年终活动
搜索
    上传资料 赚现金

    2022年湖北省鄂州市五校中考数学考试模拟冲刺卷含解析

    2022年湖北省鄂州市五校中考数学考试模拟冲刺卷含解析第1页
    2022年湖北省鄂州市五校中考数学考试模拟冲刺卷含解析第2页
    2022年湖北省鄂州市五校中考数学考试模拟冲刺卷含解析第3页
    还剩19页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    2022年湖北省鄂州市五校中考数学考试模拟冲刺卷含解析

    展开

    这是一份2022年湖北省鄂州市五校中考数学考试模拟冲刺卷含解析,共22页。试卷主要包含了不等式组的解集在数轴上表示为等内容,欢迎下载使用。
    2021-2022中考数学模拟试卷
    注意事项:
    1. 答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。
    2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。
    3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。
    4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。

    一、选择题(共10小题,每小题3分,共30分)
    1.下列说法不正确的是( )
    A.选举中,人们通常最关心的数据是众数
    B.从1,2,3,4,5中随机抽取一个数,取得奇数的可能性比较大
    C.甲、乙两人在相同条件下各射击10次,他们的平均成绩相同,方差分别为S甲2=0.4,S乙2=0.6,则甲的射击成绩较稳定
    D.数据3,5,4,1,﹣2的中位数是4
    2.如果一次函数y=kx+b(k、b是常数,k≠0)的图象经过第一、二、四象限,那么k、b应满足的条件是( )
    A.k>0,且b>0 B.k<0,且b>0 C.k>0,且b<0 D.k<0,且b<0
    3.等腰三角形一条边的边长为3,它的另两条边的边长是关于x的一元二次方程x2﹣12x+k=0的两个根,则k的值是(  )
    A.27 B.36 C.27或36 D.18
    4.计算﹣1﹣(﹣4)的结果为(  )
    A.﹣3 B.3 C.﹣5 D.5
    5.已知一次函数且随的增大而增大,那么它的图象不经过(  )
    A.第一象限 B.第二象限 C.第三象限 D.第四象限
    6.如图所示是放置在正方形网格中的一个 ,则的值为( )

    A. B. C. D.
    7.据统计,2018年全国春节运输人数约为3 000 000 000人,将3 000 000 000用科学记数法表示为(  )
    A.0.3×1010 B.3×109 C.30×108 D.300×107
    8.如图,已知函数y=﹣与函数y=ax2+bx的交点P的纵坐标为1,则不等式ax2+bx+>0的解集是(  )

    A.x<﹣3 B.﹣3<x<0 C.x<﹣3或x>0 D.x>0
    9.某校120名学生某一周用于阅读课外书籍的时间的频率分布直方图如图所示.其中阅读时间是8~10小时的频数和频率分别是( )

    A.15,0.125 B.15,0.25 C.30,0.125 D.30,0.25
    10.不等式组的解集在数轴上表示为(  )
    A. B. C. D.
    二、填空题(本大题共6个小题,每小题3分,共18分)
    11.同时抛掷两枚质地均匀的硬币,则两枚硬币全部正面向上的概率是 .
    12.如图,在梯形中,,E、F分别是边的中点,设,那么等于__________(结果用的线性组合表示).

    13.已知,如图,△ABC中,DE∥FG∥BC,AD∶DF∶FB=1∶2∶3,若EG=3,则AC= .

    14.如图,已知AE∥BD,∠1=130°,∠2=28°,则∠C的度数为____.

    15.如图,在3×3的正方形网格中,点A,B,C,D,E,F,G都是格点,从C,D,E,F,G五个点中任意取一点,以所取点及AB为顶点画三角形,所画三角形时等腰三角形的概率是_____.

    16.﹣|﹣1|=______.
    三、解答题(共8题,共72分)
    17.(8分)先化简,然后从﹣<x<的范围内选取一个合适的整数作为x的值代入求值.
    18.(8分)如图1,经过原点O的抛物线y=ax2+bx(a≠0)与x轴交于另一点A(,0),在第一象限内与直线y=x交于点B(2,t).
    (1)求这条抛物线的表达式;
    (2)在第四象限内的抛物线上有一点C,满足以B,O,C为顶点的三角形的面积为2,求点C的坐标;
    (3)如图2,若点M在这条抛物线上,且∠MBO=∠ABO,在(2)的条件下,是否存在点P,使得△POC∽△MOB?若存在,求出点P的坐标;若不存在,请说明理由.

    19.(8分)甲、乙两个人做游戏:在一个不透明的口袋中装有1张相同的纸牌,它们分别标有数字1,2,3,1.从中随机摸出一张纸牌然后放回,再随机摸出一张纸牌,若两次摸出的纸牌上数字之和是3的倍数,则甲胜;否则乙胜.这个游戏对双方公平吗?请列表格或画树状图说明理由.
    20.(8分)已知:如图,在平行四边形ABCD中,E、F分别为边AB、CD的中点,BD是对角线,AG∥DB交CB的延长线于G.求证:△ADE≌△CBF;若四边形BEDF是菱形,则四边形AGBD是什么特殊四边形?并证明你的结论.

    21.(8分)如图,在△ABC中,已知AB=AC=5,BC=6,且△ABC≌△DEF,将△DEF与△ABC重合在一起,△ABC不动,△DEF运动,并满足:点E在边BC上沿B到C的方向运动,且DE始终经过点A,EF与AC交于M点.
    (1)求证:△ABE∽△ECM;
    (2)探究:在△DEF运动过程中,重叠部分能否构成等腰三角形?若能,求出BE的长;若不能,请说明理由;
    (3)当线段AM最短时,求重叠部分的面积.

    22.(10分)如图,在平行四边形ABCD中,连接AC,做△ABC的外接圆⊙O,延长EC交⊙O于点D,连接BD、AD,BC与AD交于点F分,∠ABC=∠ADB。
    (1)求证:AE是⊙O的切线;
    (2)若AE=12,CD=10,求⊙O的半径。

    23.(12分)如图,已知点E,F分别是□ABCD的边BC,AD上的中点,且∠BAC=90°.

    (1)求证:四边形AECF是菱形;
    (2)若∠B=30°,BC=10,求菱形AECF面积.
    24.如图,在平面直角坐标系xOy中,一次函数y=kx+b(k≠0)的图象与反比例函数y=(m≠0)的图象交于第二、四象限内的A、B两点,与x轴交于点C,点A(﹣2,3),点B(6,n).
    (1)求该反比例函数和一次函数的解析式;
    (2)求△AOB的面积;
    (3)若M(x1,y1),N(x2,y2)是反比例函数y=(m≠0)的图象上的两点,且x1<x2,y1<y2,指出点M、N各位于哪个象限.




    参考答案

    一、选择题(共10小题,每小题3分,共30分)
    1、D
    【解析】
    试题分析:A、选举中,人们通常最关心的数据为出现次数最多的数,所以A选项的说法正确;
    B、从1,2,3,4,5中随机抽取一个数,由于奇数由3个,而偶数有2个,则取得奇数的可能性比较大,所以B选项的说法正确;
    C、甲、乙两人在相同条件下各射击10次,他们的平均成绩相同,方差分别为S甲2=0.4,S乙2=0.6,则甲的射击成绩较稳定,所以C选项的说法正确;
    D、数据3,5,4,1,﹣2由小到大排列为﹣2,1,3,4,5,所以中位数是3,所以D选项的说法错误.
    故选D.
    考点:随机事件发生的可能性(概率)的计算方法
    2、B
    【解析】
    试题分析:∵一次函数y=kx+b(k、b是常数,k≠0)的图象经过第一、二、四象限,
    ∴k<0,b>0,
    故选B.
    考点:一次函数的性质和图象
    3、B
    【解析】
    试题分析:由于等腰三角形的一边长3为底或为腰不能确定,故应分两种情况进行讨论:(3)当3为腰时,其他两条边中必有一个为3,把x=3代入原方程可求出k的值,进而求出方程的另一个根,再根据三角形的三边关系判断是否符合题意即可;(3)当3为底时,则其他两条边相等,即方程有两个相等的实数根,由△=0可求出k的值,再求出方程的两个根进行判断即可.
    试题解析:分两种情况:
    (3)当其他两条边中有一个为3时,将x=3代入原方程,
    得:33-33×3+k=0
    解得:k=37
    将k=37代入原方程,
    得:x3-33x+37=0
    解得x=3或9
    3,3,9不能组成三角形,不符合题意舍去;
    (3)当3为底时,则其他两边相等,即△=0,
    此时:344-4k=0
    解得:k=3
    将k=3代入原方程,
    得:x3-33x+3=0
    解得:x=6
    3,6,6能够组成三角形,符合题意.
    故k的值为3.
    故选B.
    考点:3.等腰三角形的性质;3.一元二次方程的解.
    4、B
    【解析】
    原式利用减法法则变形,计算即可求出值.
    【详解】

    故选:B.
    【点睛】
    本题主要考查了有理数的加减,熟练掌握有理数加减的运算法则是解决本题的关键.
    5、B
    【解析】
    根据一次函数的性质:k>0,y随x的增大而增大;k<0,y随x的增大而减小,进行解答即可.
    【详解】
    解:∵一次函数y=kx-3且y随x的增大而增大,
    ∴它的图象经过一、三、四象限,
    ∴不经过第二象限,
    故选:B.
    【点睛】
    本题考查了一次函数的性质,掌握一次函数所经过的象限与k、b的值有关是解题的关键.
    6、D
    【解析】
    首先过点A向CB引垂线,与CB交于D,表示出BD、AD的长,根据正切的计算公式可算出答案.
    【详解】
    解:过点A向CB引垂线,与CB交于D,

    △ABD是直角三角形,
    ∵BD=4,AD=2,
    ∴tan∠ABC=
    故选:D.
    【点睛】
    此题主要考查了锐角三角函数的定义,关键是掌握正切:锐角A的对边a与邻边b的比叫做∠A的正切,记作tanA.
    7、B
    【解析】
    科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.
    【详解】
    解:根据科学计数法的定义可得,3 000 000 000=3×109,故选择B.
    【点睛】
    本题考查了科学计数法的定义,确定n的值是易错点.
    8、C
    【解析】
    首先求出P点坐标,进而利用函数图象得出不等式ax2+bx+>1的解集.
    【详解】
    ∵函数y=﹣与函数y=ax2+bx的交点P的纵坐标为1,
    ∴1=﹣,
    解得:x=﹣3,
    ∴P(﹣3,1),
    故不等式ax2+bx+>1的解集是:x<﹣3或x>1.
    故选C.
    【点睛】
    本题考查了反比例函数图象上点的坐标特征,解题的关键是正确得出P点坐标.
    9、D
    【解析】
    分析:
    根据频率分布直方图中的数据信息和被调查学生总数为120进行计算即可作出判断.
    详解:
    由频率分布直方图可知:一周内用于阅读的时间在8-10小时这组的:频率:组距=0.125,而组距为2,
    ∴一周内用于阅读的时间在8-10小时这组的频率=0.125×2=0.25,
    又∵被调查学生总数为120人,
    ∴一周内用于阅读的时间在8-10小时这组的频数=120×0.25=30.
    综上所述,选项D中数据正确.
    故选D.
    点睛:本题解题的关键有两点:(1)要看清,纵轴上的数据是“频率:组距”的值,而不是频率;(2)要弄清各自的频数、频率和总数之间的关系.
    10、A
    【解析】
    根据不等式组的解集在数轴上表示的方法即可解答.
    【详解】
    ∵x≥﹣2,故以﹣2为实心端点向右画,x<1,故以1为空心端点向左画.
    故选A.
    【点睛】
    本题考查了不等式组解集的在数轴上的表示方法,不等式的解集在数轴上表示方法为:>、≥向右画,<、≤向左画, “≤”、“≥”要用实心圆点表示;“”要用空心圆点表示.

    二、填空题(本大题共6个小题,每小题3分,共18分)
    11、.
    【解析】
    试题分析:画树状图为:

    共有4种等可能的结果数,其中两枚硬币全部正面向上的结果数为1,所以两枚硬币全部正面向上的概率=.故答案为.
    考点:列表法与树状图法.
    12、.
    【解析】
    作AH∥EF交BC于H,首先证明四边形EFHA是平行四边形,再利用三角形法则计算即可.
    【详解】
    作AH∥EF交BC于H.

    ∵AE∥FH,∴四边形EFHA是平行四边形,∴AE=HF,AH=EF.
    ∵AE=ED=HF,∴.
    ∵BC=2AD,∴2.
    ∵BF=FC,∴,∴.
    ∵.
    故答案为:.
    【点睛】
    本题考查了平面向量,解题的关键是熟练掌握三角形法则,属于中考常考题型.
    13、1
    【解析】
    试题分析:根据DE∥FG∥BC可得△ADE∽△AFG∽ABC,根据题意可得EG:AC=DF:AB=2:6=1:3,根据EG=3,则AC=1.
    考点:三角形相似的应用.
    14、22°
    【解析】
    由AE∥BD,根据平行线的性质求得∠CBD的度数,再由对顶角相等求得∠CDB的度数,继而利用三角形的内角和等于180°求得∠C的度数.
    【详解】
    解:∵AE∥BD,∠1=130°,∠2=28°,
    ∴∠CBD=∠1=130°,∠CDB=∠2=28°,
    ∴∠C=180°﹣∠CBD﹣∠CDB=180°﹣130°﹣28°=22°.
    故答案为22°
    【点睛】
    本题考查了平行线的性质,对顶角相等及三角形内角和定理.熟练运用相关知识是解决问题的关键.
    15、.
    【解析】
    找出从C,D,E,F,G五个点中任意取一点组成等腰三角形的个数,再根据概率公式即可得出结论.
    【详解】
    ∵从C,D,E,F,G五个点中任意取一点共有5种情况,其中A、B、C;A、B、F两种取法,可使这三定组成等腰三角形,
    ∴所画三角形时等腰三角形的概率是,
    故答案是:.
    【点睛】
    考查的是概率公式,熟记随机事件A的概率P(A)=事件A可能出现的结果数与所有可能出现的结果数的商是解答此题的关键.
    16、2
    【解析】
    原式利用立方根定义,以及绝对值的代数意义计算即可求出值.
    【详解】
    解:原式=3﹣1=2,
    故答案为:2
    【点睛】
    此题考查了实数的运算,熟练掌握运算法则是解本题的关键.

    三、解答题(共8题,共72分)
    17、
    【解析】
    根据分式的减法和除法可以化简题目中的式子,然后从﹣<x<的范围内选取一个使得原分式有意义的整数作为x的值代入即可解答本题.
    【详解】
    解:÷(﹣x+1)
    =
    =
    =
    =,
    当x=﹣2时,原式= .
    【点睛】
    本题考查分式的化简求值、估算无理数的大小,解答本题的关键是明确分式化简求值的方法.
    18、(1)y=2x2﹣3x;(2)C(1,﹣1);(3)(,)或(﹣,).
    【解析】
    (1)由直线解析式可求得B点坐标,由A、B坐标,利用待定系数法可求得抛物线的表达式;
    (2)过C作CD∥y轴,交x轴于点E,交OB于点D,过B作BF⊥CD于点F,可设出C点坐标,利用C点坐标可表示出CD的长,从而可表示出△BOC的面积,由条件可得到关于C点坐标的方程,可求得C点坐标;
    (3)设MB交y轴于点N,则可证得△ABO≌△NBO,可求得N点坐标,可求得直线BN的解析式,联立直线BM与抛物线解析式可求得M点坐标,过M作MG⊥y轴于点G,由B、C的坐标可求得OB和OC的长,由相似三角形的性质可求得的值,当点P在第一象限内时,过P作PH⊥x轴于点H,由条件可证得△MOG∽△POH,由的值,可求得PH和OH,可求得P点坐标;当P点在第三象限时,同理可求得P点坐标.
    【详解】
    (1)∵B(2,t)在直线y=x上,
    ∴t=2,
    ∴B(2,2),
    把A、B两点坐标代入抛物线解析式可得:,解得:,
    ∴抛物线解析式为;
    (2)如图1,过C作CD∥y轴,交x轴于点E,交OB于点D,过B作BF⊥CD于点F,∵点C是抛物线上第四象限的点,
    ∴可设C(t,2t2﹣3t),则E(t,0),D(t,t),
    ∴OE=t,BF=2﹣t,CD=t﹣(2t2﹣3t)=﹣2t2+4t,
    ∴S△OBC=S△CDO+S△CDB=CD•OE+CD•BF=(﹣2t2+4t)(t+2﹣t)=﹣2t2+4t,
    ∵△OBC的面积为2,
    ∴﹣2t2+4t=2,解得t1=t2=1,
    ∴C(1,﹣1);

    (3)存在.设MB交y轴于点N,
    如图2,
    ∵B(2,2),
    ∴∠AOB=∠NOB=45°,
    在△AOB和△NOB中,
    ∵∠AOB=∠NOB,OB=OB,∠ABO=∠NBO,
    ∴△AOB≌△NOB(ASA),
    ∴ON=OA=,
    ∴N(0,),
    ∴可设直线BN解析式为y=kx+,把B点坐标代入可得2=2k+,解得k=,
    ∴直线BN的解析式为,联立直线BN和抛物线解析式可得:,解得:或,
    ∴M(,),
    ∵C(1,﹣1),
    ∴∠COA=∠AOB=45°,且B(2,2),
    ∴OB=,OC=,
    ∵△POC∽△MOB,
    ∴,∠POC=∠BOM,
    当点P在第一象限时
    ,如图3,过M作MG⊥y轴于点G,过P作PH⊥x轴于点H,如图3
    ∵∠COA=∠BOG=45°,
    ∴∠MOG=∠POH,且∠PHO=∠MGO,
    ∴△MOG∽△POH,

    ∵M(,),
    ∴MG=,OG=,
    ∴PH=MG=,OH=OG=,
    ∴P(,);
    当点P在第三象限时,如图4,过M作MG⊥y轴于点G,过P作PH⊥y轴于点H,
    同理可求得PH=MG=,OH=OG=,
    ∴P(﹣,);
    综上可知:存在满足条件的点P,其坐标为(,)或(﹣,).

    【点睛】
    本题为二次函数的综合应用,涉及待定系数法、三角形的面积、二次函数的性质、全等三角形的判定和性质、相似三角形的判定和性质、方程思想及分类讨论思想等知识.在(1)中注意待定系数法的应用,在(2)中用C点坐标表示出△BOC的面积是解题的关键,在(3)中确定出点P的位置,构造相似三角形是解题的关键,注意分两种情况.
    19、不公平
    【解析】
    【分析】列表得到所有情况,然后找出数字之和是3的倍数的情况,利用概率公式计算后进行判断即可得.
    【详解】根据题意列表如下:

    1
    2
    3
    1
    1
    (1,1)
    (2,1)
    (3,1)
    (1,1)
    2
    (1,2)
    (2,2)
    (3,2)
    (1,2)
    3
    (1,3)
    (2,3)
    (3,3)
    (1,3)
    1
    (1,1)
    (2,1)
    (3,1)
    (1,1)
    所有等可能的情况数有16种,其中两次摸出的纸牌上数字之和是3的倍数的情况有:(2,1),(1,2),(1,2),(3,3),(2,1),共5种,
    ∴P(甲获胜)=,P(乙获胜)=1﹣=,
    则该游戏不公平.
    【点睛】本题考查了列表法或树状图法求概率,判断游戏的公平性,用到的知识点为:概率=所求情况数与总情况数之比.
    20、(1)证明见解析(2)当四边形BEDF是菱形时,四边形AGBD是矩形;证明见解析;
    【解析】
    (1)在证明全等时常根据已知条件,分析还缺什么条件,然后用(SAS,ASA,SSS)来证明全等;
    (2)先由菱形的性质得出AE=BE=DE,再通过角之间的关系求出∠2+∠3=90°即∠ADB=90°,所以判定四边形AGBD是矩形.
    【详解】
    解:证明:∵四边形是平行四边形,
    ∴,,.
    ∵点、分别是、的中点,
    ∴,.
    ∴.
    在和中,

    ∴.
    解:当四边形是菱形时,四边形是矩形.

    证明:∵四边形是平行四边形,
    ∴.
    ∵,
    ∴四边形是平行四边形.
    ∵四边形是菱形,
    ∴.
    ∵,
    ∴.
    ∴,.
    ∵,
    ∴.
    ∴.
    即.
    ∴四边形是矩形.
    【点睛】
    本题主要考查了平行四边形的基本性质和矩形的判定及全等三角形的判定.平行四边形基本性质:①平行四边形两组对边分别平行;②平行四边形的两组对边分别相等;③平行四边形的两组对角分别相等;④平行四边形的对角线互相平分.三角形全等的判定条件:SSS,SAS,AAS,ASA.
    21、(1)证明见解析;(2)能;BE=1或;(3)
    【解析】
    (1)证明:∵AB=AC,
    ∴∠B=∠C,
    ∵△ABC≌△DEF,
    ∴∠AEF=∠B,
    又∵∠AEF+∠CEM=∠AEC=∠B+∠BAE,
    ∴∠CEM=∠BAE,
    ∴△ABE∽△ECM;
    (2)能.
    ∵∠AEF=∠B=∠C,且∠AME>∠C,
    ∴∠AME>∠AEF,
    ∴AE≠AM;
    当AE=EM时,则△ABE≌△ECM,
    ∴CE=AB=5,
    ∴BE=BC−EC=6−5=1,
    当AM=EM时,则∠MAE=∠MEA,
    ∴∠MAE+∠BAE=∠MEA+∠CEM,即∠CAB=∠CEA,
    又∵∠C=∠C,
    ∴△CAE∽△CBA,
    ∴,
    ∴CE=,
    ∴BE=6−=;
    ∴BE=1或;
    (3)解:设BE=x,
    又∵△ABE∽△ECM,
    ∴,即:,
    ∴CM=,
    ∴AM=5−CM,
    ∴当x=3时,AM最短为,
    又∵当BE=x=3=BC时,
    ∴点E为BC的中点,
    ∴AE⊥BC,
    ∴AE=,
    此时,EF⊥AC,
    ∴EM=,
    S△AEM=.
    22、(1)证明见解析;(2).
    【解析】
    (1)作辅助线,先根据垂径定理得:OA⊥BC,再证明OA⊥AE,则AE是⊙O的切线;
    (2)连接OC,证明△ACE∽△DAE,得,计算CE的长,设⊙O的半径为r,根据勾股定理得:r2=62+(r-2)2,解出可得结论.
    【详解】
    (1)证明:连接OA,交BC于G,

    ∵∠ABC=∠ADB.∠ABC=∠ADE,
    ∴∠ADB=∠ADE,
    ∴,
    ∴OA⊥BC,
    ∵四边形ABCE是平行四边形,
    ∴AE∥BC,
    ∴OA⊥AE,
    ∴AE是⊙O的切线;
    (2)连接OC,
    ∵AB=AC=CE,
    ∴∠CAE=∠E,
    ∵四边形ABCE是平行四边形,
    ∴BC∥AE,∠ABC=∠E,
    ∴∠ADC=∠ABC=∠E,
    ∴△ACE∽△DAE,,
    ∵AE=12,CD=10,
    ∴AE2=DE•CE,
    144=(10+CE)CE,
    解得:CE=8或-18(舍),
    ∴AC=CE=8,
    ∴Rt△AGC中,AG==2,
    设⊙O的半径为r,
    由勾股定理得:r2=62+(r-2)2,
    r=,
    则⊙O的半径是.
    【点睛】
    此题考查了垂径定理,圆周角定理,相似三角形的判定与性质,切线的判定与性质,熟练掌握各自的判定与性质是解本题的关键.
    23、(1)见解析(2)
    【解析】
    试题分析:(1)利用平行四边形的性质和菱形的性质即可判定四边形AECF是菱形;
    (2)连接EF交于点O,运用解直角三角形的知识点,可以求得AC与EF的长,再利用菱形的面积公式即可求得菱形AECF的面积.
    试题解析:(1)证明:∵四边形ABCD是平行四边形,
    ∴AD∥BC,AD=BC.
    在Rt△ABC中,∠BAC=90°,点E是BC边的中点,
    ∴AE=CE=BC.
    同理,AF=CF=AD.
    ∴AF=CE.
    ∴四边形AECF是平行四边形.
    ∴平行四边形AECF是菱形.
    (2)解:在Rt△ABC中,∠BAC=90°,∠B=30°,BC=10,
    ∴AC=5,AB=.
    连接EF交于点O,
    ∴AC⊥EF于点O,点O是AC中点.
    ∴OE=.
    ∴EF=.
    ∴菱形AECF的面积是AC·EF=.

    考点:1.菱形的性质和面积;2.平行四边形的性质;3.解直角三角形.
    24、 (1)反比例函数的解析式为y=﹣;一次函数的解析式为y=﹣x+2;(2)8;(3)点M、N在第二象限,或点M、N在第四象限.
    【解析】
    (1)把A(﹣2,3)代入y=,可得m=﹣2×3=﹣6,
    ∴反比例函数的解析式为y=﹣;
    把点B(6,n)代入,可得n=﹣1,
    ∴B(6,﹣1).
    把A(﹣2,3),B(6,﹣1)代入y=kx+b,可得,
    解得,
    ∴一次函数的解析式为y=﹣x+2;
    (2)∵y=﹣x+2,令y=0,则x=4,
    ∴C(4,0),即OC=4,
    ∴△AOB的面积=×4×(3+1)=8;
    (3)∵反比例函数y=﹣的图象位于二、四象限,
    ∴在每个象限内,y随x的增大而增大,
    ∵x1<x2,y1<y2,
    ∴M,N在相同的象限,
    ∴点M、N在第二象限,或点M、N在第四象限.
    【点睛】
    本题考查了反比例函数与一次函数的交点问题,求三角形的面积,求函数的解析式,正确掌握反比例函数的性质是解题的关键.

    相关试卷

    湖北省黄冈市五校2021-2022学年中考数学考试模拟冲刺卷含解析:

    这是一份湖北省黄冈市五校2021-2022学年中考数学考试模拟冲刺卷含解析,共20页。试卷主要包含了若点A等内容,欢迎下载使用。

    2022年北京市景山校中考数学考试模拟冲刺卷含解析:

    这是一份2022年北京市景山校中考数学考试模拟冲刺卷含解析,共19页。试卷主要包含了计算-5x2-3x2的结果是等内容,欢迎下载使用。

    2022届湖北省襄阳阳光校中考数学考试模拟冲刺卷含解析:

    这是一份2022届湖北省襄阳阳光校中考数学考试模拟冲刺卷含解析,共20页。

    文档详情页底部广告位
    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map