2022年湖北省武汉钢城第十一中学中考适应性考试数学试题含解析
展开
这是一份2022年湖北省武汉钢城第十一中学中考适应性考试数学试题含解析,共23页。试卷主要包含了计算6m6÷等内容,欢迎下载使用。
2021-2022中考数学模拟试卷
请考生注意:
1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。
2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。
一、选择题(共10小题,每小题3分,共30分)
1.如图是二次函数的部分图象,由图象可知不等式的解集是( )
A. B. C.且 D.x<-1或x>5
2.下列函数中,y关于x的二次函数是( )
A.y=ax2+bx+c B.y=x(x﹣1)
C.y= D.y=(x﹣1)2﹣x2
3.若关于x的分式方程的解为非负数,则a的取值范围是( )
A.a≥1 B.a>1 C.a≥1且a≠4 D.a>1且a≠4
4.如图是抛物线y1=ax2+bx+c(a≠0)图象的一部分,其顶点坐标为A(﹣1,﹣3),与x轴的一个交点为B(﹣3,0),直线y2=mx+n(m≠0)与抛物线交于A,B两点,下列结论:①abc>0;②不等式ax2+(b﹣m)x+c﹣n<0的解集为﹣3<x<﹣1;③抛物线与x轴的另一个交点是(3,0);④方程ax2+bx+c+3=0有两个相等的实数根;其中正确的是( )
A.①③ B.②③ C.③④ D.②④
5.如图,I是∆ABC的内心,AI向延长线和△ABC的外接圆相交于点D,连接BI,BD,DC下列说法中错误的一项是( )
A.线段DB绕点D顺时针旋转一定能与线段DC重合
B.线段DB绕点D顺时针旋转一定能与线段DI熏合
C.∠CAD绕点A顺时针旋转一定能与∠DAB重合
D.线段ID绕点I顺时针旋转一定能与线段IB重合
6.如图,这是一个几何体的三视图,根据图中所示数据计算这个几何体的侧面积为( )
A.9π B.10π C.11π D.12π
7.计算6m6÷(-2m2)3的结果为( )
A. B. C. D.
8.函数y=x2+bx+c与y=x的图象如图所示,有以下结论:
①b2﹣4c>1;②b+c+1=1;③3b+c+6=1;④当1<x<3时,x2+(b﹣1)x+c<1.
其中正确的个数为
A.1 B.2 C.3 D.4
9.为了解中学300名男生的身高情况,随机抽取若干名男生进行身高测量,将所得数据整理后,画出频数分布直方图(如图).估计该校男生的身高在169.5cm~174.5cm之间的人数有( )
A.12 B.48 C.72 D.96
10.在平面直角坐标系中,点(2,3)所在的象限是( )
A.第一象限 B.第二象限 C.第三象限 D.第四象限
二、填空题(本大题共6个小题,每小题3分,共18分)
11.如图,△ABC是直角三角形,∠C=90°,四边形ABDE是菱形且C、B、D共线,AD、BE交于点O,连接OC,若BC=3,AC=4,则tan∠OCB=_____
12.若一个正n边形的每个内角为144°,则这个正n边形的所有对角线的条数是_________.
13.A.如果一个正多边形的一个外角是45°,那么这个正多边形对角线的条数一共有_____条.
B.用计算器计算:•tan63°27′≈_____(精确到0.01).
14.如图,在梯形中,,,点、分别是边、的中点.设,,那么向量用向量表示是________.
15.已知 ,是关于x的一元二次方程x2+(2m+3)x+m2=0的两个不相等的实数根,且满足=﹣1,则m的值是____.
16.如图,已知圆柱底面的周长为,圆柱高为,在圆柱的侧面上,过点和点嵌有一圈金属丝,则这圈金属丝的周长最小为______.
三、解答题(共8题,共72分)
17.(8分)关于x的一元二次方程ax2+bx+1=1.
(1)当b=a+2时,利用根的判别式判断方程根的情况;
(2)若方程有两个相等的实数根,写出一组满足条件的a,b的值,并求此时方程的根.
18.(8分)如图,一条公路的两侧互相平行,某课外兴趣小组在公路一侧AE的点A处测得公路对面的点C与AE的夹角∠CAE=30°,沿着AE方向前进15米到点B处测得∠CBE=45°,求公路的宽度.(结果精确到0.1米,参考数据:≈1.73)
19.(8分)立定跳远是嘉兴市体育中考的抽考项目之一,某校九年级(1),(2)班准备集体购买某品牌的立定跳远训练鞋.现了解到某网店正好有这种品牌训练鞋的促销活动,其购买的单价y(元/双)与一次性购买的数量x(双)之间满足的函数关系如图所示.当10≤x<60时,求y关于x的函数表达式;九(1),(2)班共购买此品牌鞋子100双,由于某种原因需分两次购买,且一次购买数量多于25双且少于60双;
①若两次购买鞋子共花费9200元,求第一次的购买数量;
②如何规划两次购买的方案,使所花费用最少,最少多少元?
20.(8分)如图所示,在平面直角坐标系xOy中,正方形OABC的边长为2cm,点A、C分别在y轴的负半轴和x轴的正半轴上,抛物线y=ax2+bx+c经过点A、B和D(4,).
(1)求抛物线的表达式.
(2)如果点P由点A出发沿AB边以2cm/s的速度向点B运动,同时点Q由点B出发,沿BC边以1cm/s的速度向点C运动,当其中一点到达终点时,另一点也随之停止运动.设S=PQ2(cm2).
①试求出S与运动时间t之间的函数关系式,并写出t的取值范围;
②当S取时,在抛物线上是否存在点R,使得以点P、B、Q、R为顶点的四边形是平行四边形?如果存在,求出R点的坐标;如果不存在,请说明理由.
(3)在抛物线的对称轴上求点M,使得M到D、A的距离之差最大,求出点M的坐标.
21.(8分)如图,⊙O是△ABC的外接圆,BC为⊙O的直径,点E为△ABC的内心,连接AE并延长交⊙O于D点,连接BD并延长至F,使得BD=DF,连接CF、BE.
(1)求证:DB=DE;
(2)求证:直线CF为⊙O的切线;
(3)若CF=4,求图中阴影部分的面积.
22.(10分)阅读下面材料:
已知:如图,在正方形ABCD中,边AB=a1.
按照以下操作步骤,可以从该正方形开始,构造一系列的正方形,它们之间的边满足一定的关系,并且一个比一个小.
操作步骤
作法
由操作步骤推断(仅选取部分结论)
第一步
在第一个正方形ABCD的对角线AC上截取AE=a1,再作EF⊥AC于点E,EF与边BC交于点F,记CE=a2
(i)△EAF≌△BAF(判定依据是①);
(ii)△CEF是等腰直角三角形;
(iii)用含a1的式子表示a2为②:
第二步
以CE为边构造第二个正方形CEFG;
第三步
在第二个正方形的对角线CF上截取FH=a2,再作IH⊥CF于点H,IH与边CE交于点I,记CH=a3:
(iv)用只含a1的式子表示a3为③:
第四步
以CH为边构造第三个正方形CHIJ
这个过程可以不断进行下去.若第n个正方形的边长为an,用只含a1的式子表示an为④
请解决以下问题:
(1)完成表格中的填空:
① ;② ;③ ;④ ;
(2)根据以上第三步、第四步的作法画出第三个正方形CHIJ(不要求尺规作图).
23.(12分) “校园安全”受到全社会的广泛关注,某中学对部分学生就校园安全知识的了解程度,采用随机抽样调查的方式,并根据收集到的信息进行统计,绘制了下面两幅尚不完整的统计图,请根据统计图中所提供的信息解答下列问题:
(1)接受问卷调查的学生共有 人,扇形统计图中“基本了解”部分所对应扇形的圆心角为 度;
(2)请补全条形统计图;
(3)若该中学共有学生900人,请根据上述调查结果,估计该中学学生中对校园安全知识达到“了解”和“基本了解”程度的总人数.
24.某食品厂生产一种半成品食材,产量百千克与销售价格元千克满足函数关系式,从市场反馈的信息发现,该半成品食材的市场需求量百千克与销售价格元千克满足一次函数关系,如下表:
销售价格元千克
2
4
10
市场需求量百千克
12
10
4
已知按物价部门规定销售价格x不低于2元千克且不高于10元千克
求q与x的函数关系式;
当产量小于或等于市场需求量时,这种半成品食材能全部售出,求此时x的取值范围;
当产量大于市场需求量时,只能售出符合市场需求量的半成品食材,剩余的食材由于保质期短而只能废弃若该半成品食材的成本是2元千克.
求厂家获得的利润百元与销售价格x的函数关系式;
当厂家获得的利润百元随销售价格x的上涨而增加时,直接写出x的取值范围利润售价成本
参考答案
一、选择题(共10小题,每小题3分,共30分)
1、D
【解析】
利用二次函数的对称性,可得出图象与x轴的另一个交点坐标,结合图象可得出的解集:
由图象得:对称轴是x=2,其中一个点的坐标为(1,0),
∴图象与x轴的另一个交点坐标为(-1,0).
由图象可知:的解集即是y<0的解集,
∴x<-1或x>1.故选D.
2、B
【解析】
判断一个函数是不是二次函数,在关系式是整式的前提下,如果把关系式化简整理(去括号、合并同类项)后,能写成y=ax2+bx+c(a,b,c为常数,a≠0)的形式,那么这个函数就是二次函数,否则就不是.
【详解】
A.当a=0时, y=ax2+bx+c= bx+c,不是二次函数,故不符合题意;
B. y=x(x﹣1)=x2-x,是二次函数,故符合题意;
C. 的自变量在分母中,不是二次函数,故不符合题意;
D. y=(x﹣1)2﹣x2=-2x+1,不是二次函数,故不符合题意;
故选B.
【点睛】
本题考查了二次函数的定义,一般地,形如y=ax2+bx+c(a,b,c为常数,a≠0)的函数叫做二次函数,据此求解即可.
3、C
【解析】
试题分析:分式方程去分母转化为整式方程,表示出整式方程的解,根据解为非负数及分式方程分母不为1求出a的范围即可.
解:去分母得:2(2x﹣a)=x﹣2,
解得:x=,
由题意得:≥1且≠2,
解得:a≥1且a≠4,
故选C.
点睛:此题考查了分式方程的解,需注意在任何时候都要考虑分母不为1.
4、D
【解析】
①错误.由题意a>1.b>1,c<1,abc<1;
②正确.因为y1=ax2+bx+c(a≠1)图象与直线y2=mx+n(m≠1)交于A,B两点,当ax2+bx+c<mx+n时,-3<x<-1;即不等式ax2+(b-m)x+c-n<1的解集为-3<x<-1;故②正确;
③错误.抛物线与x轴的另一个交点是(1,1);
④正确.抛物线y1=ax2+bx+c(a≠1)图象与直线y=-3只有一个交点,方程ax2+bx+c+3=1有两个相等的实数根,故④正确.
【详解】
解:∵抛物线开口向上,∴a>1,
∵抛物线交y轴于负半轴,∴c<1,
∵对称轴在y轴左边,∴- <1,
∴b>1,
∴abc<1,故①错误.
∵y1=ax2+bx+c(a≠1)图象与直线y2=mx+n(m≠1)交于A,B两点,
当ax2+bx+c<mx+n时,-3<x<-1;
即不等式ax2+(b-m)x+c-n<1的解集为-3<x<-1;故②正确,
抛物线与x轴的另一个交点是(1,1),故③错误,
∵抛物线y1=ax2+bx+c(a≠1)图象与直线y=-3只有一个交点,
∴方程ax2+bx+c+3=1有两个相等的实数根,故④正确.
故选:D.
【点睛】
本题考查二次函数的性质、二次函数与不等式,二次函数与一元二次方程等知识,解题的关键是灵活运用所学知识解决问题,学会利用数形结合的思想解决问题.
5、D
【解析】
解:∵I是△ABC的内心,∴AI平分∠BAC,BI平分∠ABC,∴∠BAD=∠CAD,∠ABI=∠CBI,故C正确,不符合题意;
∴=,∴BD=CD,故A正确,不符合题意;
∵∠DAC=∠DBC,∴∠BAD=∠DBC.∵∠IBD=∠IBC+∠DBC,∠BID=∠ABI+∠BAD,∴∠DBI=∠DIB,∴BD=DI,故B正确,不符合题意.
故选D.
点睛:本题考查了三角形的内切圆和内心的,以及等腰三角形的判定与性质,同弧所对的圆周角相等.
6、B
【解析】
【分析】由三视图可判断出几何体的形状,进而利用圆锥的侧面积公式求出答案.
【详解】由题意可得此几何体是圆锥,
底面圆的半径为:2,母线长为:5,
故这个几何体的侧面积为:π×2×5=10π,
故选B.
【点睛】本题考查了由三视图判断几何体的形状以及圆锥侧面积求法,正确得出几何体的形状是解题关键.
7、D
【解析】
分析:根据幂的乘方计算法则求出除数,然后根据同底数幂的除法法则得出答案.
详解:原式=, 故选D.
点睛:本题主要考查的是幂的计算法则,属于基础题型.明白幂的计算法则是解决这个问题的关键.
8、B
【解析】
分析:∵函数y=x2+bx+c与x轴无交点,∴b2﹣4c<1;故①错误。
当x=1时,y=1+b+c=1,故②错误。
∵当x=3时,y=9+3b+c=3,∴3b+c+6=1。故③正确。
∵当1<x<3时,二次函数值小于一次函数值,
∴x2+bx+c<x,∴x2+(b﹣1)x+c<1。故④正确。
综上所述,正确的结论有③④两个,故选B。
9、C
【解析】
解:根据图形,
身高在169.5cm~174.5cm之间的人数的百分比为:,
∴该校男生的身高在169.5cm~174.5cm之间的人数有300×24%=72(人).
故选C.
10、A
【解析】
根据点所在象限的点的横纵坐标的符号特点,就可得出已知点所在的象限.
【详解】
解:点(2,3)所在的象限是第一象限.
故答案为:A
【点睛】
考核知识点:点的坐标与象限的关系.
二、填空题(本大题共6个小题,每小题3分,共18分)
11、
【解析】
利用勾股定理求出AB,再证明OC=OA=OD,推出∠OCB=∠ODC,可得tan∠OCB=tan∠ODC=,由此即可解决问题.
【详解】
在Rt△ABC中,∵AC=4,BC=3,∠ACB=90°,
∴AB==5,
∵四边形ABDE是菱形,
∴AB=BD=5,OA=OD,
∴OC=OA=OD,
∴∠OCB=∠ODC,
∴tan∠OCB=tan∠ODC==,
故答案为.
【点睛】
本题考查菱形的性质、勾股定理、直角三角形斜边中线的性质、锐角三角函数等知识,解题的关键是灵活运用所学知识解决问题,学会用转化的思想思考问题,属于中考常考题型.
12、2
【解析】
由正n边形的每个内角为144°结合多边形内角和公式,即可得出关于n的一元一次方程,解方程即可求出n的值,将其代入中即可得出结论.
【详解】
∵一个正n边形的每个内角为144°,
∴144n=180×(n-2),解得:n=1.
这个正n边形的所有对角线的条数是:= =2.
故答案为2.
【点睛】
本题考查了多边形的内角以及多边形的对角线,解题的关键是求出正n边形的边数.本题属于基础题,难度不大,解决该题型题目时,根据多边形的内角和公式求出多边形边的条数是关键.
13、20 5.1
【解析】
A、先根据多边形外角和为360°且各外角相等求得边数,再根据多边形对角线条数的计算公式计算可得;
B、利用计算器计算可得.
【详解】
A、根据题意,此正多边形的边数为360°÷45°=8,
则这个正多边形对角线的条数一共有=20,
故答案为20;
B、•tan63°27′≈2.646×2.001≈5.1,
故答案为5.1.
【点睛】
本题主要考查计算器-三角函数,解题的关键是掌握多边形的内角与外角、对角线计算公式及计算器的使用.
14、
【解析】
分析:根据梯形的中位线等于上底与下底和的一半表示出EF,然后根据向量的三角形法则解答即可.
详解:∵点E、F分别是边AB、CD的中点,∴EF是梯形ABCD的中位线,FC=DC,∴EF=(AD+BC).∵BC=3AD,∴EF=(AD+3AD)=2AD,由三角形法则得,=+=2+===2+.
故答案为:2+.
点睛:本题考查了平面向量,平面向量的问题,熟练掌握三角形法则和平行四边形法则是解题的关键,本题还考查了梯形的中位线等于上底与下底和的一半.
15、3.
【解析】
可以先由韦达定理得出两个关于、的式子,题目中的式子变形即可得出相应的与韦达定理相关的式子,即可求解.
【详解】
得+=-2m-3,=m2,又因为,所以m2-2m-3=0,得m=3或m=-1,因为一元二次方程的两个不相等的实数根,所以△>0,得(2m+3)2-4×m2=12m+9>0,所以m>,所以m=-1舍去,综上m=3.
【点睛】
本题考查了根与系数的关系,将根与系数的关系与代数式相结合解题是解决本题的关键.
16、
【解析】
要求丝线的长,需将圆柱的侧面展开,进而根据“两点之间线段最短”得出结果,在求线段长时,根据勾股定理计算即可.
【详解】
解:如图,把圆柱的侧面展开,得到矩形,则这圈金属丝的周长最小为2AC的长度.
∵圆柱底面的周长为4dm,圆柱高为2dm,
∴AB=2dm,BC=BC′=2dm,
∴AC2=22+22=8,
∴AC=2dm.
∴这圈金属丝的周长最小为2AC=4dm.
故答案为:4dm
【点睛】
本题考查了平面展开-最短路径问题,圆柱的侧面展开图是一个矩形,此矩形的长等于圆柱底面周长,高等于圆柱的高,本题把圆柱的侧面展开成矩形,“化曲面为平面”是解题的关键.
三、解答题(共8题,共72分)
17、(2)方程有两个不相等的实数根;(2)b=-2,a=2时,x2=x2=﹣2.
【解析】
分析:(2)求出根的判别式,判断其范围,即可判断方程根的情况.
(2)方程有两个相等的实数根,则,写出一组满足条件的,的值即可.
详解:(2)解:由题意:.
∵,
∴原方程有两个不相等的实数根.
(2)答案不唯一,满足()即可,例如:
解:令,,则原方程为,
解得:.
点睛:考查一元二次方程根的判别式,
当时,方程有两个不相等的实数根.
当时,方程有两个相等的实数根.
当时,方程没有实数根.
18、公路的宽为20.5米.
【解析】
作CD⊥AE,设CD=x米,由∠CBD=45°知BD=CD=x,根据tan∠CAD=,可得=,解之即可.
【详解】
解:如图,过点C作CD⊥AE于点D,
设公路的宽CD=x米,
∵∠CBD=45°,
∴BD=CD=x,
在Rt△ACD中,∵∠CAE=30°,
∴tan∠CAD==,即=,
解得:x=≈20.5(米),
答:公路的宽为20.5米.
【点睛】
本题考查了直角三角形的应用,解答本题的关键是根据仰角构造直角三角形,利用三角函数解直角三角形.
19、(1)y=150﹣x; (2)①第一批购买数量为30双或40双.②第一次买26双,第二次买74双最省钱,最少9144元.
【解析】
(1)若购买x双(10<x<1),每件的单价=140﹣(购买数量﹣10),依此可得y关于x的函数关系式;
(2)①设第一批购买x双,则第二批购买(100﹣x)双,根据购买两批鞋子一共花了9200元列出方程求解即可.分两种情况考虑:当25<x≤40时,则1≤100﹣x<75;当40<x<1时,则40<100﹣x<1.
②把两次的花费与第一次购买的双数用函数表示出来.
【详解】
解:(1)购买x双(10<x<1)时,y=140﹣(x﹣10)=150﹣x.
故y关于x的函数关系式是y=150﹣x;
(2)①设第一批购买x双,则第二批购买(100﹣x)双.
当25<x≤40时,则1≤100﹣x<75,则x(150﹣x)+80(100﹣x)=9200,
解得x1=30,x2=40;
当40<x<1时,则40<100﹣x<1,
则x(150﹣x)+(100﹣x)[150﹣(100﹣x)]=9200,
解得x=30或x=70,但40<x<1,所以无解;
答:第一批购买数量为30双或40双.
②设第一次购买x双,则第二次购买(100﹣x)双,设两次花费w元.
当25<x≤40时w=x(150﹣x)+80(100﹣x)=﹣(x﹣35)2+9225,
∴x=26时,w有最小值,最小值为9144元;
当40<x<1时,
w=x(150﹣x)+(100﹣x)[150﹣(100﹣x)]=﹣2(x﹣50)2+10000,
∴x=41或59时,w有最小值,最小值为9838元,
综上所述:第一次买26双,第二次买74双最省钱,最少9144元.
【点睛】
考查了一元二次方程的应用,根据实际问题列一次函数关系式,解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系,列出方程,再求解.
20、(1)抛物线的解析式为:;
(2)①S与运动时间t之间的函数关系式是S=5t2﹣8t+4,t的取值范围是0≤t≤1;
②存在.R点的坐标是(3,﹣);
(3)M的坐标为(1,﹣).
【解析】
试题分析:(1)设抛物线的解析式是y=ax2+bx+c,求出A、B、D的坐标代入即可;
(2)①由勾股定理即可求出;②假设存在点R,可构成以P、B、R、Q为顶点的平行四边形,求出P、Q的坐标,再分为两种种情况:A、B、C即可根据平行四边形的性质求出R的坐标;
(3)A关于抛物线的对称轴的对称点为B,过B、D的直线与抛物线的对称轴的交点为所求M,求出直线BD的解析式,把抛物线的对称轴x=1代入即可求出M的坐标.
试题解析:(1)设抛物线的解析式是y=ax2+bx+c,
∵正方形的边长2,
∴B的坐标(2,﹣2)A点的坐标是(0,﹣2),
把A(0,﹣2),B(2,﹣2),D(4,﹣)代入得:,
解得a=,b=﹣,c=﹣2,
∴抛物线的解析式为:,
答:抛物线的解析式为:;
(2)①由图象知:PB=2﹣2t,BQ=t,
∴S=PQ2=PB2+BQ2,
=(2﹣2t)2+t2,
即S=5t2﹣8t+4(0≤t≤1).
答:S与运动时间t之间的函数关系式是S=5t2﹣8t+4,t的取值范围是0≤t≤1;
②假设存在点R,可构成以P、B、R、Q为顶点的平行四边形.
∵S=5t2﹣8t+4(0≤t≤1),
∴当S=时,5t2﹣8t+4=,得20t2﹣32t+11=0,
解得t=,t=(不合题意,舍去),
此时点P的坐标为(1,﹣2),Q点的坐标为(2,﹣),
若R点存在,分情况讨论:
(i)假设R在BQ的右边,如图所示,这时QR=PB,RQ∥PB,
则R的横坐标为3,R的纵坐标为﹣,
即R(3,﹣),
代入,左右两边相等,
∴这时存在R(3,﹣)满足题意;
(ii)假设R在QB的左边时,这时PR=QB,PR∥QB,
则R(1,﹣)代入,,
左右不相等,∴R不在抛物线上.(1分)
综上所述,存点一点R(3,﹣)满足题意.
答:存在,R点的坐标是(3,﹣);
(3)如图,M′B=M′A,
∵A关于抛物线的对称轴的对称点为B,过B、D的直线与抛物线的对称轴的交点为所求M,
理由是:∵MA=MB,若M不为L与DB的交点,则三点B、M、D构成三角形,
∴|MB|﹣|MD|<|DB|,
即M到D、A的距离之差为|DB|时,差值最大,
设直线BD的解析式是y=kx+b,把B、D的坐标代入得:,
解得:k=,b=﹣,
∴y=x﹣,
抛物线的对称轴是x=1,
把x=1代入得:y=﹣
∴M的坐标为(1,﹣);
答:M的坐标为(1,﹣).
考点:二次函数综合题.
21、(1)证明见解析;(2)证明见解析;(3).
【解析】
(1)欲证明DB=DE.,只要证明∠DBE=∠DEB;
(2)欲证明CF是⊙O的切线.,只要证明BC⊥CF即可;
(3)根据S阴影部分S扇形S△OBD计算即可.
【详解】
解:(1)∵E是△ABC的内心,
∴∠BAE=∠CAE,∠EBA=∠EBC,
∵∠BED=∠BAE+∠EBA,∠DBE=∠EBC+∠DBC,∠DBC=∠EAC,
∴∠DBE=∠DEB,
∴DB=DE
(2)连接CD
∵DA平分∠BAC,
∴∠DAB=∠DAC,
∴BD=CD,
又∵BD=DF,
∴CD=DB=DF,
∴
∴BC⊥CF,
∴CF是⊙O的切线
(3)连接OD
∵O、D是BC、BF的中点,CF4, ∴OD2.
∵CF是⊙O的切线,
∴
∴△BOD为等腰直角三角形
∴S阴影部分S扇形S△OBD .
【点睛】
本题考查数学圆的综合题,考查了圆的切线的证明,扇形的面积公式等,注意切线的证明方法,是高频考点.
22、(1)①斜边和一条直角边分别相等的两个直角三角形全等②(﹣1)a1;③(-1)2a1;④(-1)n-1a1;(2)见解析.
【解析】
(1)①由题意可知在Rt△EAF和Rt△BAF中,AE=AB,AF=AF,所以Rt△EAF≌Rt△BAF;
②由题意得AB=AE=a1,AC=a1,则CE=a2=a1﹣a1=(﹣1)a1;
③同上可知CF=CE=(-1)a1,FH=EF=a2,则CH=a3=CF﹣FH=(-1)2a1;
④同理可得an=(-1)n-1a1;
(2)根据题意画图即可.
【详解】
解:(1)①斜边和一条直角边分别相等的两个直角三角形全等;
理由是:如图1,在Rt△EAF和Rt△BAF中,
∵,
∴Rt△EAF≌Rt△BAF(HL);
②∵四边形ABCD是正方形,
∴AB=BC=a1,∠ABC=90°,
∴AC=a1,
∵AE=AB=a1,
∴CE=a2=a1﹣a1=(﹣1)a1;
③∵四边形CEFG是正方形,
∴△CEF是等腰直角三角形,
∴CF=CE=(-1)a1,
∵FH=EF=a2,
∴CH=a3=CF﹣FH=(-1)a1﹣(-1)a1=(-1)2a1;
④同理可得:an=(-1)n-1a1;
故答案为①斜边和一条直角边分别相等的两个直角三角形全等②(﹣1)a1;③(-1)2a1;④(-1)n-1a1;
(2)所画正方形CHIJ见右图.
23、 (1) 60,90;(2)见解析;(3) 300人
【解析】
(1)由了解很少的有30人,占50%,可求得接受问卷调查的学生数,继而求得扇形统计图中“基本了解”部分所对应扇形的圆心角;
(2)由(1)可求得了解的人数,继而补全条形统计图;
(3)利用样本估计总体的方法,即可求得答案.
【详解】
解:(1)∵了解很少的有30人,占50%,
∴接受问卷调查的学生共有:30÷50%=60(人);
∴扇形统计图中“基本了解”部分所对应扇形的圆心角为:×360°=90°;
故答案为60,90;
(2)60﹣15﹣30﹣10=5;
补全条形统计图得:
(3)根据题意得:900×=300(人),
则估计该中学学生中对校园安全知识达到“了解”和“基本了解”程度的总人数为300人.
【点睛】
本题考查了条形统计图与扇形统计图,解题的关键是熟练的掌握条形统计图与扇形统计图的相关知识点.
24、(1) ;(2);(3);当时,厂家获得的利润y随销售价格x的上涨而增加.
【解析】
(1)直接利用待定系数法求出一次函数解析式进而得出答案;
(2)由题意可得:p≤q,进而得出x的取值范围;
(3)①利用顶点式求出函数最值得出答案;
②利用二次函数的增减性得出答案即可.
【详解】
(1)设q=kx+b(k,b为常数且k≠0),当x=2时,q=12,当x=4时,q=10,代入解析式得:,解得:,∴q与x的函数关系式为:q=﹣x+14;
(2)当产量小于或等于市场需求量时,有p≤q,∴x+8≤﹣x+14,解得:x≤4,又2≤x≤10,∴2≤x≤4;
(3)①当产量大于市场需求量时,可得4<x≤10,由题意得:厂家获得的利润是:
y=qx﹣2p=﹣x2+13x﹣16=﹣(x)2;
②∵当x时,y随x的增加而增加.
又∵产量大于市场需求量时,有4<x≤10,∴当4<x时,厂家获得的利润y随销售价格x的上涨而增加.
【点睛】
本题考查了待定系数法求一次函数解析式以及二次函数最值求法等知识,正确得出二次函数解析式是解题的关键.
相关试卷
这是一份2024年湖北省武汉市第十一中学中考一模数学试题(原卷版+解析版),文件包含2024年湖北省武汉市第十一中学中考一模数学试题原卷版docx、2024年湖北省武汉市第十一中学中考一模数学试题解析版docx等2份试卷配套教学资源,其中试卷共30页, 欢迎下载使用。
这是一份湖北省武汉市六中学2022年中考适应性考试数学试题含解析,共24页。试卷主要包含了的绝对值是,计算等内容,欢迎下载使用。
这是一份湖北省武汉市七一华源中学2021-2022学年中考数学适应性模拟试题含解析,共22页。试卷主要包含了考生要认真填写考场号和座位序号,下列命题是假命题的是,的相反数是,下列命题是真命题的是,下列几何体中三视图完全相同的是等内容,欢迎下载使用。