广东省佛山市三年(2020-2022)小升初数学卷真题分题型分层汇编-01选择题
展开
这是一份广东省佛山市三年(2020-2022)小升初数学卷真题分题型分层汇编-01选择题,共19页。
广东省佛山市三年(2020-2022)小升初数学卷真题分题型分层汇编
01选择题
一.奇数与偶数的初步认识(共1小题)
1.(2022•三水区)已知n表示1、2、3、4、……,那么2n﹣1表示的是( )
A.偶数 B.奇数 C.合数 D.质数
二.分数大小的比较(共3小题)
2.(2020•顺德区)3.14、、31.4%、π四个数中,最大的是( )
A.3.14 B. C.31.4% D.π
3.(2020•南海区)如果a÷(a、b都不等于零),那么( )
A.a>b B.a<b C.a=b D.无法确定
4.(2021•禅城区)如果a、b都是不为0的数,且=b,则a和b的大小关系是( )。
A.a<b B.a=b C.a>b
三.近似数及其求法(共1小题)
5.(2021•禅城区)一个两位小数精确到十分位是7.6,这个数最大是( )。
A.7.59 B.7.64 C.7.69
四.负数的意义及其应用(共3小题)
6.(2020•南海区)下列说法正确的是( )
A.0是最小的数
B.一个数不是正数就是负数
C.负数比正数小
D.数轴上﹣4在﹣8的左边
7.(2022•南海区)如果向南走26米记为+26米,那么向北走43米记为( )
A.+17米 B.﹣17米 C.﹣43米 D.+43米
8.(2021•马山县)一种饼干包装袋上标着:净重(150±5克),表示这种饼干标准的质量是150克,实际每袋最少不少于( )克.
A.160 B.155 C.150 D.145
五.百分数的加减乘除运算(共1小题)
9.(2021•禅城区)一个数的50%是100,这个数是( )
A.200 B.100 C.50
六.用字母表示数(共1小题)
10.(2022•南海区)如果a是2的倍数,那么a一定是( )
A.奇数 B.偶数 C.质数 D.合数
七.比的意义(共1小题)
11.(2022•三水区)学校美术小组有50名同学,男女同学的人数比可能是( )
A.3:8 B.4:5 C.1:9 D.6:7
八.比例的意义和基本性质(共1小题)
12.(2020•顺德区)能与6:9组成比例的是( )
A.3:2 B.2:3 C.4:3 D.3:4
九.辨识成正比例的量与成反比例的量(共3小题)
13.(2021•南海区)下面各选项中两种量成正比例关系的是( )
A.正方形的边长和面积
B.一本书,看了的页数和没看的页数
C.三角形的高一定,它的面积和底
D.从甲地到乙地,汽车的速度和所用时间
14.(2022•南海区)汽车的总路程不变,它的行驶速度与行驶时间( )
A.成正比例 B.成反比例 C.不成比例 D.以上都不对
15.(2022•三水区)下面选项中两种量成正比例关系的是( )
A.一袋糖果,已经吃了的数量和剩下的数量
B.正方形的边长和面积
C.百米比赛中运动员的速度和时间
D.圆的直径和周长
一十.数与形结合的规律(共2小题)
16.(2020•顺德区)如图是用棋子摆成的图形,摆第一个图形需要3枚棋子,摆第二个图形需要6枚棋子,摆第三个图形需要9枚棋子……照这样的规律摆第11个图形需要( )枚棋子.
A.27 B.30 C.33 D.36
17.(2021•南海区)如图,用棋子摆方阵,那么,图n要摆( )枚棋子。
A.4n B.4n﹣1 C.4n+1 D.4(n﹣1)
一十一.分数加减法应用题(共1小题)
18.(2020•南海区)一根4米长的木棍,锯下了米,还剩下( )米.
A.3 B.3 C.1 D.
一十二.分数乘法应用题(共1小题)
19.(2020•顺德区)一本故事书有140页,奇思已经看了这本书的,还剩( )页没有看.
A.80 B.60 C.20 D.100
一十三.简单的工程问题(共1小题)
20.(2022•三水区)每年3月12日是植树节,今年甲乙两队计划种100棵树,甲队独种需要2天,乙队独种需要5天,两队合种共要几天?列式错误的是( )
A.100 B.100÷(100÷2+100÷5)
C.1 D.100÷[100×()]
一十四.正、反比例应用题(共2小题)
21.(2022•南海区)一辆自行车,当前齿轮转了2圈时,后齿轮正好转了3圈,若前齿轮有36个齿,则后齿轮的齿数是( )
A.24 B.36 C.48 D.108
22.(2021•南海区)一种自行车,如果前齿轮转3圈时,后齿轮要转8圈。这种自行车前、后齿轮的齿数可能是( )
A.46和20 B.48和18 C.40和32 D.38和16
一十五.存款利息与纳税相关问题(共1小题)
23.(2022•南海区)张叔叔每月收入10000元。在缴纳个人所得税时,扣除5000元个税免征额后,还可享受赡养老人、子女教育和房贷利息等三项专项附加扣除共3000元,剩下的工资再按3%的税率缴纳个人所得税。张叔叔每月应缴纳的个人所得税是( )
A.300元 B.150元 C.90元 D.60元
一十六.三角形的特性(共1小题)
24.(2020•顺德区)下面能围成三角形的一组线段是( )(单位:厘米)
A.1、2、3 B.3、3、6 C.2、2、5 D.3、3、3
一十七.三角形的内角和(共1小题)
25.(2021•禅城区)等腰三角形的一个底角是52°,则它的顶角是( )
A.128° B.104° C.76°
一十八.圆锥的特征(共1小题)
26.(2020•顺德区)将如图的图形绕虚线旋转一周后会得到的立体图形是( )
A. B. C. D.
一十九.从不同方向观察物体和几何体(共1小题)
27.(2022•三水区)小虎用同样大的正方体摆成了一个长方体。如图分别是他从前面和上面看到的图形。那么从左面看到的是( )
A. B. C. D.
二十.组合图形的面积(共1小题)
28.(2020•南海区)关于如图两个阴影图形的描述,正确的是( )
A.周长和面积都相等 B.周长和面积都不相等
C.周长相等,面积不相等 D.周长不相等,面积相等
二十一.圆锥的体积(共3小题)
29.(2021•南海区)把一个圆柱形的木块切割成一个最大的圆锥,( )
A.圆柱的体积是圆锥体积的
B.圆柱的体积比圆锥体积多
C.圆锥的体积是圆柱体积的3倍
D.圆锥的体积比圆柱体积少
30.(2022•三水区)一段重20千克的圆柱体钢柱,把它锻造成与它等底的圆锥,这个圆锥的高和圆柱的高比较( )
A.圆锥和圆柱的高相等 B.圆锥的高是圆柱的
C.圆锥的高是圆柱的3倍 D.圆锥的高是圆柱的
31.(2022•南海区)下面四组图形中圆柱与圆锥的体积不相等的是( )
A. B.
C. D.
二十二.确定轴对称图形的对称轴条数及位置(共1小题)
32.(2020•顺德区)下面的图形中,对称轴条数最多的是( )
A.正方形 B.等边三角形 C.长方形 D.圆形
二十三.旋转(共1小题)
33.(2021•南海区)如图,三组平面图形的变换从左到右分别属于( )
A.轴对称、平移、旋转 B.轴对称、旋转、平移
C.平移、旋转、轴对称 D.旋转、轴对称、平移
二十四.方向(共1小题)
34.(2022•三水区)学校在小东家东偏南40°方向,放学后他应该往( )方向走回家。
A.东偏南50° B.西偏北50° C.北偏西40° D.西偏北40°
二十五.复式折线统计图(共1小题)
35.(2021•南海区)观察图中斑马和长颈鹿的奔跑情况,斑马比长颈鹿每分钟快( )千米。
A.0.4 B.0.8 C.4 D.8
二十六.平均数的含义及求平均数的方法(共1小题)
36.(2022•南海区)如图是A同学一周内每天30秒跳绳成绩,图中能比较准确的表示A同学这一周内每天30秒跳绳平均成绩的虚线是( )。
A.① B.② C.③ D.④
二十七.游戏规则的公平性(共1小题)
37.(2022•南海区)任选一个盒子摸出个球,摸到白球甲胜,摸到灰球乙胜,以下选项中比较公平的是( )
A. B.
C. D.
二十八.简单事件发生的可能性求解(共1小题)
38.(2022•三水区)一个盒子里面装有4只蓝色球,5只红色球,再加( )只蓝色球,摸到红色球的可能性是。
A.2 B.5 C.9 D.11
二十九.积的变化规律(共1小题)
39.(2021•禅城区)在乘法算式中,两个因数分别扩大2倍和3倍,积的变化是( )。
A.扩大5倍 B.扩大6倍
C.缩小到原来的
三十.利润和利息问题(共1小题)
40.(2021•南海区)有甲、乙两家商店,如果甲店的利润增加25%,乙店的利润减少20%,那么这两家商店的利润就相同。甲店原来的利润是乙店原来利润的( )%。
A.156.25 B.125 C.80 D.64
三十一.年龄问题(共1小题)
41.(2021•南海区)姐姐比小丽大a岁。小丽今年10岁,五年后姐姐比小丽大( )岁。
A.a B.10 C.a+10 D.a+10+5
参考答案与试题解析
一.奇数与偶数的初步认识(共1小题)
1.(2022•三水区)已知n表示1、2、3、4、……,那么2n﹣1表示的是( )
A.偶数 B.奇数 C.合数 D.质数
【解答】解:根据偶数与奇数的定义可知,当n表示1、2、3……时,2n﹣1表示奇数。
故选:B。
二.分数大小的比较(共3小题)
2.(2020•顺德区)3.14、、31.4%、π四个数中,最大的是( )
A.3.14 B. C.31.4% D.π
【解答】解:3=3.2,31.4%=0.314,π≈3.142,
因为3.2>3.142>3.14>0.314,
所以最大的是.
故选:B。
3.(2020•南海区)如果a÷(a、b都不等于零),那么( )
A.a>b B.a<b C.a=b D.无法确定
【解答】解:a÷=1
则a=,b=2
所以,a<b.
故选:B.
4.(2021•禅城区)如果a、b都是不为0的数,且=b,则a和b的大小关系是( )。
A.a<b B.a=b C.a>b
【解答】解:由a=b,可得a:b=:=21:20。
所以a>b。
故选:C。
三.近似数及其求法(共1小题)
5.(2021•禅城区)一个两位小数精确到十分位是7.6,这个数最大是( )。
A.7.59 B.7.64 C.7.69
【解答】解:“四舍”得到的7.6最大是7.64,“五入”得到的7.6最小是7.55。
故选:B。
四.负数的意义及其应用(共3小题)
6.(2020•南海区)下列说法正确的是( )
A.0是最小的数
B.一个数不是正数就是负数
C.负数比正数小
D.数轴上﹣4在﹣8的左边
【解答】解:A选项,因为数有正数、负数和0,负数都小于0,所以原说法错误.
B选项,0既不是正数,也不是负数,所以原说法错误.
C选项,负数都小于0,正数都大于0,所以负数比正数小,原说法正确.
D选项,数轴上的数从左往右越来越大,﹣4在﹣8的右边,原说法错误.
故选:C.
7.(2022•南海区)如果向南走26米记为+26米,那么向北走43米记为( )
A.+17米 B.﹣17米 C.﹣43米 D.+43米
【解答】解:如果向南走26米记为+26米,那么向北走43米记为:﹣43米。
故选:C。
8.(2021•马山县)一种饼干包装袋上标着:净重(150±5克),表示这种饼干标准的质量是150克,实际每袋最少不少于( )克.
A.160 B.155 C.150 D.145
【解答】解:净重(150±5克),表示最少不少于:150﹣5=145(克).
故选:D.
五.百分数的加减乘除运算(共1小题)
9.(2021•禅城区)一个数的50%是100,这个数是( )
A.200 B.100 C.50
【解答】解:100÷50%=200
答:这个数是200。
故选:A。
六.用字母表示数(共1小题)
10.(2022•南海区)如果a是2的倍数,那么a一定是( )
A.奇数 B.偶数 C.质数 D.合数
【解答】解:如果a是2的倍数,a一定是偶数,
故选:B。
七.比的意义(共1小题)
11.(2022•三水区)学校美术小组有50名同学,男女同学的人数比可能是( )
A.3:8 B.4:5 C.1:9 D.6:7
【解答】解:A、3+8=11(份),50不能被11整除,所以3:8不能表示男女人数比,故本选项不符合题意;
B、4+5=9(份),50不能被9整除,所以4:5不能表示男女人数比,故本选项不符合题意;
C、1+9=10(份),50能被10整除,所以1:9能表示男女人数比,故本选项符合题意;
D、6+7=13(份),50不能被13整除,所以6:7不能表示男女人数比,故本选项不符合题意。
故选:C。
八.比例的意义和基本性质(共1小题)
12.(2020•顺德区)能与6:9组成比例的是( )
A.3:2 B.2:3 C.4:3 D.3:4
【解答】解:6:9的比值是,
A、3:2的比值是,
B、2:3的比值是,
C、4:3的比值是,
D、3:4的比值是.
能与6:9组成比例的是2:3.
故选:B.
九.辨识成正比例的量与成反比例的量(共3小题)
13.(2021•南海区)下面各选项中两种量成正比例关系的是( )
A.正方形的边长和面积
B.一本书,看了的页数和没看的页数
C.三角形的高一定,它的面积和底
D.从甲地到乙地,汽车的速度和所用时间
【解答】解:A.正方形的面积=边长×边长(没有定值),所以正方形的面积和边长不成比例;
B.看了的页数+没看的页数=这本书的页数(一定),和一定,所以看了的页数和没看的页数不成比例;
C.三角形的面积÷底=高(一定),商一定,所以它的面积和底成正比例;
D.汽车的速度×所用时间=路程(一定),乘积一定,所以汽车的速度和所用时间成反比例。
故选:C。
14.(2022•南海区)汽车的总路程不变,它的行驶速度与行驶时间( )
A.成正比例 B.成反比例 C.不成比例 D.以上都不对
【解答】解:速度×时间=路程,乘积一定,所以汽车的总路程不变,它的行驶速度与行驶时间成反比例关系。
故选:B。
15.(2022•三水区)下面选项中两种量成正比例关系的是( )
A.一袋糖果,已经吃了的数量和剩下的数量
B.正方形的边长和面积
C.百米比赛中运动员的速度和时间
D.圆的直径和周长
【解答】解:选项A中,已经吃了的数量+剩下的数量=这袋糖果总量,已经吃了的数量和剩下的数量不成比例关系。
选项B中,正方形的面积=边长×边长,边长一定,则面积也一定;面积一定,则边长也一定。正方形的边长和面积不成比例关系。
选项C中,速度×时间=路程,百米赛跑,路程一定,即乘积一定,百米比赛中运动员的速度和时间成反比例关系。
选项D中,圆的周长÷直径=π,π一定,即商一定,圆的直径和周长成正比例关系。
故选:D。
一十.数与形结合的规律(共2小题)
16.(2020•顺德区)如图是用棋子摆成的图形,摆第一个图形需要3枚棋子,摆第二个图形需要6枚棋子,摆第三个图形需要9枚棋子……照这样的规律摆第11个图形需要( )枚棋子.
A.27 B.30 C.33 D.36
【解答】解:根据题干分析可得:摆第一个图形需要3=3×1枚棋子,
摆第二个图形需要3×2=6枚棋子,
摆第三个图形需要3×3=9枚棋子,
摆第四个图形需要3×4=12枚棋子
…,
据此可得摆第n个图形需要3n枚棋子,
当n=11时,11×3=33(枚)
答:照这样的规律摆第11个图形需要33枚棋子.
故选:C.
17.(2021•南海区)如图,用棋子摆方阵,那么,图n要摆( )枚棋子。
A.4n B.4n﹣1 C.4n+1 D.4(n﹣1)
【解答】解:an=a1+(n﹣1)d
=5+(n﹣1)×(9﹣5)
=5+4(n﹣1)
=5+4n﹣4
=4n+1
答:图n要摆(4n+1)枚棋子。
故选:C。
一十一.分数加减法应用题(共1小题)
18.(2020•南海区)一根4米长的木棍,锯下了米,还剩下( )米.
A.3 B.3 C.1 D.
【解答】解:4﹣=3(米)
答:还剩下3米.
故选:A.
一十二.分数乘法应用题(共1小题)
19.(2020•顺德区)一本故事书有140页,奇思已经看了这本书的,还剩( )页没有看.
A.80 B.60 C.20 D.100
【解答】解:140×(1﹣)
=140×
=60(页)
答:还剩60页没有看.
故选:B。
一十三.简单的工程问题(共1小题)
20.(2022•三水区)每年3月12日是植树节,今年甲乙两队计划种100棵树,甲队独种需要2天,乙队独种需要5天,两队合种共要几天?列式错误的是( )
A.100 B.100÷(100÷2+100÷5)
C.1 D.100÷[100×()]
【解答】解:每年3月12日是植树节,今年甲乙两队计划种100棵树,甲队独种需要2天,乙队独种需要5天,两队合种共要几天?列式错误的是100÷(+)。
故选:A。
一十四.正、反比例应用题(共2小题)
21.(2022•南海区)一辆自行车,当前齿轮转了2圈时,后齿轮正好转了3圈,若前齿轮有36个齿,则后齿轮的齿数是( )
A.24 B.36 C.48 D.108
【解答】解:设后齿轮的齿数是x齿,
3x=36×2
3x=72
x=24
答:后齿轮的齿数是24。
故选:A。
22.(2021•南海区)一种自行车,如果前齿轮转3圈时,后齿轮要转8圈。这种自行车前、后齿轮的齿数可能是( )
A.46和20 B.48和18 C.40和32 D.38和16
【解答】解:A.3×46=138,20×8=160,不符合题意;
B.3×48=144,8×18=144,符合题意;
C.3×40=120,8×32=256,不符合题意;
D.3×38=114,8×16=128,不符合题意。
故选:B。
一十五.存款利息与纳税相关问题(共1小题)
23.(2022•南海区)张叔叔每月收入10000元。在缴纳个人所得税时,扣除5000元个税免征额后,还可享受赡养老人、子女教育和房贷利息等三项专项附加扣除共3000元,剩下的工资再按3%的税率缴纳个人所得税。张叔叔每月应缴纳的个人所得税是( )
A.300元 B.150元 C.90元 D.60元
【解答】解:(10000﹣3000﹣5000)×3%
=2000×3%
=60(元)
答:张叔叔每月应缴纳的个人所得税是60元。
故选:D。
一十六.三角形的特性(共1小题)
24.(2020•顺德区)下面能围成三角形的一组线段是( )(单位:厘米)
A.1、2、3 B.3、3、6 C.2、2、5 D.3、3、3
【解答】解:由三角形三边的关系可知,
A、因为1cm+2cm=3cm,所以不可以组成三角形;
B、因为3cm+3cm=6cm,所以不可以组成三角形;
C、因为2cm+2cm<5cm,所以不能组成三角形;
D、因为3cm+3cm>3cm,所以可以组成三角形;
故选:D.
一十七.三角形的内角和(共1小题)
25.(2021•禅城区)等腰三角形的一个底角是52°,则它的顶角是( )
A.128° B.104° C.76°
【解答】解:180°﹣52°×2
=180°﹣104°
=76°
答:它的顶角是76°。
故选:C。
一十八.圆锥的特征(共1小题)
26.(2020•顺德区)将如图的图形绕虚线旋转一周后会得到的立体图形是( )
A. B. C. D.
【解答】解:一个直角三角形围绕一条直角边为中心对称轴旋转一周形成一个圆锥体。
故选:C。
一十九.从不同方向观察物体和几何体(共1小题)
27.(2022•三水区)小虎用同样大的正方体摆成了一个长方体。如图分别是他从前面和上面看到的图形。那么从左面看到的是( )
A. B. C. D.
【解答】解:从左面看到的是。
故选:B。
二十.组合图形的面积(共1小题)
28.(2020•南海区)关于如图两个阴影图形的描述,正确的是( )
A.周长和面积都相等 B.周长和面积都不相等
C.周长相等,面积不相等 D.周长不相等,面积相等
【解答】解:左图的周长:3.14×4+8×2
=12.56+16
=28.56(厘米)
右图的周长:(8+4)×2
=12×2
=24(厘米)
左右图的面积:8×4=32(平方厘米)
所以周长不相等,面积相等.
故选:D.
二十一.圆锥的体积(共3小题)
29.(2021•南海区)把一个圆柱形的木块切割成一个最大的圆锥,( )
A.圆柱的体积是圆锥体积的
B.圆柱的体积比圆锥体积多
C.圆锥的体积是圆柱体积的3倍
D.圆锥的体积比圆柱体积少
【解答】解:把一个圆柱形的木块切割成一个最大的圆锥,圆锥的体积比圆柱体积少。
故选:D。
30.(2022•三水区)一段重20千克的圆柱体钢柱,把它锻造成与它等底的圆锥,这个圆锥的高和圆柱的高比较( )
A.圆锥和圆柱的高相等 B.圆锥的高是圆柱的
C.圆锥的高是圆柱的3倍 D.圆锥的高是圆柱的
【解答】解:一段重20千克的圆柱体钢柱,把它锻造成与它等底的圆锥,这个圆锥的高和圆柱的高的3倍。
故选:C。
31.(2022•南海区)下面四组图形中圆柱与圆锥的体积不相等的是( )
A. B.
C. D.
【解答】解:因为等底等高的圆柱的体积是圆锥体积的3倍,所以当圆柱和圆锥的体积相等,底面积相等时,圆锥的高是圆柱高的3倍,由此可知图A中相等;
当圆柱和圆锥的体积相等,高相等时,圆锥的底面积是圆柱底面积的3倍,由此可知,图B中相等;
当圆柱和圆锥的体积相等时,如果圆锥的底面积是圆柱底面积的2倍,那么圆锥的高是圆柱高的倍,由此可知图C中相等;
因为等底等高的圆柱的体积是圆锥体积的3倍,在图D中,圆锥的底面积是圆柱底面积是3倍,圆锥的高是圆柱高的3倍,所以圆柱和圆锥的体积不相等.
故选:D。
二十二.确定轴对称图形的对称轴条数及位置(共1小题)
32.(2020•顺德区)下面的图形中,对称轴条数最多的是( )
A.正方形 B.等边三角形 C.长方形 D.圆形
【解答】解:A、正方形有4条对称轴,
B、等边三角形有3条对称轴,
C、长方形有2条对称轴,
D、圆有无数条对称轴,
故选:D.
二十三.旋转(共1小题)
33.(2021•南海区)如图,三组平面图形的变换从左到右分别属于( )
A.轴对称、平移、旋转 B.轴对称、旋转、平移
C.平移、旋转、轴对称 D.旋转、轴对称、平移
【解答】解:三组平面图形的变换从左到右分别属于轴对称、旋转、平移。
故选:B。
二十四.方向(共1小题)
34.(2022•三水区)学校在小东家东偏南40°方向,放学后他应该往( )方向走回家。
A.东偏南50° B.西偏北50° C.北偏西40° D.西偏北40°
【解答】解:学校在小东家东偏南40°方向,放学后他应该往西偏北40°方向走回家。
故选:D。
二十五.复式折线统计图(共1小题)
35.(2021•南海区)观察图中斑马和长颈鹿的奔跑情况,斑马比长颈鹿每分钟快( )千米。
A.0.4 B.0.8 C.4 D.8
【解答】解:24÷20﹣24÷30
=1.2﹣0.8
=0.4(千米/分)
答:斑马比长颈鹿每分钟快0.4千米。
故选:A。
二十六.平均数的含义及求平均数的方法(共1小题)
36.(2022•南海区)如图是A同学一周内每天30秒跳绳成绩,图中能比较准确的表示A同学这一周内每天30秒跳绳平均成绩的虚线是( )。
A.① B.② C.③ D.④
【解答】解:由图可知,④比A同学所跳的个数都多,所以不对;
①比A同学所跳的个数都少,所以也不对;
A同学所跳个数大部分在②的上方,所以②的值偏小,②错;
所以应该选C。
答:图中能表示A同学这一周内每天30秒跳绳平均成绩的虚线是③。
故选:C。
二十七.游戏规则的公平性(共1小题)
37.(2022•南海区)任选一个盒子摸出个球,摸到白球甲胜,摸到灰球乙胜,以下选项中比较公平的是( )
A. B.
C. D.
【解答】解:从A盒子摸出个球,摸出白球的可能性是,摸出黑球的可能性是,不公平;从B盒子摸出白球的可能性是,摸出黑球的可能性是,公平;从C盒子摸出白球的可能性是,摸出黑球的可能性是,不公平;从D盒子摸出白球的可能性是,摸出黑球的可能性是,不公平。
故选:B。
二十八.简单事件发生的可能性求解(共1小题)
38.(2022•三水区)一个盒子里面装有4只蓝色球,5只红色球,再加( )只蓝色球,摸到红色球的可能性是。
A.2 B.5 C.9 D.11
【解答】解:设再加x只蓝色球,摸到红色球的可能性是。
5:(4+5+x)=5:11
5:(9+x)=5:11
9+x=11
x=2
答:一个盒子里面装有4只蓝色球,5只红色球,再加2只蓝色球,摸到红色球的可能性是。
故选:A。
二十九.积的变化规律(共1小题)
39.(2021•禅城区)在乘法算式中,两个因数分别扩大2倍和3倍,积的变化是( )。
A.扩大5倍 B.扩大6倍
C.缩小到原来的
【解答】解:在乘法算式中,两个因数分别扩大2倍和3倍,积的变化是:扩大到原来的2×3=6倍。
故选:B。
三十.利润和利息问题(共1小题)
40.(2021•南海区)有甲、乙两家商店,如果甲店的利润增加25%,乙店的利润减少20%,那么这两家商店的利润就相同。甲店原来的利润是乙店原来利润的( )%。
A.156.25 B.125 C.80 D.64
【解答】解:设甲店原来的利润为x元,乙店原来的利润为y元,
(1+25%)x=(1﹣20%)y
1.25x=0.8y
=
=64%
答:原来甲店利润是乙店利润的64%。
故选:D。
三十一.年龄问题(共1小题)
41.(2021•南海区)姐姐比小丽大a岁。小丽今年10岁,五年后姐姐比小丽大( )岁。
A.a B.10 C.a+10 D.a+10+5
【解答】解:姐姐比小丽大a岁。小丽今年10岁,五年后姐姐比小丽大a岁。
故选:A。
相关试卷
这是一份陕西省安康市三年(2020-2022)小升初数学卷真题分题型分层汇编-01选择题(人教版),共15页。试卷主要包含了千米等内容,欢迎下载使用。
这是一份湖南省株洲市三年(2020-2022)小升初数学卷真题分题型分层汇编-01选择题(人教版),共14页。
这是一份广东省广州市三年(2020-2022)小升初数学卷真题分题型分层汇编-01选择题(基础题)(人教版),共15页。