题数学预测卷含解析,共20页。试卷主要包含了近似数精确到等内容,欢迎下载使用。