|试卷下载
终身会员
搜索
    上传资料 赚现金
    2017-2021年山东中考数学真题分类汇编之数与式
    立即下载
    加入资料篮
    2017-2021年山东中考数学真题分类汇编之数与式01
    2017-2021年山东中考数学真题分类汇编之数与式02
    2017-2021年山东中考数学真题分类汇编之数与式03
    还剩23页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    2017-2021年山东中考数学真题分类汇编之数与式

    展开
    这是一份2017-2021年山东中考数学真题分类汇编之数与式,共26页。

    2017-2021年山东中考数学真题分类汇编之数与式
    一.选择题(共12小题)
    1.(2019•东营)﹣2019的相反数是(  )
    A.﹣2019 B.2019 C.﹣ D.
    2.(2020•泰安)的倒数是(  )
    A.﹣2 B.﹣ C.2 D.
    3.(2021•淄博)下表是几种液体在标准大气压下的沸点,则沸点最高的液体是(  )
    液体名称
    液态氧
    液态氢
    液态氮
    液态氦
    沸点/℃
    ﹣183
    ﹣253
    ﹣196
    ﹣268.9
    A.液态氧 B.液态氢 C.液态氮 D.液态氦
    4.(2021•青岛)2021年3月5日,李克强总理在政府工作报告中指出,我国脱贫攻坚成果举世瞩目,5575万农村贫困人口实现脱贫.5575万=55750000,用科学记数法将55750000表示为(  )
    A.5575×104 B.55.75×105 C.5.575×107 D.0.5575×108
    5.(2021•济南)实数a,b在数轴上的对应点的位置如图所示,则下列结论正确的是(  )

    A.a+b>0 B.﹣a>b C.a﹣b<0 D.﹣b<a
    6.(2021•德州)下列运算正确的是(  )
    A.3a﹣4a=﹣1 B.﹣2a3•a2=﹣2a6
    C.(﹣3a)3=﹣9a3 D.(a﹣b)(﹣a﹣b)=b2﹣a2
    7.(2021•济南)计算的结果是(  )
    A.m+1 B.m﹣1 C.m﹣2 D.﹣m﹣2
    8.(2019•济南)化简+的结果是(  )
    A.x﹣2 B. C. D.
    9.(2019•莱芜区)在下列四个实数中,最大的数是(  )
    A.﹣1 B.﹣ C. D.
    10.(2019•日照)在实数,,,中有理数有(  )
    A.1个 B.2个 C.3个 D.4个
    11.(2018•菏泽)下列各数:﹣2,0,,0.020020002…(相邻两个2之间依次多一个0),π,,其中无理数的个数是(  )
    A.4 B.3 C.2 D.1
    12.(2019•烟台)南宋数学家杨辉在其著作《详解九章算法》中揭示了(a+b)n(n为非负整数)展开式的项数及各项系数的有关规律如下,后人也将右表称为“杨辉三角”
    (a+b)0=1
    (a+b)1=a+b
    (a+b)2=a2+2ab+b2
    (a+b)3=a3+3a2b+3ab2+b3
    (a+b)4=a4+4a3b+6a2b2+4ab3+b4
    (a+b)5=a5+5a4b+10a3b2+10a2b3+5ab4+b5

    则(a+b)9展开式中所有项的系数和是(  )

    A.128 B.256 C.512 D.1024
    二.填空题(共9小题)
    13.(2020•徐州)分解因式:m2﹣4=   .
    14.(2018•莱芜)计算:(π﹣3.14)0+2cos60°=   .
    15.(2018•莱芜)如图,正三角形和矩形具有一条公共边,矩形内有一个正方形,其四个顶点都在矩形的边上,正三角形和正方形的面积分别是2和2,则图中阴影部分的面积是    .

    16.(2018•东营)东营市大力推动新旧动能转换,产业转型升级迈出新步伐.建立了新旧动能转换项目库,筛选论证项目377个,计划总投资4147亿元.4147亿元用科学记数法表示为    元.
    17.(2018•菏泽)若a+b=2,ab=﹣3,则代数式a3b+2a2b2+ab3的值为    .
    18.(2019•莱芜区)计算:(﹣)﹣1++|1﹣π|=   .
    19.(2019•威海)分解因式:2x2﹣2x+=   .
    20.(2018•菏泽)一组“数值转换机”按下面的程序计算,如果输入的数是36,则输出的结果为106,要使输出的结果为127,则输入的最小正整数是   .

    21.(2018•泰安)观察“田”字中各数之间的关系:

    则c的值为   .
    三.解答题(共3小题)
    22.(2021•日照)(1)若单项式xm﹣ny14与单项式﹣x3y3m﹣8n是一多项式中的同类项,求m、n的值;
    (2)先化简,再求值:(+)÷,其中x=﹣1.
    23.(2021•青岛)(1)计算:(x+)÷;
    (2)解不等式组:并写出它的整数解.
    24.(2020•烟台)先化简,再求值:(﹣)÷,其中x=+1,y=﹣1.

    2017-2021年山东中考数学真题分类汇编之数与式
    参考答案与试题解析
    一.选择题(共12小题)
    1.(2019•东营)﹣2019的相反数是(  )
    A.﹣2019 B.2019 C.﹣ D.
    【考点】相反数.版权所有
    【专题】数与式.
    【分析】直接利用相反数的定义分析得出答案.
    【解答】解:﹣2019的相反数是:2019.
    故选:B.
    【点评】此题主要考查了相反数,正确把握定义是解题关键.
    2.(2020•泰安)的倒数是(  )
    A.﹣2 B.﹣ C.2 D.
    【考点】倒数.版权所有
    【分析】根据倒数的定义,直接解答即可.
    【解答】解:的倒数是﹣2.
    故选:A.
    【点评】主要考查倒数的概念及性质.倒数的定义:若两个数的乘积是1,我们就称这两个数互为倒数.
    3.(2021•淄博)下表是几种液体在标准大气压下的沸点,则沸点最高的液体是(  )
    液体名称
    液态氧
    液态氢
    液态氮
    液态氦
    沸点/℃
    ﹣183
    ﹣253
    ﹣196
    ﹣268.9
    A.液态氧 B.液态氢 C.液态氮 D.液态氦
    【考点】有理数大小比较;正数和负数.版权所有
    【专题】实数;数感.
    【分析】根据有理数大小的比较方法解答即可.
    【解答】解:∵|﹣268.9|>|﹣253|>|﹣196|>|﹣183|,
    ∴﹣268.9<﹣253<﹣196<﹣183,
    ∴沸点最高的液体是液态氧.
    故选:A.
    【点评】本题考查了有理数大小的比较.解题的关键是明确两个负数比较大小,绝对值大的反而小.
    4.(2021•青岛)2021年3月5日,李克强总理在政府工作报告中指出,我国脱贫攻坚成果举世瞩目,5575万农村贫困人口实现脱贫.5575万=55750000,用科学记数法将55750000表示为(  )
    A.5575×104 B.55.75×105 C.5.575×107 D.0.5575×108
    【考点】科学记数法—表示较大的数.版权所有
    【专题】实数;数感.
    【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值≥10时,n是正整数;当原数的绝对值<1时,n是负整数.据此解答即可.
    【解答】解:55750000=5.575×107,
    故选:C.
    【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要确定a的值以及n的值.
    5.(2021•济南)实数a,b在数轴上的对应点的位置如图所示,则下列结论正确的是(  )

    A.a+b>0 B.﹣a>b C.a﹣b<0 D.﹣b<a
    【考点】实数与数轴;相反数.版权所有
    【专题】实数;几何直观;运算能力.
    【分析】根据数轴上点的位置判断出a与b的正负,以及绝对值的大小,利用有理数的加减和相反数的意义判断即可.
    【解答】解:∵b<0<a,且|b|>|a|
    ∴a+b<0,选项A错误;
    ﹣a>b,选项B正确;
    a﹣b>0,选项C错误;
    ﹣b>a,选项D错误;
    故选:B.
    【点评】此题考查了数轴,根据数轴确定出a与b的正负及绝对值大小是解本题的关键.
    6.(2021•德州)下列运算正确的是(  )
    A.3a﹣4a=﹣1 B.﹣2a3•a2=﹣2a6
    C.(﹣3a)3=﹣9a3 D.(a﹣b)(﹣a﹣b)=b2﹣a2
    【考点】整式的混合运算.版权所有
    【专题】整式;运算能力.
    【分析】根据平方差公式、积的乘方、合并同类项法则以及单项式乘以单项式的计算方法进行判断.
    【解答】解:A.3a﹣4a=﹣a,故错误;
    B.﹣2a3•a2=﹣2a5,故错误;
    C.(﹣3a)3=﹣27a3,故错误;
    D.(a﹣b)(﹣a﹣b)=b2﹣a2,正确.
    故选:D.
    【点评】本题综合考查了平方差公式,积的乘方与合并同类项,单项式乘单项式.此题属于基础题,难度一般.
    7.(2021•济南)计算的结果是(  )
    A.m+1 B.m﹣1 C.m﹣2 D.﹣m﹣2
    【考点】分式的加减法.版权所有
    【专题】分式;运算能力.
    【分析】同分母分式减法,根据法则分母不变分子相减,再约分即可.
    【解答】解:原式====m﹣1.
    故选:B.
    【点评】本题考查分式的加减运算,熟练掌握分式加减运算法则是解题关键.
    8.(2019•济南)化简+的结果是(  )
    A.x﹣2 B. C. D.
    【考点】分式的加减法.版权所有
    【专题】计算题;分式.
    【分析】原式通分并利用同分母分式的加法法则计算即可求出值.
    【解答】解:原式=+==,
    故选:B.
    【点评】本题考查分式的加减法;熟练掌握分式的运算法则,正确进行因式分解是解题的关键.
    9.(2019•莱芜区)在下列四个实数中,最大的数是(  )
    A.﹣1 B.﹣ C. D.
    【考点】实数大小比较;算术平方根.版权所有
    【专题】实数.
    【分析】正实数都大于0,负实数都小于0,正实数大于一切负实数,两个负实数绝对值大的反而小,据此判断即可.
    【解答】解:∵﹣<﹣1<<,
    ∴四个实数中,最大的数是.
    故选:C.
    【点评】此题主要考查了实数大小比较的方法,要熟练掌握,解答此题的关键是要明确:正实数>0>负实数,两个负实数绝对值大的反而小.
    10.(2019•日照)在实数,,,中有理数有(  )
    A.1个 B.2个 C.3个 D.4个
    【考点】实数.版权所有
    【专题】实数.
    【分析】整数和分数统称为有理数,依此定义求解即可.
    【解答】解:在实数,,,中=2,有理数有,共2个.
    故选:B.
    【点评】此题考查了有理数和无理数的定义,注意需化简后再判断.
    11.(2018•菏泽)下列各数:﹣2,0,,0.020020002…(相邻两个2之间依次多一个0),π,,其中无理数的个数是(  )
    A.4 B.3 C.2 D.1
    【考点】无理数;算术平方根.版权所有
    【专题】实数.
    【分析】无理数就是无限不循环小数.理解无理数的概念,一定要同时理解有理数的概念,有理数是整数与分数的统称.即有限小数和无限循环小数是有理数,而无限不循环小数是无理数.由此即可判定选择项.
    【解答】解:,
    ∴在﹣2,0,0.020020002…(相邻两个2之间依次多一个0),π,,其中无理数有0.020020002…(相邻两个2之间依次多一个0),π共2个.
    故选:C.
    【点评】此题主要考查了无理数的定义,注意带根号的要开不尽方才是无理数,无限不循环小数为无理数.如π,,0.8080080008…(每两个8之间依次多1个0)等形式.
    12.(2019•烟台)南宋数学家杨辉在其著作《详解九章算法》中揭示了(a+b)n(n为非负整数)展开式的项数及各项系数的有关规律如下,后人也将右表称为“杨辉三角”
    (a+b)0=1
    (a+b)1=a+b
    (a+b)2=a2+2ab+b2
    (a+b)3=a3+3a2b+3ab2+b3
    (a+b)4=a4+4a3b+6a2b2+4ab3+b4
    (a+b)5=a5+5a4b+10a3b2+10a2b3+5ab4+b5

    则(a+b)9展开式中所有项的系数和是(  )

    A.128 B.256 C.512 D.1024
    【考点】完全平方公式;数学常识.版权所有
    【专题】规律型;整式;运算能力.
    【分析】由“杨辉三角”得到:应该是(a+b)n(n为非负整数)展开式的项系数和为2n.
    【解答】解:当n=0时,展开式中所有项的系数和为1=20,
    当n=1时,展开式中所有项的系数和为2=21,
    当n=2时,展开式中所有项的系数和为4=22,
    •••
    当n=9时,展开式的项系数和为=29=512,
    故选:C.
    【点评】本题考查了“杨辉三角”展开式中所有项的系数和的求法,通过观察展开式中所有项的系数和,得到规律即可求解.
    二.填空题(共9小题)
    13.(2020•徐州)分解因式:m2﹣4= (m+2)(m﹣2) .
    【考点】因式分解﹣运用公式法.版权所有
    【专题】计算题.
    【分析】本题刚好是两个数的平方差,所以利用平方差公式分解则可.平方差公式:a2﹣b2=(a+b)(a﹣b).
    【解答】解:m2﹣4=(m+2)(m﹣2).
    故答案为:(m+2)(m﹣2).
    【点评】本题考查了平方差公式因式分解.能用平方差公式进行因式分解的式子的特点是:两项平方项;符号相反.
    14.(2018•莱芜)计算:(π﹣3.14)0+2cos60°= 2 .
    【考点】实数的运算;零指数幂;特殊角的三角函数值.版权所有
    【专题】计算题;实数.
    【分析】原式利用零指数幂法则,特殊角的三角函数值计算即可求出值.
    【解答】解:原式=1+2×=1+1=2,
    故答案为:2
    【点评】此题考查了实数的运算,熟练掌握运算法则是解本题的关键.
    15.(2018•莱芜)如图,正三角形和矩形具有一条公共边,矩形内有一个正方形,其四个顶点都在矩形的边上,正三角形和正方形的面积分别是2和2,则图中阴影部分的面积是  2 .

    【考点】二次根式的应用.版权所有
    【专题】二次根式.
    【分析】由正方形的面积公式和正三角形的面积公式求得图中大矩形的宽和长,然后求大矩形的面积,从而求得图中阴影部分的面积.
    【解答】解:设正三角形的边长为a,则a2×=2,
    解得a=2.
    则图中阴影部分的面积=2×﹣2=2.
    故答案是:2.

    【点评】考查了二次根式的应用.解题的关键是根据图中正三角形和正方形的面积求得大矩形的长和宽.
    16.(2018•东营)东营市大力推动新旧动能转换,产业转型升级迈出新步伐.建立了新旧动能转换项目库,筛选论证项目377个,计划总投资4147亿元.4147亿元用科学记数法表示为  4.147×1011 元.
    【考点】科学记数法—表示较大的数.版权所有
    【专题】常规题型.
    【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值≥10时,n是正数;当原数的绝对值<1时,n是负数.
    【解答】解:4147亿元用科学记数法表示为4.147×1011,
    故答案为:4.147×1011
    【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.
    17.(2018•菏泽)若a+b=2,ab=﹣3,则代数式a3b+2a2b2+ab3的值为  ﹣12 .
    【考点】因式分解的应用.版权所有
    【专题】常规题型.
    【分析】根据a3b+2a2b2+ab3=ab(a2+2ab+b2)=ab(a+b)2,结合已知数据即可求出代数式a3b+2a2b2+ab3的值.
    【解答】解:∵a+b=2,ab=﹣3,
    ∴a3b+2a2b2+ab3=ab(a2+2ab+b2),
    =ab(a+b)2,
    =﹣3×4,
    =﹣12.
    故答案为:﹣12.
    【点评】本题考查了因式分解的应用以及完全平方式的转化,注意因式分解各种方法的灵活运用是解题的关键.
    18.(2019•莱芜区)计算:(﹣)﹣1++|1﹣π|= π .
    【考点】实数的运算;负整数指数幂.版权所有
    【专题】实数.
    【分析】直接利用负指数幂的性质以及立方根的性质、绝对值的性质分别化简得出答案.
    【解答】解:原式=﹣3+4+π﹣1
    =π.
    故答案为:π.
    【点评】此题主要考查了实数运算,正确化简各数是解题关键.
    19.(2019•威海)分解因式:2x2﹣2x+= 2(x﹣)2 .
    【考点】因式分解﹣十字相乘法等.版权所有
    【专题】整式.
    【分析】直接提取公因式2,再利用公式法分解因式即可.
    【解答】解:原式=2(x2﹣x+)
    =2(x﹣)2.
    故答案为:2(x﹣)2.
    【点评】此题主要考查了提取公因式法以及公式法分解因式,正确应用公式是解题关键.
    20.(2018•菏泽)一组“数值转换机”按下面的程序计算,如果输入的数是36,则输出的结果为106,要使输出的结果为127,则输入的最小正整数是 15 .

    【考点】代数式求值.版权所有
    【专题】计算题;图表型;整式.
    【分析】根据输出的结果确定出x的所有可能值即可.
    【解答】解:当3x﹣2=127时,x=43,
    当3x﹣2=43时,x=15,
    当3x﹣2=15时,x=,不是整数;
    所以输入的最小正整数为15,
    故答案为:15.
    【点评】此题考查了代数式求值,弄清程序中的运算过程是解本题的关键.
    21.(2018•泰安)观察“田”字中各数之间的关系:

    则c的值为 270或28+14 .
    【考点】规律型:数字的变化类.版权所有
    【专题】规律型;整式.
    【分析】依次观察每个“田”中相同位置的数字,即可找到数字变化规律,再观察同一个“田”中各个位置的数字数量关系即可.
    【解答】解:经过观察每个“田”左上角数字依此是1,3,5,7等奇数,此位置数为15时,恰好是第8个奇数,即此“田”字为第8个.观察每个“田”字左下角数据,可以发现,规律是2,22,23,24等,则第8数为28.观察左下和右上角,每个“田”字的右上角数字依次比左下角大0,2,4,6等,到第8个图多14.则c=28+14=270.
    故答案为:270或28+14.
    【点评】本题以探究数字规律为背景,考查学生的数感.解题时注意同等位置的数字变化规律,用代数式表示出来.
    三.解答题(共3小题)
    22.(2021•日照)(1)若单项式xm﹣ny14与单项式﹣x3y3m﹣8n是一多项式中的同类项,求m、n的值;
    (2)先化简,再求值:(+)÷,其中x=﹣1.
    【考点】分式的化简求值;二次根式的混合运算;解二元一次方程组;同类项.版权所有
    【专题】计算题;整式;分式;二次根式;一次方程(组)及应用;运算能力.
    【分析】(1)根据同类项的概念列二元一次方程组,然后解方程组求得m和n的值;
    (2)先通分算小括号里面的,然后算括号外面的,最后代入求值.
    【解答】解:(1)由题意可得,
    ②﹣①×3,可得:﹣5n=5,
    解得:n=﹣1,
    把n=﹣1代入①,可得:m﹣(﹣1)=3,
    解得:m=2,
    ∴m的值为2,n的值为﹣1;
    (2)原式=[]•(x+1)(x﹣1)
    =•(x+1)(x﹣1)
    =x2+1,
    当x=﹣1时,
    原式=(﹣1)2+1=2﹣2+1+1=4﹣2.
    【点评】本题考查同类项,解二元一次方程组,分式的化简求值,二次根式的混合运算,理解同类项的概念,掌握消元法解二元一次方程组的步骤以及完全平方公式(a+b)2=a2+2ab+b2的结构是解题关键.
    23.(2021•青岛)(1)计算:(x+)÷;
    (2)解不等式组:并写出它的整数解.
    【考点】分式的混合运算;解一元一次不等式组;一元一次不等式组的整数解.版权所有
    【专题】分式;一元一次不等式(组)及应用;运算能力.
    【分析】(1)先进行分式的加法运算,再进行除法运算即可;
    (2)先把不等式组的解集求出来,再写出符合条件的解即可.
    【解答】解:(1)(x+)÷


    =;
    (2)
    解不等式①得:x≥﹣1,
    解不等式②得:x<2,
    ∴不等式组的解集为:﹣1≤x<2,
    ∴不等式组的整数解为:﹣1,0,1.
    【点评】本题主要考查分式的混合运算,解一元一次不等式组,解答的关键是对分式的混合运算的各种法则的掌握,对解不等式组的方法的掌握.
    24.(2020•烟台)先化简,再求值:(﹣)÷,其中x=+1,y=﹣1.
    【考点】分式的化简求值;分母有理化.版权所有
    【专题】分式;运算能力;应用意识.
    【分析】先将括号里面的两个分式通分,进而进行分式的减法,再将除法转化为乘法,进行约分化简,最后代入求值即可.
    【解答】解:(﹣)÷,
    =[﹣]÷,
    =×,
    =,
    当x=+1,y=﹣1时,
    原式==2﹣.
    【点评】本题考查分式的混合运算,掌握计算法则,依据运算顺序进行计算是得出正确答案的前提.

    考点卡片
    1.正数和负数
    1、在以前学过的0以外的数叫做正数,在正数前面加负号“﹣”,叫做负数,一个数前面的“+”“﹣”号叫做它的符号.
    2、0既不是正数也不是负数.0是正负数的分界点,正数是大于0的数,负数是小于0的数.
    3、用正负数表示两种具有相反意义的量.具有相反意义的量都是互相依存的两个量,它包含两个要素,一是它们的意义相反,二是它们都是数量.
    2.相反数
    (1)相反数的概念:只有符号不同的两个数叫做互为相反数.
    (2)相反数的意义:掌握相反数是成对出现的,不能单独存在,从数轴上看,除0外,互为相反数的两个数,它们分别在原点两旁且到原点距离相等.
    (3)多重符号的化简:与“+”个数无关,有奇数个“﹣”号结果为负,有偶数个“﹣”号,结果为正.
    (4)规律方法总结:求一个数的相反数的方法就是在这个数的前边添加“﹣”,如a的相反数是﹣a,m+n的相反数是﹣(m+n),这时m+n是一个整体,在整体前面添负号时,要用小括号.
    3.倒数
    (1)倒数:乘积是1的两数互为倒数.
    一般地,a•=1 (a≠0),就说a(a≠0)的倒数是.
    (2)方法指引:
    ①倒数是除法运算与乘法运算转化的“桥梁”和“渡船”.正像减法转化为加法及相反数一样,非常重要.倒数是伴随着除法运算而产生的.
    ②正数的倒数是正数,负数的倒数是负数,而0 没有倒数,这与相反数不同.

    【规律方法】求相反数、倒数的方法
    求一个数的相反数
    求一个数的相反数时,只需在这个数前面加上“﹣”即可
    求一个数的倒数
    求一个整数的倒数,就是写成这个整数分之一
    求一个分数的倒数,就是调换分子和分母的位置
    注意:0没有倒数.
    4.有理数大小比较
    (1)有理数的大小比较
    比较有理数的大小可以利用数轴,他们从右到左的顺序,即从大到小的顺序(在数轴上表示的两个有理数,右边的数总比左边的数大);也可以利用数的性质比较异号两数及0的大小,利用绝对值比较两个负数的大小.
    (2)有理数大小比较的法则:
    ①正数都大于0;
    ②负数都小于0;
    ③正数大于一切负数;
    ④两个负数,绝对值大的其值反而小.
    【规律方法】有理数大小比较的三种方法
    1.法则比较:正数都大于0,负数都小于0,正数大于一切负数.两个负数比较大小,绝对值大的反而小.
    2.数轴比较:在数轴上右边的点表示的数大于左边的点表示的数.
    3.作差比较:
    若a﹣b>0,则a>b;
    若a﹣b<0,则a<b;
    若a﹣b=0,则a=b.
    5.科学记数法—表示较大的数
    (1)科学记数法:把一个大于10的数记成a×10n的形式,其中a是整数数位只有一位的数,n是正整数,这种记数法叫做科学记数法.【科学记数法形式:a×10n,其中1≤a<10,n为正整数.】
    (2)规律方法总结:
    ①科学记数法中a的要求和10的指数n的表示规律为关键,由于10的指数比原来的整数位数少1;按此规律,先数一下原数的整数位数,即可求出10的指数n.
    ②记数法要求是大于10的数可用科学记数法表示,实质上绝对值大于10的负数同样可用此法表示,只是前面多一个负号.
    6.数学常识
    数学常识
    此类问题要结合实际问题来解决,生活中的一些数学常识要了解.比如给出一个物体的高度要会选择它合适的单位长度等等.
    平时要注意多观察,留意身边的小知识.
    7.算术平方根
    (1)算术平方根的概念:一般地,如果一个正数x的平方等于a,即x2=a,那么这个正数x叫做a的算术平方根.记为.
    (2)非负数a的算术平方根a有双重非负性:①被开方数a是非负数;②算术平方根a本身是非负数.
    (3)求一个非负数的算术平方根与求一个数的平方互为逆运算,在求一个非负数的算术平方根时,可以借助乘方运算来寻找.
    8.无理数
    (1)、定义:无限不循环小数叫做无理数.
    说明:无理数是实数中不能精确地表示为两个整数之比的数,即无限不循环小数. 如圆周率、2的平方根等.
    (2)、无理数与有理数的区别:
     ①把有理数和无理数都写成小数形式时,有理数能写成有限小数和无限循环小数,
      比如4=4.0,13=0.33333…而无理数只能写成无限不循环小数,比如2=1.414213562.
     ②所有的有理数都可以写成两个整数之比;而无理数不能.
    (3)学习要求:会判断无理数,了解它的三种形式:①开方开不尽的数,②无限不循环小数,③含有π的数,如分数π2是无理数,因为π是无理数.
    无理数常见的三种类型
    (1)开不尽的方根,如等.
    (2)特定结构的无限不循环小数,
    如0.303 003 000 300 003…(两个3之间依次多一个0).
    (3)含有π的绝大部分数,如2π.
    注意:判断一个数是否为无理数,不能只看形式,要看化简结果.如是有理数,而不是无理数.
    9.实数
    (1)实数的定义:有理数和无理数统称实数.
    (2)实数的分类:
    实数: 或 实数:
    10.实数与数轴
    (1)实数与数轴上的点是一一对应关系.
    任意一个实数都可以用数轴上的点表示;反之,数轴上的任意一个点都表示一个实数.数轴上的任一点表示的数,不是有理数,就是无理数.
    (2)在数轴上,表示相反数的两个点在原点的两旁,并且两点到原点的距离相等,实数a的绝对值就是在数轴上这个数对应的点与原点的距离.
    (3)利用数轴可以比较任意两个实数的大小,即在数轴上表示的两个实数,右边的总比左边的大,在原点左侧,绝对值大的反而小.
    11.实数大小比较
    实数大小比较
    (1)任意两个实数都可以比较大小.正实数都大于0,负实数都小于0,正实数大于一切负实数,两个负实数比大小,绝对值大的反而小.
    (2)利用数轴也可以比较任意两个实数的大小,即在数轴上表示的两个实数,右边的总比左边的大,在原点左侧,绝对值大的反而小.
    12.实数的运算
    (1)实数的运算和在有理数范围内一样,值得一提的是,实数既可以进行加、减、乘、除、乘方运算,又可以进行开方运算,其中正实数可以开平方.
    (2)在进行实数运算时,和有理数运算一样,要从高级到低级,即先算乘方、开方,再算乘除,最后算加减,有括号的要先算括号里面的,同级运算要按照从左到右的顺序进行.
    另外,有理数的运算律在实数范围内仍然适用.

    【规律方法】实数运算的“三个关键”
    1.运算法则:乘方和开方运算、幂的运算、指数(特别是负整数指数,0指数)运算、根式运算、特殊三角函数值的计算以及绝对值的化简等.
    2.运算顺序:先乘方,再乘除,后加减,有括号的先算括号里面的,在同一级运算中要从左到右依次运算,无论何种运算,都要注意先定符号后运算.
    3.运算律的使用:使用运算律可以简化运算,提高运算速度和准确度.
    13.代数式求值
    (1)代数式的值:用数值代替代数式里的字母,计算后所得的结果叫做代数式的值.
    (2)代数式的求值:求代数式的值可以直接代入、计算.如果给出的代数式可以化简,要先化简再求值.
    题型简单总结以下三种:
    ①已知条件不化简,所给代数式化简;
    ②已知条件化简,所给代数式不化简;
    ③已知条件和所给代数式都要化简.
    14.同类项
    (1)定义:所含字母相同,并且相同字母的指数也相同,这样的项叫做同类项.
    同类项中所含字母可以看成是数字、单项式、多项式等.
    (2)注意事项:
    ①一是所含字母相同,二是相同字母的指数也相同,两者缺一不可;
    ②同类项与系数的大小无关;
    ③同类项与它们所含的字母顺序无关;
    ④所有常数项都是同类项.
    15.规律型:数字的变化类
    探究题是近几年中考命题的亮点,尤其是与数列有关的命题更是层出不穷,形式多样,它要求在已有知识的基础上去探究,观察思考发现规律.
    (1)探寻数列规律:认真观察、仔细思考,善用联想是解决这类问题的方法,通常将数字与序号建立数量关系或者与前后数字进行简单运算,从而得出通项公式.
    (2)利用方程解决问题.当问题中有多个未知数时,可先设出其中一个为x,再利用它们之间的关系,设出其他未知数,然后列方程.
    16.完全平方公式
    (1)完全平方公式:(a±b)2=a2±2ab+b2.
    可巧记为:“首平方,末平方,首末两倍中间放”.
    (2)完全平方公式有以下几个特征:①左边是两个数的和的平方;②右边是一个三项式,其中首末两项分别是两项的平方,都为正,中间一项是两项积的2倍;其符号与左边的运算符号相同.
    (3)应用完全平方公式时,要注意:①公式中的a,b可是单项式,也可以是多项式;②对形如两数和(或差)的平方的计算,都可以用这个公式;③对于三项的可以把其中的两项看做一项后,也可以用完全平方公式.
    17.整式的混合运算
    (1)有乘方、乘除的混合运算中,要按照先乘方后乘除的顺序运算,其运算顺序和有理数的混合运算顺序相似.
    (2)“整体”思想在整式运算中较为常见,适时采用整体思想可使问题简单化,并且迅速地解决相关问题,此时应注意被看做整体的代数式通常要用括号括起来.
    18.因式分解-运用公式法
    1、如果把乘法公式反过来,就可以把某些多项式分解因式,这种方法叫公式法.
      平方差公式:a2﹣b2=(a+b)(a﹣b);
      完全平方公式:a2±2ab+b2=(a±b)2;
     2、概括整合:
    ①能够运用平方差公式分解因式的多项式必须是二项式,两项都能写成平方的形式,且符号相反.
    ②能运用完全平方公式分解因式的多项式必须是三项式,其中有两项能写成两个数(或式)的平方和的形式,另一项是这两个数(或式)的积的2倍.
    3、要注意公式的综合应用,分解到每一个因式都不能再分解为止.
    19.因式分解-十字相乘法等
    借助画十字交叉线分解系数,从而帮助我们把二次三项式分解因式的
    方法,通常叫做十字相乘法.
    ①x2+(p+q)x+pq型的式子的因式分解.
    这类二次三项式的特点是:二次项的系数是1;常数项是两个数的积;
    可以直接将某些二次项的系数是1的二次三项式因式分解:
    x2+(p+q)x+pq=(x+p)(x+q)

    ②ax2+bx+c(a≠0)型的式子的因式分解
    这种方法的关键是把二次项系数a分解成两个因数a1,a2的积a1•a2,
    把常数项c分解成两个因数c1,c2的积c1•c2,并使a1c2+a2c1正好是一
    次项b,那么可以直接写成结果:ax2+bx+c=(a1x+c1)(a2x+c2).
    20.因式分解的应用
    1、利用因式分解解决求值问题.
    2、利用因式分解解决证明问题.
    3、利用因式分解简化计算问题.
    【规律方法】因式分解在求代数式值中的应用
    1.因式分解是研究代数式的基础,通过因式分解将多项式合理变形,是求代数式值的常用解题方法,具体做法是:根据题目的特点,先通过因式分解将式子变形,然后再进行整体代入.
    2.用因式分解的方法将式子变形时,根据已知条件,变形的可以是整个代数式,也可以是其中的一部分.
    21.分式的加减法
    (1)同分母分式加减法法则:同分母的分式相加减,分母不变,把分子相加减.
    (2)异分母分式加减法法则:把分母不相同的几个分式化成分母相同的分式,叫做通分,经过通分,异分母分式的加减就转化为同分母分式的加减.
    说明:
    ①分式的通分必须注意整个分子和整个分母,分母是多项式时,必须先分解因式,分子是多项式时,要把分母所乘的相同式子与这个多项式相乘,而不能只同其中某一项相乘.
    ②通分是和约分是相反的一种变换.约分是把分子和分母的所有公因式约去,将分式化为较简单的形式;通分是分别把每一个分式的分子分母同乘以相同的因式,使几个较简单的分式变成分母相同的较复杂的形式.约分是对一个分式而言的;通分则是对两个或两个以上的分式来说的.
    22.分式的混合运算
    (1)分式的混合运算,要注意运算顺序,式与数有相同的混合运算顺序;先乘方,再乘除,然后加减,有括号的先算括号里面的.
    (2)最后结果分子、分母要进行约分,注意运算的结果要化成最简分式或整式.
    (3)分式的混合运算,一般按常规运算顺序,但有时应先根据题目的特点,运用乘法的运算律进行灵活运算.
    【规律方法】分式的混合运算顺序及注意问题
    1.注意运算顺序:分式的混合运算,先乘方,再乘除,然后加减,有括号的先算括号里面的.
    2.注意化简结果:运算的结果要化成最简分式或整式.分子、分母中有公因式的要进行约分化为最简分式或整式.
    3.注意运算律的应用:分式的混合运算,一般按常规运算顺序,但有时应先根据题目的特点,运用乘法的运算律运算,会简化运算过程.
    23.分式的化简求值
    先把分式化简后,再把分式中未知数对应的值代入求出分式的值.
    在化简的过程中要注意运算顺序和分式的化简.化简的最后结果分子、分母要进行约分,注意运算的结果要化成最简分式或整式.
    【规律方法】分式化简求值时需注意的问题
    1.化简求值,一般是先化简为最简分式或整式,再代入求值.化简时不能跨度太大,而缺少必要的步骤,代入求值的模式一般为“当…时,原式=…”.
    2.代入求值时,有直接代入法,整体代入法等常用方法.解题时可根据题目的具体条件选择合适的方法.当未知数的值没有明确给出时,所选取的未知数的值必须使原式中的各分式都有意义,且除数不能为0.
    24.零指数幂
    零指数幂:a0=1(a≠0)
    由am÷am=1,am÷am=am﹣m=a0可推出a0=1(a≠0)
    注意:00≠1.
    25.负整数指数幂
    负整数指数幂:a﹣p=1ap(a≠0,p为正整数)
    注意:①a≠0;
    ②计算负整数指数幂时,一定要根据负整数指数幂的意义计算,避免出现(﹣3)﹣2=(﹣3)×(﹣2)的错误.
    ③当底数是分数时,只要把分子、分母颠倒,负指数就可变为正指数.
    ④在混合运算中,始终要注意运算的顺序.
    26.分母有理化
    (1)分母有理化是指把分母中的根号化去.
    分母有理化常常是乘二次根式本身(分母只有一项)或与原分母组成平方差公式.
    例如:①==;②==.
    (2)两个含二次根式的代数式相乘时,它们的积不含二次根式,这样的两个代数式成互为有理化因式.
    一个二次根式的有理化因式不止一个.
    例如:﹣的有理化因式可以是+,也可以是a(+),这里的a可以是任意有理数.
    27.二次根式的混合运算
    (1)二次根式的混合运算是二次根式乘法、除法及加减法运算法则的综合运用.学习二次根式的混合运算应注意以下几点:
    ①与有理数的混合运算一致,运算顺序先乘方再乘除,最后加减,有括号的先算括号里面的.
    ②在运算中每个根式可以看做是一个“单项式“,多个不同类的二次根式的和可以看作“多项式“.
    (2)二次根式的运算结果要化为最简二次根式.
    (3)在二次根式的混合运算中,如能结合题目特点,灵活运用二次根式的性质,选择恰当的解题途径,往往能事半功倍.
    28.二次根式的应用
    把二次根式的运算与现实生活相联系,体现了所学知识之间的联系,感受所学知识的整体性,不断丰富解决问题的策略,提高解决问题的能力.
    二次根式的应用主要是在解决实际问题的过程中用到有关二次根式的概念、性质和运算的方法.
    29.解二元一次方程组
    (1)用代入法解二元一次方程组的一般步骤:①从方程组中选一个系数比较简单的方程,将这个方程组中的一个未知数用含另一个未知数的代数式表示出来.②将变形后的关系式代入另一个方程,消去一个未知数,得到一个一元一次方程.③解这个一元一次方程,求出x(或y)的值.④将求得的未知数的值代入变形后的关系式中,求出另一个未知数的值.⑤把求得的x、y的值用“{”联立起来,就是方程组的解.
    (2)用加减法解二元一次方程组的一般步骤:①方程组的两个方程中,如果同一个未知数的系数既不相等又不互为相反数,就用适当的数去乘方程的两边,使某一个未知数的系数相等或互为相反数.②把两个方程的两边分别相减或相加,消去一个未知数,得到一个一元一次方程.③解这个一元一次方程,求得未知数的值.④将求出的未知数的值代入原方程组的任意一个方程中,求出另一个未知数的值.⑤把所求得的两个未知数的值写在一起,就得到原方程组的解,用的形式表示.
    30.解一元一次不等式组
    (1)一元一次不等式组的解集:几个一元一次不等式的解集的公共部分,叫做由它们所组成的不等式组的解集.
    (2)解不等式组:求不等式组的解集的过程叫解不等式组.
    (3)一元一次不等式组的解法:解一元一次不等式组时,一般先求出其中各不等式的解集,再求出这些解集的公共部分,利用数轴可以直观地表示不等式组的解集.
    方法与步骤:①求不等式组中每个不等式的解集;②利用数轴求公共部分.
    解集的规律:同大取大;同小取小;大小小大中间找;大大小小找不到.
    31.一元一次不等式组的整数解
    (1)利用数轴确定不等式组的解(整数解).
    解决此类问题的关键在于正确解得不等式组或不等式的解集,然后再根据题目中对于解集的限制得到下一步所需要的条件,再根据得到的条件进而求得不等式组的整数解.
    (2)已知解集(整数解)求字母的取值.
    一般思路为:先把题目中除未知数外的字母当做常数看待解不等式组或方程组等,然后再根据题目中对结果的限制的条件得到有关字母的代数式,最后解代数式即可得到答案.
    32.特殊角的三角函数值
    (1)特指30°、45°、60°角的各种三角函数值.
    sin30°=; cos30°=;tan30°=;
    sin45°=;cos45°=;tan45°=1;
    sin60°=;cos60°=; tan60°=;
    (2)应用中要熟记特殊角的三角函数值,一是按值的变化规律去记,正弦逐渐增大,余弦逐渐减小,正切逐渐增大;二是按特殊直角三角形中各边特殊值规律去记.
    (3)特殊角的三角函数值应用广泛,一是它可以当作数进行运算,二是具有三角函数的特点,在解直角三角形中应用较多.
    声明:试题解析著作权属所有,未经书面同意,不得复制发布
    日期:2022/3/17 9:15:03;用户:组卷1;邮箱:zyb001@xyh.com;学号:41418964

    相关试卷

    2017-2021年四川中考数学真题分类汇编之数与式: 这是一份2017-2021年四川中考数学真题分类汇编之数与式,共22页。

    2017-2021年江苏中考数学真题分类汇编之数与式: 这是一份2017-2021年江苏中考数学真题分类汇编之数与式,共19页。

    2017-2021年广东中考数学真题分类汇编之数与式: 这是一份2017-2021年广东中考数学真题分类汇编之数与式,共16页。

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单

        欢迎来到教习网

        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        使用学贝下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        返回
        顶部
        Baidu
        map