新高考数学模拟卷分类汇编(三期)专题13《平面解析几何》解答题(2份打包,解析版+原卷版)
展开
这是一份新高考数学模拟卷分类汇编(三期)专题13《平面解析几何》解答题(2份打包,解析版+原卷版),文件包含新高考数学模拟卷分类汇编三期专题13《平面解析几何》解答题解析版doc、新高考数学模拟卷分类汇编三期专题13《平面解析几何》解答题原卷版doc等2份试卷配套教学资源,其中试卷共27页, 欢迎下载使用。
专题13 平面解析几何解答题1.(2021·湖南湘潭高三一模)已知圆锥曲线上的点的坐标满足.(1)说明是什么图形,并写出其标准方程;(2)若斜率为1的直线与交于轴右侧不同的两点,,点为.①求直线在轴上的截距的取值范围;②求证:的平分线总垂直于轴.2.(2021·湖南师大附中高三月考)在平面直角坐标系中,已知,动点到直线的距离等于.动点的轨迹记为曲线.(1)求曲线的方程;(2)已知,过点的动直线与曲线交于,两点,记和的面积分别为和,求的最大值.3.(2021·江苏省如皋中学高三月考)己知抛物线,过点作两条互相垂直的直线和,交抛物线于两点,交抛物线于两点,当点的横坐标为1时,抛物线在点处的切线斜率为.(1)求抛物线的标准方程;(2)已知为坐标原点,线段的中点为,线段的中点为,求证:直线过定点.4.(2021·江苏南京市中华中学高三月考)在平面直角坐标系xOy中,已知椭圆C的中心为坐标原点O,焦点在x轴上,右顶点A(2,0)到右焦点的距离与它到右准线的距离之比为.(1)求椭圆C的标准方程;(2)若M,N是椭圆C上关于x轴对称的任意两点,设P(-4,0),连接PM交椭圆C于另一点E.求证:直线NE过定点B,并求出点B的坐标.5.(2021·广东广州高三月考)已知抛物线的焦点为.点在上, .(1)求;(2)过作两条互相垂直的直线,与交于两点,与直线交于点,判断是否为定值?若是,求出其值;若不是,说明理由.6.(2021·广东广雅中学高三月考)已知椭圆上的点到右焦点的最大距离是,且成等的比数列.(1)求椭圆的方程;(2)我们称圆心在椭圆上运动,半径为的圆是椭圆的“卫星圆”,过坐标原点O作椭圆C的“卫星圆”的两条切线,分别交椭圆C于A,B两点,若直线的斜率为,当,求此时“卫星圆”的标准方程.7.(2021·广东茂名高三月考)已知椭圆:,过点的直线,与椭圆分别交于点,和,.记直线斜率为.直线的斜率为.(1)若直线,关于直线对称,证明:为定值;(2)已知点,当时,求面积的最大值.8.(2021·重庆西南大学附中高三月考)如图,一种电影放映灯的反射镜面是旋转椭圆面(椭圆绕其对称轴旋转一周形成的曲面)的一部分.过对称轴的截口是椭圆的一部分,灯丝位于椭圆的一个焦点上,片门位于该椭圆的另一个焦点上.椭圆具有以下光学性质:由椭圆的一个焦点出发的光线,经过椭圆面反射后集中到另一个点.也即:焦点为,的椭圆上任意一点处的切线与直线和直线所成的角相等.已知,,.以所在直线为轴,线段的垂直平分线为轴,建立如下图的平面直角坐标系.(1)求截口所在椭圆的方程;(2)点为椭圆上除长轴端点和短轴端点外的任意一点,若的角平分线交轴于点,设直线的斜率为,直线,的斜率分别为,.请问是否为定值,若是,求出这个定值,若不是,请说明理由.9.(2021·重庆市育才中学高三月考)阿基米德(公元前287年---公元前212年,古希腊)不仅是著名的哲学家、物理学家,也是著名的数学家,他利用“逼近法”得到椭圆面积除以圆周率等于椭圆的长半轴长与短半轴长的乘积.在平面直角坐标系中,椭圆的面积等于,且椭圆的焦距为.(1)求椭圆的标准方程;(2)点是轴上的定点,直线与椭圆交于不同的两点,已知A关于轴的对称点为,点关于原点的对称点为,已知三点共线,试探究直线是否过定点.若过定点,求出定点坐标;若不过定点,请说明理由.10.(2021·重庆南开中学高三月考)设椭圆:的左焦点为,离心率为,过点且与轴垂直的直线被椭圆截得的线段长为.(1)求椭圆的方程;(2)设,分别为椭圆的左、右顶点,过点且斜率为的直线与椭圆交于点,两点,且,求的值.11.(2021·湖北襄阳四中高三月考)在平面直角坐标系中,曲线的方程.(1)若,直线过点被曲线截得的弦长为2,求直线的方程;(2)若,,过坐标原点斜率的直线交于、两点,且点位于第一象限,点在轴上的投影为,延长交于点,求的值.12.(2021·江苏南京市二十九中高三月考)已知:的上顶点到右顶点的距离为,离心率为,过椭圆左焦点作不与轴重合的直线与椭圆相交于、两点,直线的方程为:,过点作垂直于直线交直线于点.(1)求椭圆的标准方程;(2)①求证线段必过定点,并求定点的坐标.②点为坐标原点,求面积的最大值.13.(2021·福建福州三中高三月考)已知椭圆:的左、右焦点分别为,,点,直线的倾斜角为60°,原点到直线的距离是.(1)求的方程;(2)过上任一点作直线,分别交于,(异于的两点),且,,探究是否为定值?若是,求出定值;若不是,请说明理由.14.(2021·辽宁抚顺市二中高三月考)抛物线:在第一象限上一点,过作抛物线的切线交轴于点,过作的垂线交抛物线于,(在第四象限)两点,交于点.(1)求证:过定点;(2)若,求的最小值.15.(2021·广东珠海高三月考)已知双曲线的一个焦点为,且经过点(1)求双曲线C的标准力程;(2)己知点A是C上一定点,过点的动直线与双曲线C交于P,Q两点,若为定值,求点A的坐标及实数的值.16.(2021·福建南平高三月考)已知椭圆的长轴长为,点在上.(1)求的方程;(2)设的上顶点为A,右顶点为B,直线与平行,且与交于,两点,,点为的右焦点,求的最小值.
相关试卷
这是一份新高考数学模拟卷分类汇编(三期)专题11《数列》解答题(2份打包,解析版+原卷版),文件包含新高考数学模拟卷分类汇编三期专题11《数列》解答题解析版doc、新高考数学模拟卷分类汇编三期专题11《数列》解答题原卷版doc等2份试卷配套教学资源,其中试卷共22页, 欢迎下载使用。
这是一份新高考数学模拟卷分类汇编(三期)专题07《平面向量》(2份打包,解析版+原卷版),文件包含新高考数学模拟卷分类汇编三期专题07《平面向量》解析版doc、新高考数学模拟卷分类汇编三期专题07《平面向量》原卷版doc等2份试卷配套教学资源,其中试卷共22页, 欢迎下载使用。
这是一份新高考数学模拟卷分类汇编(三期)专题05《平面解析几何》(2份打包,解析版+原卷版),文件包含新高考数学模拟卷分类汇编三期专题05《平面解析几何》解析版doc、新高考数学模拟卷分类汇编三期专题05《平面解析几何》原卷版doc等2份试卷配套教学资源,其中试卷共21页, 欢迎下载使用。