年终活动
搜索
    上传资料 赚现金

    2022年河南省郑州师院附属外语中学中考二模数学试题含解析

    立即下载
    加入资料篮
    2022年河南省郑州师院附属外语中学中考二模数学试题含解析第1页
    2022年河南省郑州师院附属外语中学中考二模数学试题含解析第2页
    2022年河南省郑州师院附属外语中学中考二模数学试题含解析第3页
    还剩17页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    2022年河南省郑州师院附属外语中学中考二模数学试题含解析

    展开

    这是一份2022年河南省郑州师院附属外语中学中考二模数学试题含解析,共20页。试卷主要包含了考生要认真填写考场号和座位序号,估算的值在等内容,欢迎下载使用。
    2021-2022中考数学模拟试卷
    注意事项
    1.考生要认真填写考场号和座位序号。
    2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B 铅笔作答;第二部分必须用黑色字迹的签字笔作答。
    3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。

    一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)
    1.随机掷一枚均匀的硬币两次,至少有一次正面朝上的概率为( )
    A. B. C. D.
    2.如图,D是等边△ABC边AD上的一点,且AD:DB=1:2,现将△ABC折叠,使点C与D重合,折痕为EF,点E、F分别在AC、BC上,则CE:CF=( )

    A. B. C. D.
    3.如图,在▱ABCD中,∠DAB的平分线交CD于点E,交BC的延长线于点G,∠ABC的平分线交CD于点F,交AD的延长线于点H,AG与BH交于点O,连接BE,下列结论错误的是(  )

    A.BO=OH B.DF=CE C.DH=CG D.AB=AE
    4.估算的值在(    )
    A.3和4之间 B.4和5之间 C.5和6之间 D.6和7之间
    5.在以下四个图案中,是轴对称图形的是(  )
    A. B. C. D.
    6.△ABC在正方形网格中的位置如图所示,则cosB的值为( )

    A. B. C. D.2
    7.如图,已知,为反比例函数图象上的两点,动点在轴正半轴上运动,当线段与线段之差达到最大时,点的坐标是( )

    A. B. C. D.
    8.如图,以∠AOB的顶点O为圆心,适当长为半径画弧,交OA于点C,交OB于点D.再分别以点C、D为圆心,大于CD的长为半径画弧,两弧在∠AOB内部交于点E,过点E作射线OE,连接CD.则下列说法错误的是

    A.射线OE是∠AOB的平分线
    B.△COD是等腰三角形
    C.C、D两点关于OE所在直线对称
    D.O、E两点关于CD所在直线对称
    9.如图,AB是⊙O的直径,CD是⊙O的弦,∠ACD=30°,则∠BAD为( )

    A.30° B.50° C.60° D.70°
    10.在△ABC中,AB=AC=13,BC=24,则tanB等于( )
    A. B. C. D.
    11.为了支援地震灾区同学,某校开展捐书活动,九(1)班40名同学积极参与.现将捐书数量绘制成频数分布直方图如图所示,则捐书数量在5.5~6.5组别的频率是( )

    A.0.1 B.0.2
    C.0.3 D.0.4
    12.点M(a,2a)在反比例函数y=的图象上,那么a的值是( )
    A.4 B.﹣4 C.2 D.±2
    二、填空题:(本大题共6个小题,每小题4分,共24分.)
    13.若代数式有意义,则实数x的取值范围是____.
    14.的系数是_____,次数是_____.
    15.计算_______.
    16.若A(﹣3,y1),B(﹣2,y2),C(1,y3)三点都在y=的图象上,则yl,y2,y3的大小关系是_____.(用“<”号填空)
    17.若关于x的函数与x轴仅有一个公共点,则实数k的值为 .
    18.化简:= __________.
    三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.
    19.(6分)综合与探究
    如图,抛物线y=﹣与x轴交于A,B两点(点A在点B的左侧),与y轴交于点C,直线l经过B,C两点,点M从点A出发以每秒1个单位长度的速度向终点B运动,连接CM,将线段MC绕点M顺时针旋转90°得到线段MD,连接CD,BD.设点M运动的时间为t(t>0),请解答下列问题:
    (1)求点A的坐标与直线l的表达式;
    (2)①直接写出点D的坐标(用含t的式子表示),并求点D落在直线l上时的t的值;
    ②求点M运动的过程中线段CD长度的最小值;
    (3)在点M运动的过程中,在直线l上是否存在点P,使得△BDP是等边三角形?若存在,请直接写出点P的坐标;若不存在,请说明理由.

    20.(6分)如图,在Rt△ABC中,∠C=90°,以BC为直径作⊙O交AB于点D,取AC的中点E,边结DE,OE、OD,求证:DE是⊙O的切线.

    21.(6分)如图,一艘轮船位于灯塔P的北偏东60°方向,与灯塔P的距离为80海里的A处,它沿正南方向航行一段时间后,到达位于灯塔P的南偏东45°方向的B处,求此时轮船所在的B处与灯塔P的距离.(参考数据:≈2.449,结果保留整数)

    22.(8分)某公司今年1月份的生产成本是400万元,由于改进技术,生产成本逐月下降,3月份的生产成本是361万元.假设该公司2、3、4月每个月生产成本的下降率都相同.求每个月生产成本的下降率;请你预测4月份该公司的生产成本.
    23.(8分)如图,大楼底右侧有一障碍物,在障碍物的旁边有一幢小楼DE,在小楼的顶端D处测得障碍物边缘点C的俯角为30°,测得大楼顶端A的仰角为45°(点B,C,E在同一水平直线上).已知AB=80m,DE=10m,求障碍物B,C两点间的距离.(结果保留根号)

    24.(10分)珠海某企业接到加工“无人船”某零件5000个的任务.在加工完500个后,改进了技术,每天加工的零件数量是原来的1.5倍,整个加工过程共用了35天完成.求技术改进后每天加工零件的数量.
    25.(10分)如图,AB是⊙O的直径,∠BAC=90°,四边形EBOC是平行四边形,EB交⊙O于点D,连接CD并延长交AB的延长线于点F.
    (1)求证:CF是⊙O的切线;
    (2)若∠F=30°,EB=6,求图中阴影部分的面积.(结果保留根号和π)

    26.(12分)计算:﹣(﹣2)0+|1﹣|+2cos30°.
    27.(12分)解不等式组:,并把解集在数轴上表示出来。




    参考答案

    一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)
    1、D
    【解析】
    先求出两次掷一枚硬币落地后朝上的面的所有情况,再根据概率公式求解.
    【详解】
    随机掷一枚均匀的硬币两次,落地后情况如下:

    至少有一次正面朝上的概率是,
    故选:D.
    【点睛】
    本题考查了随机事件的概率,如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率.
    2、B
    【解析】
    解:由折叠的性质可得,∠EDF=∠C=60º,CE=DE,CF=DF
    再由∠BDF+∠ADE=∠BDF+∠BFD=120º
    可得∠ADE=∠BFD,又因∠A=∠B=60º,
    根据两角对应相等的两三角形相似可得△AED∽△BDF
    所以,
    设AD=a,BD=2a,AB=BC=CA=3a,
    再设CE==DE=x,CF==DF=y,则AE=3a-x,BF=3a-y,
    所以
    整理可得ay=3ax-xy,2ax=3ay-xy,即xy=3ax-ay①,xy=3ay-2ax②;
    把①代入②可得3ax-ay=3ay-2ax,所以5ax=4ay,,

    故选B.
    【点睛】
    本题考查相似三角形的判定及性质.
    3、D
    【解析】
    解:∵四边形ABCD是平行四边形,∴AH∥BG,AD=BC,∴∠H=∠HBG.∵∠HBG=∠HBA,∴∠H=∠HBA,∴AH=AB.
    同理可证BG=AB,∴AH=BG.∵AD=BC,∴DH=CG,故C正确.
    ∵AH=AB,∠OAH=∠OAB,∴OH=OB,故A正确.
    ∵DF∥AB,∴∠DFH=∠ABH.∵∠H=∠ABH,∴∠H=∠DFH,∴DF=DH.
    同理可证EC=CG.
    ∵DH=CG,∴DF=CE,故B正确.
    无法证明AE=AB,故选D.
    4、C
    【解析】
    由可知56,即可解出.
    【详解】

    ∴56,
    故选C.
    【点睛】
    此题主要考查了无理数的估算,掌握无理数的估算是解题的关键.
    5、A
    【解析】
    根据轴对称图形的概念对各选项分析判断利用排除法求解.
    【详解】
    A、是轴对称图形,故本选项正确;
    B、不是轴对称图形,故本选项错误;
    C、不是轴对称图形,故本选项错误;
    D、不是轴对称图形,故本选项错误.
    故选:A.
    【点睛】
    本题考查了轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.
    6、A
    【解析】
    解:在直角△ABD中,BD=2,AD=4,则AB=,
    则cosB=.
    故选A.

    7、D
    【解析】
    求出AB的坐标,设直线AB的解析式是y=kx+b,把A、B的坐标代入求出直线AB的解析式,根据三角形的三边关系定理得出在△ABP中,|AP-BP|<AB,延长AB交x轴于P′,当P在P′点时,PA-PB=AB,此时线段AP与线段BP之差达到最大,求出直线AB于x轴的交点坐标即可.
    【详解】
    把,代入反比例函数 ,得:,,

    在中,由三角形的三边关系定理得:,
    延长交轴于,当在点时,,

    即此时线段与线段之差达到最大,
    设直线的解析式是,
    把,的坐标代入得:,
    解得:,
    直线的解析式是,
    当时,,即,
    故选D.
    【点睛】
    本题考查了三角形的三边关系定理和用待定系数法求一次函数的解析式的应用,解此题的关键是确定P点的位置,题目比较好,但有一定的难度.
    8、D
    【解析】
    试题分析:A、连接CE、DE,根据作图得到OC=OD,CE=DE.

    ∵在△EOC与△EOD中,OC=OD,CE=DE,OE=OE,
    ∴△EOC≌△EOD(SSS).
    ∴∠AOE=∠BOE,即射线OE是∠AOB的平分线,正确,不符合题意.
    B、根据作图得到OC=OD,
    ∴△COD是等腰三角形,正确,不符合题意.
    C、根据作图得到OC=OD,
    又∵射线OE平分∠AOB,∴OE是CD的垂直平分线.
    ∴C、D两点关于OE所在直线对称,正确,不符合题意.
    D、根据作图不能得出CD平分OE,∴CD不是OE的平分线,
    ∴O、E两点关于CD所在直线不对称,错误,符合题意.
    故选D.
    9、C
    【解析】
    试题分析:连接BD,∵∠ACD=30°,∴∠ABD=30°,
    ∵AB为直径,∴∠ADB=90°,∴∠BAD=90°﹣∠ABD=60°.
    故选C.

    考点:圆周角定理
    10、B
    【解析】
    如图,等腰△ABC中,AB=AC=13,BC=24,

    过A作AD⊥BC于D,则BD=12,
    在Rt△ABD中,AB=13,BD=12,则,
    AD=,
    故tanB=.
    故选B.
    【点睛】考查的是锐角三角函数的定义、等腰三角形的性质及勾股定理.
    11、B
    【解析】
    ∵在5.5~6.5组别的频数是8,总数是40,
    ∴=0.1.
    故选B.
    12、D
    【解析】
    根据点M(a,2a)在反比例函数y=的图象上,可得:,然后解方程即可求解.
    【详解】
    因为点M(a,2a)在反比例函数y=的图象上,可得:
    ,
    ,
    解得:,
    故选D.
    【点睛】
    本题主要考查反比例函数图象的上点的特征,解决本题的关键是要熟练掌握反比例函数图象上点的特征.

    二、填空题:(本大题共6个小题,每小题4分,共24分.)
    13、x≠﹣5.
    【解析】
    根据分母不为零分式有意义,可得答案.
    【详解】
    由题意,得x+5≠0,解得x≠﹣5,故答案是:x≠﹣5.
    【点睛】
    本题考查了分式有意义的条件,利用分母不为零分式有意义得出不等式是解题关键.
    14、 1
    【解析】
    根据单项式系数及次数的定义进行解答即可.
    【详解】
    根据单项式系数和次数的定义可知,﹣的系数是,次数是1.
    【点睛】
    本题考查了单项式,熟知单项式中的数字因数叫做单项式的系数,一个单项式中所有字母的指数的和叫做单项式的次数是解题的关键.
    15、
    【解析】
    根据同底数幂的乘法法则计算即可.
    【详解】



    故答案是:
    【点睛】
    本题考查了同底数幂的乘法,熟练掌握同底数幂的乘法运算法则是解题的关键.
    16、y3<y1<y1
    【解析】
    根据反比例函数的性质k<0时,在每个象限,y随x的增大而增大,进行比较即可.
    【详解】
    解:k=-1<0,
    ∴在每个象限,y随x的增大而增大,
    ∵-3<-1<0,
    ∴0<y1<y1.
    又∵1>0
    ∴y3<0
    ∴y3<y1<y1
    故答案为:y3<y1<y1
    【点睛】
    本题考查的是反比例函数的性质,理解性质:当k>0时,在每个象限,y随x的增大而减小,k<0时,在每个象限,y随x的增大而增大是解题的关键.
    17、0或-1。
    【解析】由于没有交待是二次函数,故应分两种情况:
    当k=0时,函数是一次函数,与x轴仅有一个公共点。
    当k≠0时,函数是二次函数,若函数与x轴仅有一个公共点,则有两个相等的实数根,即。
    综上所述,若关于x的函数与x轴仅有一个公共点,则实数k的值为0或-1。
    18、a+b
    【解析】
    将原式通分相减,然后用平方差公式分解因式,再约分化简即可。
    【详解】
    解:原式=
    =
    =
    =a+b
    【点睛】
    此题主要考查了分式的混合运算,熟练掌握运算法则是解本题的关键.

    三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.
    19、(1)A(﹣3,0),y=﹣x+;(2)①D(t﹣3+,t﹣3),②CD最小值为;(3)P(2,﹣),理由见解析.
    【解析】
    (1)当y=0时,﹣=0,解方程求得A(-3,0),B(1,0),由解析式得C(0,),待定系数法可求直线l的表达式;
    (2)分当点M在AO上运动时,当点M在OB上运动时,进行讨论可求D点坐标,将D点坐标代入直线解析式求得t的值;线段CD是等腰直角三角形CMD斜边,若CD最小,则CM最小,根据勾股定理可求点M运动的过程中线段CD长度的最小值;
    (3)分当点M在AO上运动时,即0<t<3时,当点M在OB上运动时,即3≤t≤4时,进行讨论可求P点坐标.
    【详解】
    (1)当y=0时,﹣=0,解得x1=1,x2=﹣3,
    ∵点A在点B的左侧,
    ∴A(﹣3,0),B(1,0),
    由解析式得C(0,),
    设直线l的表达式为y=kx+b,将B,C两点坐标代入得b=mk﹣,
    故直线l的表达式为y=﹣x+;
    (2)当点M在AO上运动时,如图:

    由题意可知AM=t,OM=3﹣t,MC⊥MD,过点D作x轴的垂线垂足为N,
    ∠DMN+∠CMO=90°,∠CMO+∠MCO=90°,
    ∴∠MCO=∠DMN,
    在△MCO与△DMN中,

    ∴△MCO≌△DMN,
    ∴MN=OC=,DN=OM=3﹣t,
    ∴D(t﹣3+,t﹣3);
    同理,当点M在OB上运动时,如图,

    OM=t﹣3,△MCO≌△DMN,MN=OC=,ON=t﹣3+,DN=OM=t﹣3,
    ∴D(t﹣3+,t﹣3).
    综上得,D(t﹣3+,t﹣3).
    将D点坐标代入直线解析式得t=6﹣2,
    线段CD是等腰直角三角形CMD斜边,若CD最小,则CM最小,
    ∵M在AB上运动,
    ∴当CM⊥AB时,CM最短,CD最短,即CM=CO=,根据勾股定理得CD最小;
    (3)当点M在AO上运动时,如图,即0<t<3时,

    ∵tan∠CBO==,
    ∴∠CBO=60°,
    ∵△BDP是等边三角形,
    ∴∠DBP=∠BDP=60°,BD=BP,
    ∴∠NBD=60°,DN=3﹣t,AN=t+,NB=4﹣t﹣,tan∠NBO=,
    =,解得t=3﹣,
    经检验t=3﹣是此方程的解,
    过点P作x轴的垂线交于点Q,易知△PQB≌△DNB,
    ∴BQ=BN=4﹣t﹣=1,PQ=,OQ=2,P(2,﹣);
    同理,当点M在OB上运动时,即3≤t≤4时,
    ∵△BDP是等边三角形,
    ∴∠DBP=∠BDP=60°,BD=BP,
    ∴∠NBD=60°,DN=t﹣3,NB=t﹣3+﹣1=t﹣4+,tan∠NBD=,
    =,解得t=3﹣,
    经检验t=3﹣是此方程的解,t=3﹣(不符合题意,舍).
    故P(2,﹣).
    【点睛】
    考查了二次函数综合题,涉及的知识点有:待定系数法,勾股定理,等腰直角三角形的性质,等边三角形的性质,三角函数,分类思想的运用,方程思想的运用,综合性较强,有一定的难度.
    20、详见解析.
    【解析】
    试题分析:由三角形的中位线得出OE∥AB,进一步利用平行线的性质和等腰三角形性质,找出△OCE和△ODE相等的线段和角,证得全等得出答案即可.
    试题解析:证明:∵点E为AC的中点,OC=OB,∴OE∥AB,∴∠EOC=∠B,∠EOD=∠ODB.又∵∠ODB=∠B,∴∠EOC=∠EOD.
    在△OCE和△ODE中,∵OC=OD,∠EOC=∠EOD, OE=OE,∴△OCE≌△ODE(SAS),∴∠EDO=∠ECO=90°,∴DE⊥OD,∴DE是⊙O的切线.
    点睛:此题考查切线的判定.证明的关键是得到△OCE≌△ODE.
    21、此时轮船所在的B处与灯塔P的距离是98海里.
    【解析】
    【分析】过点P作PC⊥AB,则在Rt△APC中易得PC的长,再在直角△BPC中求出PB的长即可.
    【详解】作PC⊥AB于C点,

    ∴∠APC=30°,∠BPC=45° ,AP=80(海里),
    在Rt△APC中,cos∠APC=,
    ∴PC=PA•cos∠APC=40(海里),
    在Rt△PCB中,cos∠BPC=,
    ∴PB==40≈98(海里),
    答:此时轮船所在的B处与灯塔P的距离是98海里.
    【点睛】本题考查了解直角三角形的应用举例,正确添加辅助线构建直角三角形是解题的关键.
    22、(1)每个月生产成本的下降率为5%;(2)预测4月份该公司的生产成本为342.95万元.
    【解析】
    (1)设每个月生产成本的下降率为x,根据2月份、3月份的生产成本,即可得出关于x的一元二次方程,解之取其较小值即可得出结论;
    (2)由4月份该公司的生产成本=3月份该公司的生产成本×(1﹣下降率),即可得出结论.
    【详解】
    (1)设每个月生产成本的下降率为x,
    根据题意得:400(1﹣x)2=361,
    解得:x1=0.05=5%,x2=1.95(不合题意,舍去).
    答:每个月生产成本的下降率为5%;
    (2)361×(1﹣5%)=342.95(万元),
    答:预测4月份该公司的生产成本为342.95万元.
    【点睛】
    本题考查了一元二次方程的应用,解题的关键是:(1)找准等量关系,正确列出一元二次方程;(2)根据数量关系,列式计算.
    23、(70﹣10)m.
    【解析】
    过点D作DF⊥AB于点F,过点C作CH⊥DF于点H.通过解得到DF的长度;通过解得到CE的长度,则
    【详解】
    如图,过点D作DF⊥AB于点F,过点C作CH⊥DF于点H.

    则DE=BF=CH=10m,
    在中,∵AF=80m−10m=70m,
    ∴DF=AF=70m.
    在中,∵DE=10m,


    答:障碍物B,C两点间的距离为
    24、技术改进后每天加工1个零件.
    【解析】
    分析:设技术改进前每天加工x个零件,则改进后每天加工1.5x个,根据题意列出分式方程,从而得出方程的解并进行检验得出答案.
    详解:设技术改进前每天加工x个零件,则改进后每天加工1.5x个,
    根据题意可得, 解得x=100,
    经检验x=100是原方程的解,则改进后每天加工1.
    答:技术改进后每天加工1个零件.
    点睛:本题主要考查的是分式方程的应用,属于基础题型.根据题意得出等量关系是解题的关键,最后我们还必须要对方程的解进行检验.
    25、(1)证明见解析;(2)9﹣3π
    【解析】
    试题分析:(1)、连接OD,根据平行四边形的性质得出∠AOC=∠OBE,∠COD=∠ODB,结合OB=OD得出∠DOC=∠AOC,从而证明出△COD和△COA全等,从而的得出答案;(2)、首先根据题意得出△OBD为等边三角形,根据等边三角形的性质得出EC=ED=BO=DB,根据Rt△AOC的勾股定理得出AC的长度,然后根据阴影部分的面积等于两个△AOC的面积减去扇形OAD的面积得出答案.
    试题解析:(1)如图连接OD.
    ∵四边形OBEC是平行四边形,∴OC∥BE,∴∠AOC=∠OBE,∠COD=∠ODB,
    ∵OB=OD,∴∠OBD=∠ODB,∴∠DOC=∠AOC,
    在△COD和△COA中,,∴△COD≌△COA,∴∠CDO=∠CAO=90°,
    ∴CF⊥OD, ∴CF是⊙O的切线.
    (2)∵∠F=30°,∠ODF=90°,∴∠DOF=∠AOC=∠COD=60°,
    ∵OD=OB,∴△OBD是等边三角形,∴∠4=60°,∵∠4=∠F+∠1,∴∠1=∠2=30°,
    ∵EC∥OB,∴∠E=180°﹣∠4=120°,∴∠3=180°﹣∠E﹣∠2=30°,∴EC=ED=BO=DB,
    ∵EB=6,∴OB=OD═OA=3, 在Rt△AOC中,∵∠OAC=90°,OA=3,∠AOC=60°,
    ∴AC=OA•tan60°=3, ∴S阴=2•S△AOC﹣S扇形OAD=2××3×3﹣=9﹣3π.

    26、.
    【解析】
    (1)原式利用二次根式的性质,零指数幂法则,绝对值的代数意义,以及特殊角的三角函数值进行化简即可得到结果.
    【详解】
    原式,


    【点睛】
    此题考查了实数的运算,熟练掌握运算法则是解本题的关键.
    27、,解集在数轴上表示见解析
    【解析】
    试题分析:先解不等式组中的每一个不等式,得到不等式组的解集,再把不等式的解集表示在数轴上即可.
    试题解析:
    由①得:
    由②得:
    ∴不等式组的解集为:
    解集在数轴上表示为:


    相关试卷

    河南省郑州师院附属外语中学2023-2024学年数学九上期末教学质量检测试题含答案:

    这是一份河南省郑州师院附属外语中学2023-2024学年数学九上期末教学质量检测试题含答案,共8页。试卷主要包含了二次函数y=ax2+bx+c,下列不是一元二次方程的是,下列说法中,不正确的是,下列事件是必然事件的是等内容,欢迎下载使用。

    2023-2024学年河南省郑州师院附属外语中学九上数学期末质量检测试题含答案:

    这是一份2023-2024学年河南省郑州师院附属外语中学九上数学期末质量检测试题含答案,共7页。试卷主要包含了考生必须保证答题卡的整洁等内容,欢迎下载使用。

    河南省郑州师院附属外语中学2023-2024学年数学八上期末考试模拟试题含答案:

    这是一份河南省郑州师院附属外语中学2023-2024学年数学八上期末考试模拟试题含答案,共7页。试卷主要包含了下列运算正确的是等内容,欢迎下载使用。

    文档详情页底部广告位
    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map