2022年湖南长沙市岳麓区重点达标名校中考数学模拟试题含解析
展开2021-2022中考数学模拟试卷
注意事项:
1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。
2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。
3.考试结束后,将本试卷和答题卡一并交回。
一、选择题(每小题只有一个正确答案,每小题3分,满分30分)
1.将一副三角板(∠A=30°)按如图所示方式摆放,使得AB∥EF,则∠1等于( )
A.75° B.90° C.105° D.115°
2.某小组5名同学在一周内参加家务劳动的时间如表所示,关于“劳动时间”的这组数据,以下说法正确的是( )
动时间(小时)
3
3.5
4
4.5
人数
1
1
2
1
A.中位数是4,平均数是3.75 B.众数是4,平均数是3.75
C.中位数是4,平均数是3.8 D.众数是2,平均数是3.8
3.下列计算正确的是( )
A.a²+a²=a4 B.(-a2)3=a6
C.(a+1)2=a2+1 D.8ab2÷(-2ab)=-4b
4.下列计算正确的是
A.a2·a2=2a4 B.(-a2)3=-a6 C.3a2-6a2=3a2 D.(a-2)2=a2-4
5.下列说法正确的是( )
A.掷一枚均匀的骰子,骰子停止转动后,5点朝上是必然事件
B.明天下雪的概率为,表示明天有半天都在下雪
C.甲、乙两人在相同条件下各射击10次,他们成绩的平均数相同,方差分别是S甲2=0.4,S乙2=0.6,则甲的射击成绩较稳定
D.了解一批充电宝的使用寿命,适合用普查的方式
6.在平面直角坐标系中,将抛物线绕着它与轴的交点旋转180°,所得抛物线的解析式是( ).
A. B.
C. D.
7.不等式组的解集在数轴上表示正确的是( )
A. B. C. D.
8.若关于x的方程 是一元二次方程,则m的取值范围是( )
A.. B.. C. D..
9.如图的立体图形,从左面看可能是( )
A. B.
C. D.
10.若抛物线y=x2﹣3x+c与y轴的交点为(0,2),则下列说法正确的是( )
A.抛物线开口向下
B.抛物线与x轴的交点为(﹣1,0),(3,0)
C.当x=1时,y有最大值为0
D.抛物线的对称轴是直线x=
二、填空题(共7小题,每小题3分,满分21分)
11.如图,AB,AC分别为⊙O的内接正六边形,内接正方形的一边,BC是圆内接n边形的一边,则n等于_____.
12.如图,网格中的四个格点组成菱形ABCD,则tan∠DBC的值为___________ .
13.经过两次连续降价,某药品销售单价由原来的50元降到32元,设该药品平均每次降价的百分率为x,根据题意可列方程是__________________________.
14.点(1,–2)关于坐标原点 O 的对称点坐标是_____.
15.如图,在矩形ABCD中,AD=3,将矩形ABCD绕点A逆时针旋转,得到矩形AEFG,点B的对应点E落在CD上,且DE=EF,则AB的长为_____.
16.已知是一元二次方程的一个根,则方程的另一个根是________.
17.如图,在▱ABCD中,AD=2,AB=4,∠A=30°,以点A为圆心,AD的长为半径画弧交AB于点E,连接CE,则阴影部分的面积是 ▲ (结果保留π).
三、解答题(共7小题,满分69分)
18.(10分)计算:
(1)﹣12018+|﹣2|+2cos30°;
(2)(a+1)2+(1﹣a)(a+1);
19.(5分)如图,已知函数(x>0)的图象经过点A、B,点B的坐标为(2,2).过点A作AC⊥x轴,垂足为C,过点B作BD⊥y轴,垂足为D,AC与BD交于点F.一次函数y=ax+b的图象经过点A、D,与x轴的负半轴交于点E.
若AC=OD,求a、b的值;若BC∥AE,求BC的长.
20.(8分)如图,在电线杆CD上的C处引拉线CE、CF固定电线杆,拉线CE和地面所成的角∠CED=60°,在离电线杆6米的B处安置高为1.5米的测角仪AB,在A处测得电线杆上C处的仰角为30°,求拉线CE的长(结果保留小数点后一位,参考数据:).
21.(10分)如图,一次函数y=k1x+b(k1≠0)与反比例函数的图象交于点A(-1,2),B(m,-1).求一次函数与反比例函数的解析式;在x轴上是否存在点P(n,0),使△ABP为等腰三角形,请你直接写出P点的坐标.
22.(10分)深圳某书店为了迎接“读书节”制定了活动计划,以下是活动计划书的部分信息:
“读书节“活动计划书
书本类别
科普类
文学类
进价(单位:元)
18
12
备注
(1)用不超过16800元购进两类图书共1000本;
(2)科普类图书不少于600本;
…
(1)已知科普类图书的标价是文学类图书标价的1.5倍,若顾客用540元购买的图书,能单独购买科普类图书的数量恰好比单独购买文学类图书的数量少10本,请求出两类图书的标价;
(2)经市场调査后发现:他们高估了“读书节”对图书销售的影响,便调整了销售方案,科普类图书每本标价降低a(0<a<5)元销售,文学类图书价格不变,那么书店应如何进货才能获得最大利润?
23.(12分)如图,在⊙O的内接四边形ABCD中,∠BCD=120°,CA平分∠BCD.
(1)求证:△ABD是等边三角形;
(2)若BD=3,求⊙O的半径.
24.(14分)已知:如图,□ABCD中,BD是对角线,AE⊥BD于E,CF⊥BD于F. 求证:BE=DF.
参考答案
一、选择题(每小题只有一个正确答案,每小题3分,满分30分)
1、C
【解析】
分析:依据AB∥EF,即可得∠BDE=∠E=45°,再根据∠A=30°,可得∠B=60°,利用三角形外角性质,即可得到∠1=∠BDE+∠B=105°.
详解:∵AB∥EF,
∴∠BDE=∠E=45°,
又∵∠A=30°,
∴∠B=60°,
∴∠1=∠BDE+∠B=45°+60°=105°,
故选C.
点睛:本题主要考查了平行线的性质,解题时注意:两直线平行,内错角相等.
2、C
【解析】
试题解析:这组数据中4出现的次数最多,众数为4,
∵共有5个人,
∴第3个人的劳动时间为中位数,
故中位数为:4,
平均数为:=3.1.
故选C.
3、D
【解析】
各项计算得到结果,即可作出判断.
【详解】
A、原式=2a2,不符合题意;
B、原式=-a6,不符合题意;
C、原式=a2+2ab+b2,不符合题意;
D、原式=-4b,符合题意,
故选:D.
【点睛】
此题考查了整式的混合运算,熟练掌握运算法则是解本题的关键.
4、B
【解析】【分析】根据同底数幂乘法、幂的乘方、合并同类项法则、完全平方公式逐项进行计算即可得.
【详解】A. a2·a2=a4 ,故A选项错误;
B. (-a2)3=-a6 ,正确;
C. 3a2-6a2=-3a2 ,故C选项错误;
D. (a-2)2=a2-4a+4,故D选项错误,
故选B.
【点睛】本题考查了同底数幂的乘法、幂的乘方、合并同类项、完全平方公式,熟练掌握各运算的运算法则是解题的关键.
5、C
【解析】
根据必然事件、不可能事件、随机事件的概念、方差和普查的概念判断即可.
【详解】
A. 掷一枚均匀的骰子,骰子停止转动后,5点朝上是随机事件,错误;
B. “明天下雪的概率为”,表示明天有可能下雪,错误;
C. 甲、乙两人在相同条件下各射击10次,他们成绩的平均数相同,方差分别是S甲2=0.4,S乙2=0.6,则甲的射击成绩较稳定,正确;
D. 了解一批充电宝的使用寿命,适合用抽查的方式,错误;
故选:C
【点睛】
考查方差, 全面调查与抽样调查, 随机事件, 概率的意义,比较基础,难度不大.
6、B
【解析】
把抛物线y=x2+2x+3整理成顶点式形式并求出顶点坐标,再求出与y轴的交点坐标,然后求出所得抛物线的顶点,再利用顶点式形式写出解析式即可.
【详解】
解:∵y=x2+2x+3=(x+1)2+2,
∴原抛物线的顶点坐标为(-1,2),
令x=0,则y=3,
∴抛物线与y轴的交点坐标为(0,3),
∵抛物线绕与y轴的交点旋转180°,
∴所得抛物线的顶点坐标为(1,4),
∴所得抛物线的解析式为:y=-x2+2x+3[或y=-(x-1)2+4].
故选:B.
【点睛】
本题考查了二次函数图象与几何变换,利用顶点的变化确定函数解析式的变化可以使求解更简便.
7、A
【解析】
分析:分别求出各不等式的解集,再求出其公共解集并在数轴上表示出来,选出符合条件的选项即可.
详解:
由①得,x≤1,
由②得,x>-1,
故此不等式组的解集为:-1
故选A.
点睛:本题考查的是在数轴上表示一元一此不等式组的解集,把每个不等式的解集在数轴上表示出来(>,≥向右画;<,≤向左画),数轴上的点把数轴分成若干段,如果数轴的某一段上面表示解集的线的条数与不等式的个数一样,那么这段就是不等式组的解集.有几个就要几个.在表示解集时“≥”,“≤”要用实心圆点表示;“<”,“>”要用空心圆点表示.
8、A
【解析】
根据一元二次方程的定义可得m﹣1≠0,再解即可.
【详解】
由题意得:m﹣1≠0,
解得:m≠1,
故选A.
【点睛】
此题主要考查了一元二次方程的定义,关键是掌握只含有一个未知数,并且未知数的最高次数是2的整式方程叫一元二次方程.
9、A
【解析】
根据三视图的性质即可解题.
【详解】
解:根据三视图的概念可知,该立体图形是三棱柱,左视图应为三角形,且直角应该在左下角,
故选A.
【点睛】
本题考查了三视图的识别,属于简单题,熟悉三视图的概念是解题关键.
10、D
【解析】
A、由a=1>0,可得出抛物线开口向上,A选项错误;
B、由抛物线与y轴的交点坐标可得出c值,进而可得出抛物线的解析式,令y=0求出x值,由此可得出抛物线与x轴的交点为(1,0)、(1,0),B选项错误;
C、由抛物线开口向上,可得出y无最大值,C选项错误;
D、由抛物线的解析式利用二次函数的性质,即可求出抛物线的对称轴为直线x=-,D选项正确.
综上即可得出结论.
【详解】
解:A、∵a=1>0,
∴抛物线开口向上,A选项错误;
B、∵抛物线y=x1-3x+c与y轴的交点为(0,1),
∴c=1,
∴抛物线的解析式为y=x1-3x+1.
当y=0时,有x1-3x+1=0,
解得:x1=1,x1=1,
∴抛物线与x轴的交点为(1,0)、(1,0),B选项错误;
C、∵抛物线开口向上,
∴y无最大值,C选项错误;
D、∵抛物线的解析式为y=x1-3x+1,
∴抛物线的对称轴为直线x=-=-=,D选项正确.
故选D.
【点睛】
本题考查了抛物线与x轴的交点、二次函数的性质、二次函数的最值以及二次函数图象上点的坐标特征,利用二次函数的性质及二次函数图象上点的坐标特征逐一分析四个选项的正误是解题的关键.
二、填空题(共7小题,每小题3分,满分21分)
11、12
【解析】
连接AO,BO,CO,如图所示:
∵AB、AC分别为⊙O的内接正六边形、内接正方形的一边,
∴∠AOB==60°,∠AOC==90°,
∴∠BOC=30°,
∴n==12,
故答案为12.
12、3
【解析】
试题分析:如图,连接AC与BD相交于点O,∵四边形ABCD是菱形,∴AC⊥BD,BO=BD,CO=AC,由勾股定理得,AC==,BD==,所以,BO==,CO==,所以,tan∠DBC===3.故答案为3.
考点:3.菱形的性质;3.解直角三角形;3.网格型.
13、50(1﹣x)2=1.
【解析】
由题意可得,
50(1−x)²=1,
故答案为50(1−x)²=1.
14、(-1,2)
【解析】
根据两个点关于原点对称时,它们的坐标符号相反可得答案.
【详解】
A(1,-2)关于原点O的对称点的坐标是(-1,2),
故答案为:(-1,2).
【点睛】
此题主要考查了关于原点对称的点的坐标,关键是掌握点的坐标的变化规律.
15、3
【解析】
【分析】根据旋转的性质知AB=AE,在直角三角形ADE中根据勾股定理求得AE长即可得.
【详解】∵四边形ABCD是矩形,∴∠D=90°,BC=AD=3,
∵将矩形ABCD绕点A逆时针旋转得到矩形AEFG,
∴EF=BC=3,AE=AB,
∵DE=EF,
∴AD=DE=3,
∴AE==3,
∴AB=3,
故答案为3.
【点睛】本题考查矩形的性质和旋转的性质,熟知旋转前后哪些线段是相等的是解题的关键.
16、
【解析】
通过观察原方程可知,常数项是一未知数,而一次项系数为常数,因此可用两根之和公式进行计算,将2-代入计算即可.
【详解】
设方程的另一根为x1,
又∵x=2-,由根与系数关系,得x1+2-=4,解得x1=2+.
故答案为:
【点睛】
解决此类题目时要认真审题,确定好各系数的数值与正负,然后适当选择一个根与系数的关系式求解.
17、
【解析】
过D点作DF⊥AB于点F.
∵AD=1,AB=4,∠A=30°,
∴DF=AD•sin30°=1,EB=AB﹣AE=1.
∴阴影部分的面积=平行四边形ABCD的面积-扇形ADE面积-三角形CBE的面积
=.
故答案为:.
三、解答题(共7小题,满分69分)
18、 (1)1;(2)2a+2
【解析】
(1)根据特殊角锐角三角函数值、绝对值的性质即可求出答案;
(2)先化简原式,然后将x的值代入原式即可求出答案.
【详解】
解:(1)原式=﹣1+2﹣+2×=1;
(2)原式=a2+2a+1+1﹣a2=2a+2.
【点睛】
本题考查学生的运算能力,解题的关键是熟练运用运算法则,本题属于基础题型.
19、(1)a=,b=2;(2)BC=.
【解析】
试题分析:(1)首先利用反比例函数图象上点的坐标性质得出k的值,再得出A、D点坐标,进而求出a,b的值;
(2)设A点的坐标为:(m,),则C点的坐标为:(m,0),得出tan∠ADF=,tan∠AEC=,进而求出m的值,即可得出答案.
试题解析:(1)∵点B(2,2)在函数y=(x>0)的图象上,
∴k=4,则y=,
∵BD⊥y轴,∴D点的坐标为:(0,2),OD=2,
∵AC⊥x轴,AC=OD,∴AC=3,即A点的纵坐标为:3,
∵点A在y=的图象上,∴A点的坐标为:(,3),
∵一次函数y=ax+b的图象经过点A、D,
∴,
解得:,b=2;
(2)设A点的坐标为:(m,),则C点的坐标为:(m,0),
∵BD∥CE,且BC∥DE,
∴四边形BCED为平行四边形,
∴CE=BD=2,
∵BD∥CE,∴∠ADF=∠AEC,
∴在Rt△AFD中,tan∠ADF=,
在Rt△ACE中,tan∠AEC=,
∴=,
解得:m=1,
∴C点的坐标为:(1,0),则BC=.
考点:反比例函数与一次函数的交点问题.
20、5.7米.
【解析】
试题分析:由题意,过点A作AH⊥CD于H.在Rt△ACH中,可求出CH,进而CD=CH+HD=CH+AB,再在Rt△CED中,求出CE的长.
试题解析:解:如答图,过点A作AH⊥CD,垂足为H,
由题意可知四边形ABDH为矩形,∠CAH=30°,
∴AB=DH=1.5,BD=AH=6.
在Rt△ACH中,CH=AH•tan∠CAH=6tan30°=6×,
∵DH=1.5,∴CD=+1.5.
在Rt△CDE中,∵∠CED=60°,∴CE=(米).
答:拉线CE的长约为5.7米.
考点:1.解直角三角形的应用(仰角俯角问题);2.锐角三角函数定义;3.特殊角的三角函数值;4.矩形的判定和性质.
21、(1)反比例函数的解析式为;一次函数的解析式为y=-x+1;(2)满足条件的P点的坐标为(-1+,0)或(-1-,0)或(2+,0)或(2-,0)或(0,0).
【解析】
(1)将A点代入求出k2,从而求出反比例函数方程,再联立将B点代入即可求出一次函数方程.
(2)令PA=PB,求出P.令AP=AB,求P.令BP=BA,求P.根据坐标距离公式计算即可.
【详解】
(1)把A(-1,2)代入,得到k2=-2,
∴反比例函数的解析式为.
∵B(m,-1)在上,∴m=2,
由题意,解得:,∴一次函数的解析式为y=-x+1.
(2)满足条件的P点的坐标为(-1+,0)或(-1-,0)或(2+,0)或(2-,0)或(0,0).
【点睛】
本题考查一次函数图像与性质和反比例函数的图像和性质,解题的关键是待定系数法,分三种情况讨论.
22、(1)A类图书的标价为27元,B类图书的标价为18元;(2)当A类图书每本降价少于3元时,A类图书购进800本,B类图书购进200本,利润最大;当A类图书每本降价大于等于3元,小于5元时,A类图书购进600本,B类图书购进400本,利润最大.
【解析】
(1)先设B类图书的标价为x元,则由题意可知A类图书的标价为1.5x元,然后根据题意列出方程,求解即可.
(2)先设购进A类图书t本,总利润为w元,则购进B类图书为(1000-t)本,根据题目中所给的信息列出不等式组,求出t的取值范围,然后根据总利润w=总售价-总成本,求出最佳的进货方案.
【详解】
解:(1)设B类图书的标价为x元,则A类图书的标价为1.5x元,
根据题意可得,
化简得:540-10x=360,
解得:x=18,
经检验:x=18是原分式方程的解,且符合题意,
则A类图书的标价为:1.5x=1.5×18=27(元),
答:A类图书的标价为27元,B类图书的标价为18元;
(2)设购进A类图书t本,总利润为w元,A类图书的标价为(27-a)元(0<a<5),
由题意得,,
解得:600≤t≤800,
则总利润w=(27-a-18)t+(18-12)(1000-t)
=(9-a)t+6(1000-t)
=6000+(3-a)t,
故当0<a<3时,3-a>0,t=800时,总利润最大,且大于6000元;
当a=3时,3-a=0,无论t值如何变化,总利润均为6000元;
当3<a<5时,3-a<0,t=600时,总利润最大,且小于6000元;
答:当A类图书每本降价少于3元时,A类图书购进800本,B类图书购进200本时,利润最大;当A类图书每本降价大于等于3元,小于5元时,A类图书购进600本,B类图书购进400本时,利润最大.
【点睛】
本题考查了一次函数的应用,分式方程的应用、一元一次不等式组的应用、一次函数的最值问题,解答本题的关键在于读懂题意,设出未知数,找出合适的等量关系,列出方程和不等式组求解.
23、(1)详见解析;(2).
【解析】
(1)因为AC平分∠BCD,∠BCD=120°,根据角平分线的定义得:∠ACD=∠ACB=60°,根据同弧所对的圆周角相等,得∠ACD=∠ABD,∠ACB=∠ADB,∠ABD=∠ADB=60°.根据三个角是60°的三角形是等边三角形得△ABD是等边三角形.(2)作直径DE,连结BE,由于△ABD是等边三角形,则∠BAD=60°,由同弧所对的圆周角相等,得∠BED=∠BAD=60°.根据直径所对的圆周角是直角得,∠EBD=90°,则∠EDB=30°,进而得到DE=2BE.设EB=x,则ED=2x,根据勾股定理列方程求解即可.
【详解】
解:(1)∵∠BCD=120°,CA平分∠BCD,
∴∠ACD=∠ACB=60°,
由圆周角定理得,∠ADB=∠ACB=60°,∠ABD=∠ACD=60°,
∴△ABD是等边三角形;
(2)连接OB、OD,作OH⊥BD于H,
则DH=BD=,
∠BOD=2∠BAD=120°,
∴∠DOH=60°,
在Rt△ODH中,OD==,
∴⊙O的半径为.
【点睛】
本题是一道圆的简单证明题,以圆的内接四边形为背景,圆的内接四边形的对角互补,在圆中往往通过连结直径构造直角三角形,再通过三角函数或勾股定理来求解线段的长度.
24、(1)证明:∵ABCD是平行四边形
∴AB=CD
AB∥CD
∴∠ABE=∠CDF
又∵AE⊥BD,CF⊥BD
∴∠AEB=∠CFD=
∴△ABE≌△CDF
∴BE=DF
【解析】
证明:在□ABCD中
∵AB∥CD
∴∠ABE=∠CDF…………………………………………………………4分
∵AE⊥BD CF⊥BD
∴∠AEB=∠CFD=900……………………………………………………5分
∵AB=CD
∴△ABE≌△CDF…………………………………………………………6分
∴BE=DF
2023年湖南省长沙市岳麓区麓山国际实验学校中考数学模拟试卷(含解析): 这是一份2023年湖南省长沙市岳麓区麓山国际实验学校中考数学模拟试卷(含解析),共24页。试卷主要包含了选择题,羊二,直金十九两,填空题,解答题等内容,欢迎下载使用。
湖南长沙市岳麓区重点达标名校2022年十校联考最后数学试题含解析: 这是一份湖南长沙市岳麓区重点达标名校2022年十校联考最后数学试题含解析,共24页。试卷主要包含了已知点 A等内容,欢迎下载使用。
2022年湖南省长沙市岳麓区长郡梅溪湖达标名校中考三模数学试题含解析: 这是一份2022年湖南省长沙市岳麓区长郡梅溪湖达标名校中考三模数学试题含解析,共22页。试卷主要包含了考生必须保证答题卡的整洁,下列计算中,错误的是等内容,欢迎下载使用。