


2022年内蒙古准格尔旗中考数学对点突破模拟试卷含解析
展开2021-2022中考数学模拟试卷
考生须知:
1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。
2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。
3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。
一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)
1.自2013年10月习近平总书记提出“精准扶贫”的重要思想以来.各地积极推进精准扶贫,加大帮扶力度.全国脱贫人口数不断增加.仅2017年我国减少的贫困人口就接近1100万人.将1100万人用科学记数法表示为( )
A.1.1×103人 B.1.1×107人 C.1.1×108人 D.11×106人
2.如图所示的几何体,上下部分均为圆柱体,其左视图是( )
A. B. C. D.
3.如图是由若干个小正方体组成的几何体从上面看到的图形,小正方形中的数字表示该位置小正方体的个数,这个几何体从正面看到的图形是( )
A. B. C. D.
4.如图,热气球的探测器显示,从热气球A看一栋楼顶部B的仰角为30°,看这栋楼底部C的俯角为60°,热气球A与楼的水平距离为120米,这栋楼的高度BC为( )
A.160米 B.(60+160) C.160米 D.360米
5.甲、乙两辆汽车沿同一路线从A地前往B地,甲车以a千米/时的速度匀速行驶,途中出现故障后停车维修,修好后以2a千米/时的速度继续行驶;乙车在甲车出发2小时后匀速前往B地,比甲车早30分钟到达.到达B地后,乙车按原速度返回A地,甲车以2a千米/时的速度返回A地.设甲、乙两车与A地相距s(千米),甲车离开A地的时间为t(小时),s与t之间的函数图象如图所示.下列说法:①a=40;②甲车维修所用时间为1小时;③两车在途中第二次相遇时t的值为5.25;④当t=3时,两车相距40千米,其中不正确的个数为( )
A.0个 B.1个 C.2个 D.3个
6.一次函数与二次函数在同一平面直角坐标系中的图像可能是( )
A. B. C. D.
7.若点A(a,b),B(,c)都在反比例函数y=的图象上,且﹣1<c<0,则一次函数y=(b﹣c)x+ac的大致图象是( )
A. B.
C. D.
8.如图,△ABC的内切圆⊙O与AB,BC,CA分别相切于点D,E,F,且AD=2,BC=5,则△ABC的周长为( )
A.16 B.14 C.12 D.10
9.老师在微信群发了这样一个图:以线段AB为边作正五边形ABCDE和正三角形ABG,连接AC、DG,交点为F,下列四位同学的说法不正确的是( )
A.甲 B.乙 C.丙 D.丁
10.如图所示,二次函数y=ax2+bx+c(a≠0)的图象经过点(﹣1,2),且与x轴交点的横坐标分别为x1、x2,其中﹣2<x1<﹣1,0<x2<1.下列结论:
①4a﹣2b+c<0;②2a﹣b<0;③abc<0;④b2+8a<4ac.
其中正确的结论有( )
A.1个 B.2个 C.3个 D.4个
11.下列函数中,y关于x的二次函数是( )
A.y=ax2+bx+c B.y=x(x﹣1)
C.y= D.y=(x﹣1)2﹣x2
12.如图,四边形ABCD是菱形,∠A=60°,AB=2,扇形BEF的半径为2,圆心角为60°,则图中阴影部分的面积是( )
A. B. C. D.
二、填空题:(本大题共6个小题,每小题4分,共24分.)
13.如果一个正多边形的中心角等于,那么这个正多边形的边数是__________.
14.把两个同样大小的含45°角的三角尺按如图所示的方式放置,其中一个三角尺的锐角顶点与另一个的直角顶点重合于点A,且另三个锐角顶点B,C,D在同一直线上.若AB=,则CD=_____.
15.含角30°的直角三角板与直线,的位置关系如图所示,已知,∠1=60°,以下三个结论中正确的是____(只填序号).
①AC=2BC ②△BCD为正三角形 ③AD=BD
16.分解因式:x2﹣4=_____.
17.因式分解:a2﹣a=_____.
18.如图,网格中的四个格点组成菱形ABCD,则tan∠DBC的值为___________ .
三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.
19.(6分)已知抛物线y=ax2+ c(a≠0).
(1)若抛物线与x轴交于点B(4,0),且过点P(1,–3),求该抛物线的解析式;
(2)若a>0,c =0,OA、OB是过抛物线顶点的两条互相垂直的直线,与抛物线分别交于A、B 两点,求证:直线AB恒经过定点(0,);
(3)若a>0,c <0,抛物线与x轴交于A,B两点(A在B左边),顶点为C,点P在抛物线上且位于第四象限.直线PA、PB与y轴分别交于M、N两点.当点P运动时,是否为定值?若是,试求出该定值;若不是,请说明理由.
20.(6分)某省为解决农村饮用水问题,省财政部门共投资20亿元对各市的农村饮用水的“改水工程”予以一定比例的补助.2008年,A市在省财政补助的基础上投入600万元用于“改水工程”,计划以后每年以相同的增长率投资,2010年该市计划投资“改水工程”1176万元.求A市投资“改水工程”的年平均增长率;从2008年到2010年,A市三年共投资“改水工程”多少万元?
21.(6分)如图,在直角坐标系中△ABC的A、B、C三点坐标A(7,1)、B(8,2)、C(9,0).
(1)请在图中画出△ABC的一个以点P(12,0)为位似中心,相似比为3的位似图形△A′B′C′(要求与△ABC同在P点一侧),画出△A′B′C′关于y轴对称的△A′'B′'C′';
(2)写出点A'的坐标.
22.(8分)已知:AB为⊙O上一点,如图,,,BH与⊙O相切于点B,过点C作BH的平行线交AB于点E.
(1)求CE的长;
(2)延长CE到F,使,连结BF并延长BF交⊙O于点G,求BG的长;
(3)在(2)的条件下,连结GC并延长GC交BH于点D,求证:
23.(8分)计算: ÷ – + 20180
24.(10分)某学校计划组织全校1441名师生到相关部门规划的林区植树,经过研究,决定租用当地租车公司一共62辆A,B两种型号客车作为交通工具.下表是租车公司提供给学校有关两种型号客车的载客量和租金信息:
型号
载客量
租金单价
A
30人/辆
380元/辆
B
20人/辆
280元/辆
注:载客量指的是每辆客车最多可载该校师生的人数设学校租用A型号客车x辆,租车总费用为y元.求y与x的函数解析式,请直接写出x的取值范围;若要使租车总费用不超过21940元,一共有几种租车方案?哪种租车方案总费用最省?最省的总费用是多少?
25.(10分) “千年古都,大美西安”.某校数学兴趣小组就“最想去的西安旅游景点”随机调查了本校部分学生,要求每位同学选择且只能选择一个最想去的景点,(景点对应的名称分别是:A:大雁塔 B:兵马俑 C:陕西历史博物馆 D:秦岭野生动物园 E:曲江海洋馆).下面是根据调查结果进行数据整理后绘制出的不完整的统计图:
请根据图中提供的信息,解答下列问题:
(1)求被调查的学生总人数;
(2)补全条形统计图,并求扇形统计图中表示“最想去景点D”的扇形圆心角的度数;
(3)若该校共有800名学生,请估计“最想去景点B”的学生人数.
26.(12分)如图,在△OAB中,OA=OB,C为AB中点,以O为圆心,OC长为半径作圆,AO与⊙O交于点E,OB与⊙O交于点F和D,连接EF,CF,CF与OA交于点G
(1)求证:直线AB是⊙O的切线;
(2)求证:△GOC∽△GEF;
(3)若AB=4BD,求sinA的值.
27.(12分)甲乙两件服装的进价共500元,商场决定将甲服装按30%的利润定价,乙服装按20%的利润定价,实际出售时,两件服装均按9折出售,商场卖出这两件服装共获利67元.求甲乙两件服装的进价各是多少元;由于乙服装畅销,制衣厂经过两次上调价格后,使乙服装每件的进价达到242元,求每件乙服装进价的平均增长率;若每件乙服装进价按平均增长率再次上调,商场仍按9折出售,定价至少为多少元时,乙服装才可获得利润(定价取整数).
参考答案
一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)
1、B
【解析】
科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.
【详解】
解:1100万=11000000=1.1×107.
故选B.
【点睛】
此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.
2、C
【解析】
试题分析:∵该几何体上下部分均为圆柱体,∴其左视图为矩形,故选C.
考点:简单组合体的三视图.
3、C
【解析】
先根据俯视图判断出几何体的形状,再根据主视图是从正面看画出图形即可.
【详解】
解:由俯视图可知,几何体共有两排,前面一排从左到右分别是1个和2个小正方体搭成两个长方体,
后面一排分别有2个、3个、1个小正方体搭成三个长方体,
并且这两排右齐,故从正面看到的视图为:
.
故选:C.
【点睛】
本题考查几何体三视图,熟记三视图的概念并判断出物体的排列方式是解题的关键.
4、C
【解析】
过点A作AD⊥BC于点D.根据三角函数关系求出BD、CD的长,进而可求出BC的长.
【详解】
如图所示,过点A作AD⊥BC于点D.
在Rt△ABD中,∠BAD=30°,AD=120m,BD=AD∙tan30°=120×=m;
在Rt△ADC中,∠DAC=60°,CD=AD∙tan60°=120×=m.
∴BC=BD+DC=m.
故选C.
【点睛】
本题主要考查三角函数,解答本题的关键是熟练掌握三角函数的有关知识,并牢记特殊角的三角函数值.
5、A
【解析】
解:①由函数图象,得a=120÷3=40,
故①正确,
②由题意,得5.5﹣3﹣120÷(40×2),
=2.5﹣1.5,
=1.
∴甲车维修的时间为1小时;
故②正确,
③如图:
∵甲车维修的时间是1小时,
∴B(4,120).
∵乙在甲出发2小时后匀速前往B地,比甲早30分钟到达.
∴E(5,240).
∴乙行驶的速度为:240÷3=80,
∴乙返回的时间为:240÷80=3,
∴F(8,0).
设BC的解析式为y1=k1t+b1,EF的解析式为y2=k2t+b2,由图象得,
,,
解得,,
∴y1=80t﹣200,y2=﹣80t+640,
当y1=y2时,
80t﹣200=﹣80t+640,
t=5.2.
∴两车在途中第二次相遇时t的值为5.2小时,
故弄③正确,
④当t=3时,甲车行的路程为:120km,乙车行的路程为:80×(3﹣2)=80km,
∴两车相距的路程为:120﹣80=40千米,
故④正确,
故选A.
6、D
【解析】
本题可先由一次函数y=ax+c图象得到字母系数的正负,再与二次函数y=ax2+bx+c的图象相比较看是否一致.
【详解】
A、一次函数y=ax+c与y轴交点应为(0,c),二次函数y=ax2+bx+c与y轴交点也应为(0,c),图象不符合,故本选项错误;
B、由抛物线可知,a>0,由直线可知,a<0,a的取值矛盾,故本选项错误;
C、由抛物线可知,a<0,由直线可知,a>0,a的取值矛盾,故本选项错误;
D、由抛物线可知,a<0,由直线可知,a<0,且抛物线与直线与y轴的交点相同,故本选项正确.
故选D.
【点睛】
本题考查抛物线和直线的性质,用假设法来搞定这种数形结合题是一种很好的方法.
7、D
【解析】
将,代入,得,,然后分析与的正负,即可得到的大致图象.
【详解】
将,代入,得,,
即,.
∴.
∵,∴,∴.
即与异号.
∴.
又∵,
故选D.
【点睛】
本题考查了反比例函数图像上点的坐标特征,一次函数的图像与性质,得出与的正负是解答本题的关键.
8、B
【解析】
根据切线长定理进行求解即可.
【详解】
∵△ABC的内切圆⊙O与AB,BC,CA分别相切于点D,E,F,
∴AF=AD=2,BD=BE,CE=CF,
∵BE+CE=BC=5,
∴BD+CF=BC=5,
∴△ABC的周长=2+2+5+5=14,
故选B.
【点睛】
本题考查了三角形的内切圆以及切线长定理,熟练掌握切线长定理是解题的关键.
9、B
【解析】
利用对称性可知直线DG是正五边形ABCDE和正三角形ABG的对称轴,再利用正五边形、等边三角形的性质一一判断即可;
【详解】
∵五边形ABCDE是正五边形,△ABG是等边三角形,
∴直线DG是正五边形ABCDE和正三角形ABG的对称轴,
∴DG垂直平分线段AB,
∵∠BCD=∠BAE=∠EDC=108°,∴∠BCA=∠BAC=36°,
∴∠DCA=72°,∴∠CDE+∠DCA=180°,∴DE∥AC,
∴∠CDF=∠EDF=∠CFD=72°,
∴△CDF是等腰三角形.
故丁、甲、丙正确.
故选B.
【点睛】
本题考查正多边形的性质、等边三角形的性质、轴对称图形的性质等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.
10、C
【解析】
首先根据抛物线的开口方向可得到a<0,抛物线交y轴于正半轴,则c>0,而抛物线与x轴的交点中,﹣2<x1<﹣1、0<x2<1说明抛物线的对称轴在﹣1~0之间,即x=﹣>﹣1,可根据这些条件以及函数图象上一些特殊点的坐标来进行判断
【详解】
由图知:抛物线的开口向下,则a<0;抛物线的对称轴x=﹣>﹣1,且c>0;
①由图可得:当x=﹣2时,y<0,即4a﹣2b+c<0,故①正确;
②已知x=﹣>﹣1,且a<0,所以2a﹣b<0,故②正确;
③抛物线对称轴位于y轴的左侧,则a、b同号,又c>0,故abc>0,所以③不正确;
④由于抛物线的对称轴大于﹣1,所以抛物线的顶点纵坐标应该大于2,即:>2,由于a<0,所以4ac﹣b2<8a,即b2+8a>4ac,故④正确;
因此正确的结论是①②④.
故选:C.
【点睛】
本题主要考查对二次函数图象与系数的关系,抛物线与x轴的交点,二次函数图象上点的坐标特征等知识点的理解和掌握,能根据图象确定与系数有关的式子的正负是解此题的关键.
11、B
【解析】
判断一个函数是不是二次函数,在关系式是整式的前提下,如果把关系式化简整理(去括号、合并同类项)后,能写成y=ax2+bx+c(a,b,c为常数,a≠0)的形式,那么这个函数就是二次函数,否则就不是.
【详解】
A.当a=0时, y=ax2+bx+c= bx+c,不是二次函数,故不符合题意;
B. y=x(x﹣1)=x2-x,是二次函数,故符合题意;
C. 的自变量在分母中,不是二次函数,故不符合题意;
D. y=(x﹣1)2﹣x2=-2x+1,不是二次函数,故不符合题意;
故选B.
【点睛】
本题考查了二次函数的定义,一般地,形如y=ax2+bx+c(a,b,c为常数,a≠0)的函数叫做二次函数,据此求解即可.
12、B
【解析】
根据菱形的性质得出△DAB是等边三角形,进而利用全等三角形的判定得出△ABG≌△DBH,得出四边形GBHD的面积等于△ABD的面积,进而求出即可.
【详解】
连接BD,
∵四边形ABCD是菱形,∠A=60°,
∴∠ADC=120°,
∴∠1=∠2=60°,
∴△DAB是等边三角形,
∵AB=2,
∴△ABD的高为,
∵扇形BEF的半径为2,圆心角为60°,
∴∠4+∠5=60°,∠3+∠5=60°,
∴∠3=∠4,
设AD、BE相交于点G,设BF、DC相交于点H,
在△ABG和△DBH中,
,
∴△ABG≌△DBH(ASA),
∴四边形GBHD的面积等于△ABD的面积,
∴图中阴影部分的面积是:S扇形EBF-S△ABD=
=.
故选B.
二、填空题:(本大题共6个小题,每小题4分,共24分.)
13、12.
【解析】
根据正n边形的中心角的度数为进行计算即可得到答案.
【详解】
解:根据正n边形的中心角的度数为,则n=360÷30=12,故这个正多边形的边数为12,
故答案为:12.
【点睛】
本题考查的是正多边形内角和中心角的知识,掌握中心角的计算公式是解题的关键.
14、
【解析】
先利用等腰直角三角形的性质求出BC=2,BF=AF=1,再利用勾股定理求出DF,即可得出结论.
【详解】
如图,过点A作AF⊥BC于F,
在Rt△ABC中,∠B=45°,
∴BC=AB=2,BF=AF=AB=1,
∵两个同样大小的含45°角的三角尺,
∴AD=BC=2,
在Rt△ADF中,根据勾股定理得,DF==
∴CD=BF+DF-BC=1+-2=-1,
故答案为-1.
【点睛】
此题主要考查了勾股定理,等腰直角三角形的性质,正确作出辅助线是解本题的关键.
15、②③
【解析】
根据平行线的性质以及等边三角形的性质即可求出答案.
【详解】
由题意可知:∠A=30°,∴AB=2BC,故①错误;
∵l1∥l2,∴∠CDB=∠1=60°.
∵∠CBD=60°,∴△BCD是等边三角形,故②正确;
∵△BCD是等边三角形,∴∠BCD=60°,∴∠ACD=∠A=30°,∴AD=CD=BD,故③正确.
故答案为②③.
【点睛】
本题考查了平行的性质以及等边三角形的性质,解题的关键是熟练运用平行线的性质,等边三角形的性质,含30度角的直角三角形的性质,本题属于中等题型.
16、(x+2)(x﹣2)
【解析】【分析】直接利用平方差公式进行因式分解即可.
【详解】x2﹣4
=x2-22
=(x+2)(x﹣2),
故答案为:(x+2)(x﹣2).
【点睛】本题考查了平方差公式因式分解.能用平方差公式进行因式分解的式子的特点是:两项平方项,符号相反.
17、a(a﹣1)
【解析】
直接提取公因式a,进而分解因式得出答案
【详解】
a2﹣a=a(a﹣1).
故答案为a(a﹣1).
【点睛】
此题考查公因式,难度不大
18、3
【解析】
试题分析:如图,连接AC与BD相交于点O,∵四边形ABCD是菱形,∴AC⊥BD,BO=BD,CO=AC,由勾股定理得,AC==,BD==,所以,BO==,CO==,所以,tan∠DBC===3.故答案为3.
考点:3.菱形的性质;3.解直角三角形;3.网格型.
三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.
19、(1);(2)详见解析;(3)为定值,=
【解析】
(1)把点B(4,0),点P(1,–3)代入y=ax2+ c(a≠0),用待定系数法求解即可;
(2)如图作辅助线AE、BF垂直 x轴,设A(m,am2)、B(n,an2),由△AOE∽△OBF,可得到,然后表示出直线AB的解析式即可得到结论;
(3)作PQ⊥AB于点Q,设P(m,am2+c)、A(–t,0)、B(t,0),则at2+c=0, c= –at2
由PQ∥ON,可得ON=amt+at2,OM= –amt+at2,然后把ON,OM,OC的值代入整理即可.
【详解】
(1)把点B(4,0),点P(1,–3)代入y=ax2+ c(a≠0),
,
解之得
,
∴;
(2)如图作辅助线AE、BF垂直 x轴,设A(m,am2)、B(n,an2),
∵OA⊥OB,
∴∠AOE=∠OBF,
∴△AOE∽△OBF,
∴,,,
直线AB过点A(m,am2)、点B(n,an2),
∴过点(0,);
(3)作PQ⊥AB于点Q,设P(m,am2+c)、A(–t,0)、B(t,0),则at2+c=0, c= –at2
∵PQ∥ON,
∴,
ON=====at(m+t)= amt+at2,
同理:OM= –amt+at2,
所以,OM+ON= 2at2=–2c=OC,
所以,=.
【点睛】
本题考查了待定系数法求函数解析式,相似三角形的判定与性质,平行线分线段成比例定理.正确作出辅助线是解答本题的关键.
20、 (1) 40%;(2) 2616.
【解析】
(1)设A市投资“改水工程”的年平均增长率是x.根据:2008年,A市投入600万元用于“改水工程”,2010年该市计划投资“改水工程”1176万元,列方程求解;
(2)根据(1)中求得的增长率,分别求得2009年和2010年的投资,最后求和即可.
【详解】
解:(1)设A市投资“改水工程”年平均增长率是x,则
.解之,得或(不合题意,舍去).
所以,A市投资“改水工程”年平均增长率为40%.
(2)600+600×1.4+1176=2616(万元).
A市三年共投资“改水工程”2616万元.
21、(1)见解析;(2)点A'的坐标为(-3,3)
【解析】
解:(1),△A′'B′'C′'如图所示.
(2)点A'的坐标为(-3,3).
22、 (1) CE=4;(2)BG=8;(3)证明见解析.
【解析】
(1)只要证明△ABC∽△CBE,可得,由此即可解决问题;
(2)连接AG,只要证明△ABG∽△FBE,可得,由BE==4,再求出BF,即可解决问题;
(3)通过计算首先证明CF=FG,推出∠FCG=∠FGC,由CF∥BD,推出∠GCF=∠BDG,推出∠BDG=∠BGD即可证明.
【详解】
解:(1)∵BH与⊙O相切于点B,
∴AB⊥BH,
∵BH∥CE,
∴CE⊥AB,
∵AB是直径,
∴∠CEB=∠ACB=90°,
∵∠CBE=∠ABC,
∴△ABC∽△CBE,
∴,
∵AC=,
∴CE=4.
(2)连接AG.
∵∠FEB=∠AGB=90°,∠EBF=∠ABG,
∴△ABG∽△FBE,
∴,
∵BE==4,
∴BF= ,
∴,
∴BG=8.
(3)易知CF=4+=5,
∴GF=BG﹣BF=5,
∴CF=GF,
∴∠FCG=∠FGC,
∵CF∥BD,
∴∠GCF=∠BDG,
∴∠BDG=∠BGD,
∴BG=BD.
【点睛】
本题考查的是切线的性质、相似三角形的判定和性质、勾股定理的应用,掌握圆的切线垂直于经过切点的半径是解题的关键.
23、2
【解析】
根据实数的混合运算法则进行计算.
【详解】
解:原式= -( -1)+1=- +1+1=2
【点睛】
此题重点考察学生对实数的混合运算的应用,熟练掌握计算方法是解题的关键.
24、 (1) 21≤x≤62且x为整数;(2)共有25种租车方案,当租用A型号客车21辆,B型号客车41辆时,租金最少,为19460元.
【解析】
(1)根据租车总费用=A、B两种车的费用之和,列出函数关系式,再根据A
B两种车至少要能坐1441人即可得取x的取值范围;
(2)由总费用不超过21940元可得关于x的不等式,解不等式后再利用函数的性质即可解决问题.
【详解】
(1)由题意得y=380x+280(62-x)=100x+17360,
∵30x+20(62-x)≥1441,
∴x≥20.1,∴21≤x≤62且x为整数;
(2)由题意得100x+17360≤21940,
解得x≤45.8,∴21≤x≤45且x为整数,
∴共有25种租车方案,
∵k=100>0,∴y随x的增大而增大,
当x=21时,y有最小值, y最小=100×21+17360=19460,
故共有25种租车方案,当租用A型号客车21辆,B型号客车41辆时,租金最少,为19460元.
【点睛】
本题考查了一次函数的应用、一元一次不等式的应用等,解题的关键是理解题意,正确列出函数关系式,会利用函数的性质解决最值问题.
25、(1)40;(2)想去D景点的人数是8,圆心角度数是72°;(3)280.
【解析】
(1)用最想去A景点的人数除以它所占的百分比即可得到被调查的学生总人数;
(2)先计算出最想去D景点的人数,再补全条形统计图,然后用360°乘以最想去D景点的人数所占的百分比即可得到扇形统计图中表示“醉美旅游景点D”的扇形圆心角的度数;
(3)用800乘以样本中最想去B景点的人数所占的百分比即可.
【详解】
(1)被调查的学生总人数为8÷20%=40(人);
(2)最想去D景点的人数为40-8-14-4-6=8(人),
补全条形统计图为:
扇形统计图中表示“醉美旅游景点D”的扇形圆心角的度数为×360°=72°;
(3)800×=280,
所以估计“醉美旅游景点B“的学生人数为280人.
【点睛】
本题考查了条形统计图:条形统计图是用线段长度表示数据,根据数量的多少画成长短不同的矩形直条,然后按顺序把这些直条排列起来.从条形图可以很容易看出数据的大小,便于比较.也考查了扇形统计图和利用样本估计总体.
26、 (1)见解析;(2)见解析;(3).
【解析】
(1)利用等腰三角形的性质,证明OC⊥AB即可;
(2)证明OC∥EG,推出△GOC∽△GEF即可解决问题;
(3)根据勾股定理和三角函数解答即可.
【详解】
证明:(1)∵OA=OB,AC=BC,
∴OC⊥AB,
∴⊙O是AB的切线.
(2)∵OA=OB,AC=BC,
∴∠AOC=∠BOC,
∵OE=OF,
∴∠OFE=∠OEF,
∵∠AOB=∠OFE+∠OEF,
∴∠AOC=∠OEF,
∴OC∥EF,
∴△GOC∽△GEF,
∴,
∵OD=OC,
∴OD•EG=OG•EF.
(3)∵AB=4BD,
∴BC=2BD,设BD=m,BC=2m,OC=OD=r,
在Rt△BOC中,∵OB2=OC2+BC2,
即(r+m)2=r2+(2m)2,
解得:r=1.5m,OB=2.5m,
∴sinA=sinB=.
【点睛】
考查圆的综合题,考查切线的判定、等腰三角形的性质、平行线的性质、勾股定理等知识,解题的关键是灵活运用所学知识解决问题.
27、(1)甲服装的进价为300元、乙服装的进价为1元.(2)每件乙服装进价的平均增长率为10%;(3)乙服装的定价至少为296元.
【解析】
(1)若设甲服装的成本为x元,则乙服装的成本为(500-x)元.根据公式:总利润=总售价-总进价,即可列出方程.
(2)利用乙服装的成本为1元,经过两次上调价格后,使乙服装每件的进价达到242元,利用增长率公式求出即可;
(3)利用每件乙服装进价按平均增长率再次上调,再次上调价格为:242×(1+10%)=266.2(元),进而利用不等式求出即可.
【详解】
(1)设甲服装的成本为x元,则乙服装的成本为(500-x)元,
根据题意得:90%•(1+30%)x+90%•(1+20%)(500-x)-500=67,
解得:x=300,
500-x=1.
答:甲服装的成本为300元、乙服装的成本为1元.
(2)∵乙服装的成本为1元,经过两次上调价格后,使乙服装每件的进价达到242元,
∴设每件乙服装进价的平均增长率为y,
则,
解得:=0.1=10%,=-2.1(不合题意,舍去).
答:每件乙服装进价的平均增长率为10%;
(3)∵每件乙服装进价按平均增长率再次上调
∴再次上调价格为:242×(1+10%)=266.2(元)
∵商场仍按9折出售,设定价为a元时
0.9a-266.2>0
解得:a>
故定价至少为296元时,乙服装才可获得利润.
考点:一元二次方程的应用,不等式的应用,打折销售问题
2022年内蒙古自治区鄂尔多斯市达标名校中考数学对点突破模拟试卷含解析: 这是一份2022年内蒙古自治区鄂尔多斯市达标名校中考数学对点突破模拟试卷含解析,共19页。试卷主要包含了考生要认真填写考场号和座位序号,不等式组的解集为,函数的自变量x的取值范围是等内容,欢迎下载使用。
2022年蒙古准格尔旗重点名校中考数学对点突破模拟试卷含解析: 这是一份2022年蒙古准格尔旗重点名校中考数学对点突破模拟试卷含解析,共18页。试卷主要包含了考生必须保证答题卡的整洁,的值等于,下列各式正确的是等内容,欢迎下载使用。
2022年内蒙古自治区鄂尔多斯市准格尔旗达标名校中考数学模拟精编试卷含解析: 这是一份2022年内蒙古自治区鄂尔多斯市准格尔旗达标名校中考数学模拟精编试卷含解析,共17页。试卷主要包含了的绝对值是,﹣2018的相反数是等内容,欢迎下载使用。