四川省自贡市三年(2020-2022)年中考数学真题汇编-02填空题知识点分类
展开四川省自贡市三年(2020-2022)年中考数学真题汇编-02填空题知识点分类
一.绝对值(共1小题)
1.(2022•自贡)计算:|﹣2|= .
二.有理数的混合运算(共1小题)
2.(2021•自贡)如图,某学校“桃李餐厅”把WIFI密码做成了数学题.小红在餐厅就餐时,思索了一会儿,输入密码,顺利地连接到了“桃李餐厅”的网络.那么她输入的密码是 .
三.估算无理数的大小(共2小题)
3.(2021•自贡)请写出一个满足不等式x+>7的整数解 .
4.(2020•自贡)与﹣2最接近的自然数是 .
四.因式分解-提公因式法(共1小题)
5.(2022•舟山)分解因式:m2+m= .
五.提公因式法与公式法的综合运用(共1小题)
6.(2020•自贡)分解因式:3a2﹣6ab+3b2= .
六.分式的加减法(共1小题)
7.(2021•自贡)化简:﹣= .
七.分式的混合运算(共1小题)
8.(2022•自贡)化简:•+= .
八.一次函数的性质(共1小题)
9.(2021•自贡)当自变量﹣1≤x≤3时,函数y=|x﹣k|(k为常数)的最小值为k+3,则满足条件的k的值为 .
九.反比例函数与一次函数的交点问题(共1小题)
10.(2020•自贡)如图,直线y=﹣x+b与y轴交于点A,与双曲线y=在第三象限交于B、C两点,且AB•AC=16.下列等边三角形△OD1E1,△E1D2E2,△E2D3E3,…的边OE1,E1E2,E2E3,…在x轴上,顶点D1,D2,D3,…在该双曲线第一象限的分支上,则k= ,前25个等边三角形的周长之和为 .
一十.垂径定理(共1小题)
11.(2022•自贡)一块圆形玻璃镜面碎成了几块,其中一块如图所示,测得弦AB长20厘米,弓形高CD为2厘米,则镜面半径为 厘米.
一十一.切线的性质(共1小题)
12.(2020•自贡)如图,矩形ABCD中,E是AB上一点,连接DE,将△ADE沿DE翻折,恰好使点A落在BC边的中点F处,在DF上取点O,以O为圆心,OF长为半径作半圆与CD相切于点G.若AD=4,则图中阴影部分的面积为 .
一十二.轴对称-最短路线问题(共1小题)
13.(2022•自贡)如图,矩形ABCD中,AB=4,BC=2,G是AD的中点,线段EF在边AB上左右滑动,若EF=1,则GE+CF的最小值为 .
一十三.解直角三角形的应用-坡度坡角问题(共1小题)
14.(2020•自贡)如图,我市在建高铁的某段路基横断面为梯形ABCD,DC∥AB.BC长6米,坡角β为45°,AD的坡角α为30°,则AD长为 米(结果保留根号).
一十四.用样本估计总体(共1小题)
15.(2022•自贡)为了比较甲、乙两鱼池中的鱼苗数目,小明从两鱼池中各捞出100条鱼苗,每条做好记号,然后放回原鱼池.一段时间后,在同样的地方,小明再从甲、乙两鱼池中各捞出100条鱼苗,发现其中有记号的鱼苗分别是5条、10条,可以初步估计鱼苗数目较多的是 鱼池.(填甲或乙)
一十五.扇形统计图(共1小题)
16.(2020•自贡)某中学新建食堂正式投入使用,为提高服务质量,食堂管理人员对学生进行了“最受欢迎菜品”的调查统计.以下是打乱了的调查统计顺序,请按正确顺序重新排序(只填番号): .
①绘制扇形图;
②收集最受学生欢迎菜品的数据;
③利用扇形图分析出最受学生欢迎的菜品;
④整理所收集的数据.
一十六.加权平均数(共1小题)
17.(2021•自贡)某中学规定学生的学期体育成绩满分为100,其中体育课外活动占30%,期末考试成绩占70%,小彤的这两项成绩依次是90,80.则小彤这学期的体育成绩是 .
参考答案与试题解析
一.绝对值(共1小题)
1.(2022•自贡)计算:|﹣2|= 2 .
【解答】解:∵﹣2<0,
∴|﹣2|=2.
故答案为:2.
二.有理数的混合运算(共1小题)
2.(2021•自贡)如图,某学校“桃李餐厅”把WIFI密码做成了数学题.小红在餐厅就餐时,思索了一会儿,输入密码,顺利地连接到了“桃李餐厅”的网络.那么她输入的密码是 244872 .
【解答】解:由三个等式,得到规律:
5*3⊕6=301848可知:5×6 3×6 6×(5+3),
2*6⊕7=144256可知:2×7 6×7 7×(2+6),
9*2⊕5=451055可知:9×5 2×5 5×(9+2),
∴4*8⊕6=4×6 8×6 6×(4+8)=244872.
故答案为:244872.
三.估算无理数的大小(共2小题)
3.(2021•自贡)请写出一个满足不等式x+>7的整数解 6(答案不唯一) .
【解答】解:∵x+>7,
∴x>7﹣,
∵1<<2,
∴﹣2<﹣<﹣1,
∴7﹣2<7﹣<﹣1+7
∴5<7﹣<6,
故满足不等式x+>7的整数解可以为:6(答案不唯一).
故答案为:6(答案不唯一).
4.(2020•自贡)与﹣2最接近的自然数是 2 .
【解答】解:∵3.5<<4,
∴1.5<﹣2<2,
∴与﹣2最接近的自然数是2.
故答案为:2.
四.因式分解-提公因式法(共1小题)
5.(2022•舟山)分解因式:m2+m= m(m+1) .
【解答】解:m2+m=m(m+1).
故答案为:m(m+1).
五.提公因式法与公式法的综合运用(共1小题)
6.(2020•自贡)分解因式:3a2﹣6ab+3b2= 3(a﹣b)2 .
【解答】解:3a2﹣6ab+3b2
=3(a2﹣2ab+b2)
=3(a﹣b)2.
故答案为:3(a﹣b)2.
六.分式的加减法(共1小题)
7.(2021•自贡)化简:﹣= .
【解答】解:
=
=
=
=
=.
故答案为:.
七.分式的混合运算(共1小题)
8.(2022•自贡)化简:•+= .
【解答】解:•+
=+
=+
=,
故答案为:.
八.一次函数的性质(共1小题)
9.(2021•自贡)当自变量﹣1≤x≤3时,函数y=|x﹣k|(k为常数)的最小值为k+3,则满足条件的k的值为 ﹣2 .
【解答】解:当x≥k时,函数y=|x﹣k|=x﹣k,此时y随x的增大而增大,
而﹣1≤x≤3时,函数的最小值为k+3,
∴x=﹣1时取得最小值,即有﹣1﹣k=k+3,
解得k=﹣2,(此时﹣1≤x≤3,x≥k成立),
当x<k时,函数y=|x﹣k|=﹣x+k,此时y随x的增大而减小,
而﹣1≤x≤3时,函数的最小值为k+3,
∴x=3时取得最小值,即有﹣3+k=k+3,
此时无解,
故答案为:﹣2.
九.反比例函数与一次函数的交点问题(共1小题)
10.(2020•自贡)如图,直线y=﹣x+b与y轴交于点A,与双曲线y=在第三象限交于B、C两点,且AB•AC=16.下列等边三角形△OD1E1,△E1D2E2,△E2D3E3,…的边OE1,E1E2,E2E3,…在x轴上,顶点D1,D2,D3,…在该双曲线第一象限的分支上,则k= 4 ,前25个等边三角形的周长之和为 60 .
【解答】解:设直线y=﹣x+b与x轴交于点D,作BE⊥y轴于E,CF⊥y轴于F.
∵y=﹣x+b,
∴当y=0时,x=b,即点D的坐标为(b,0),
当x=0时,y=b,即A点坐标为(0,b),
∴OA=﹣b,OD=﹣b.
∵在Rt△AOD中,tan∠ADO==,
∴∠ADO=60°.
∵直线y=﹣x+b与双曲线y=在第三象限交于B、C两点,
∴﹣x+b=,
整理得,﹣x2+bx﹣k=0,
由韦达定理得:x1x2=k,即EB•FC=k,
∵=cos60°=,
∴AB=2EB,
同理可得:AC=2FC,
∴AB•AC=(2EB)(2FC)=4EB•FC=k=16,
解得:k=4.
由题意可以假设D1(m,m),
∴m2•=4,
∴m=2
∴OE1=4,即第一个三角形的周长为12,
设D2(4+n,n),
∵(4+n)•n=4,
解得n=2﹣2,
∴E1E2=4﹣4,即第二个三角形的周长为12﹣12,
设D3(4+a,a),
由题意(4+a)•a=4,
解得a=2﹣2,即第三个三角形的周长为12﹣12,
…,
∴第四个三角形的周长为12﹣12,
∴前25个等边三角形的周长之和12+12﹣12+12﹣12+12﹣12+…+12﹣12=12=60,
故答案为:4,60.
一十.垂径定理(共1小题)
11.(2022•自贡)一块圆形玻璃镜面碎成了几块,其中一块如图所示,测得弦AB长20厘米,弓形高CD为2厘米,则镜面半径为 26 厘米.
【解答】解:如图,点O是圆形玻璃镜面的圆心,连接OC,则点C,点D,点O三点共线,
由题意可得:OC⊥AB,AC=AB=10(厘米),
设镜面半径为x厘米,
由题意可得:x2=102+(x﹣2)2,
∴x=26,
∴镜面半径为26厘米,
故答案为:26.
一十一.切线的性质(共1小题)
12.(2020•自贡)如图,矩形ABCD中,E是AB上一点,连接DE,将△ADE沿DE翻折,恰好使点A落在BC边的中点F处,在DF上取点O,以O为圆心,OF长为半径作半圆与CD相切于点G.若AD=4,则图中阴影部分的面积为 .
【解答】解:连接OG,QG,
∵将△ADE沿DE翻折,恰好使点A落在BC边的中点F处,
∴AD=DF=4,BF=CF=2,
∵矩形ABCD中,∠DCF=90°,
∴∠FDC=30°,
∴∠DFC=60°,
∵⊙O与CD相切于点G,
∴OG⊥CD,
∵BC⊥CD,
∴OG∥BC,
∴△DOG∽△DFC,
∴,
设OG=OF=x,则,
解得:x=,即⊙O的半径是.
连接OQ,作OH⊥FQ,
∵∠DFC=60°,OF=OQ,
∴△OFQ为等边三角形;同理△OGQ为等边三角形;
∴∠GOQ=∠FOQ=60°,OH=OQ=,
∴QH==,
∴CQ=
∵四边形OHCG为矩形,
∴OH=CG=,
∴S阴影=S△CGQ===.
故答案为:.
一十二.轴对称-最短路线问题(共1小题)
13.(2022•自贡)如图,矩形ABCD中,AB=4,BC=2,G是AD的中点,线段EF在边AB上左右滑动,若EF=1,则GE+CF的最小值为 3 .
【解答】解:如图,作G关于AB的对称点G',在CD上截取CH=1,然后连接HG'交AB于E,在EB上截取EF=1,此时GE+CF的值最小,
∵CH=EF=1,CH∥EF,
∴四边形EFCH是平行四边形,
∴EH=CF,
∴G'H=EG'+EH=EG+CF,
∵AB=4,BC=AD=2,G为边AD的中点,
∴DG'=AD+AG'=2+1=3,DH=4﹣1=3,
由勾股定理得:HG'==3,
即GE+CF的最小值为3.
故答案为:3.
一十三.解直角三角形的应用-坡度坡角问题(共1小题)
14.(2020•自贡)如图,我市在建高铁的某段路基横断面为梯形ABCD,DC∥AB.BC长6米,坡角β为45°,AD的坡角α为30°,则AD长为 6 米(结果保留根号).
【解答】解:过点D作DE⊥AB于E,过点C作CF⊥AB于F.
∵CD∥AB,DE⊥AB,CF⊥AB,
∴DE=CF,
在Rt△CFB中,CF=BC•sin45°=3(米),
∴DE=CF=3(米),
在Rt△ADE中,∵∠A=30°,∠AED=90°,
∴AD=2DE=6(米),
故答案为:6.
一十四.用样本估计总体(共1小题)
15.(2022•自贡)为了比较甲、乙两鱼池中的鱼苗数目,小明从两鱼池中各捞出100条鱼苗,每条做好记号,然后放回原鱼池.一段时间后,在同样的地方,小明再从甲、乙两鱼池中各捞出100条鱼苗,发现其中有记号的鱼苗分别是5条、10条,可以初步估计鱼苗数目较多的是 甲 鱼池.(填甲或乙)
【解答】解:由题意可得,
甲鱼池中的鱼苗数量约为:100÷=2000(条),
乙鱼池中的鱼苗数量约为:100÷=1000(条),
∵2000>1000,
∴初步估计鱼苗数目较多的是甲鱼池,
故答案为:甲.
一十五.扇形统计图(共1小题)
16.(2020•自贡)某中学新建食堂正式投入使用,为提高服务质量,食堂管理人员对学生进行了“最受欢迎菜品”的调查统计.以下是打乱了的调查统计顺序,请按正确顺序重新排序(只填番号): ②④①③ .
①绘制扇形图;
②收集最受学生欢迎菜品的数据;
③利用扇形图分析出最受学生欢迎的菜品;
④整理所收集的数据.
【解答】解:②收集最受学生欢迎菜品的数据;
④整理所收集的数据;
①绘制扇形图;
③利用扇形图分析出最受学生欢迎的菜品;
故答案为:②④①③.
一十六.加权平均数(共1小题)
17.(2021•自贡)某中学规定学生的学期体育成绩满分为100,其中体育课外活动占30%,期末考试成绩占70%,小彤的这两项成绩依次是90,80.则小彤这学期的体育成绩是 83 .
【解答】解:小彤这学期的体育成绩是90×30%+80×70%=83,
故答案为:83.
四川省自贡市2021-2023三年中考数学真题分类汇编-02填空题知识点分类: 这是一份四川省自贡市2021-2023三年中考数学真题分类汇编-02填空题知识点分类,共13页。试卷主要包含了计算,分解因式,化简等内容,欢迎下载使用。
四川省广元市三年(2020-2022)中考数学真题分类汇编-02+填空题知识点分类: 这是一份四川省广元市三年(2020-2022)中考数学真题分类汇编-02+填空题知识点分类,共18页。试卷主要包含了实数的算术平方根是 ,分解因式等内容,欢迎下载使用。
四川省遂宁市三年(2020-2022)中考数学真题分类汇编-02填空题知识点分类: 这是一份四川省遂宁市三年(2020-2022)中考数学真题分类汇编-02填空题知识点分类,共11页。