|试卷下载
终身会员
搜索
    上传资料 赚现金
    2022年河北保定曲阳县重点名校中考押题数学预测卷含解析
    立即下载
    加入资料篮
    2022年河北保定曲阳县重点名校中考押题数学预测卷含解析01
    2022年河北保定曲阳县重点名校中考押题数学预测卷含解析02
    2022年河北保定曲阳县重点名校中考押题数学预测卷含解析03
    还剩21页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    2022年河北保定曲阳县重点名校中考押题数学预测卷含解析

    展开
    这是一份2022年河北保定曲阳县重点名校中考押题数学预测卷含解析,共24页。试卷主要包含了下列运算正确的是,计算6m3÷的结果是,已知点 A等内容,欢迎下载使用。

    2021-2022中考数学模拟试卷
    考生须知:
    1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。
    2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。
    3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。

    一、选择题(共10小题,每小题3分,共30分)
    1.一组数据8,3,8,6,7,8,7的众数和中位数分别是( )
    A.8,6 B.7,6 C.7,8 D.8,7
    2.已知二次函数的图象与轴交于点、,且,与轴的正半轴的交点在的下方.下列结论:①;②;③;④.其中正确结论的个数是( )个.
    A.4个 B.3个 C.2个 D.1个
    3.如图所示,从☉O外一点A引圆的切线AB,切点为B,连接AO并延长交圆于点C,连接BC,已知∠A=26°,则∠ACB的度数为( )

    A.32° B.30° C.26° D.13°
    4.下列运算正确的是(  )
    A.2a2+3a2=5a4 B.(﹣)﹣2=4
    C.(a+b)(﹣a﹣b)=a2﹣b2 D.8ab÷4ab=2ab
    5.若△ABC∽△A′B′C′,∠A=40°,∠C=110°,则∠B′等于( )
    A.30° B.50° C.40° D.70°
    6.在数轴上表示不等式组的解集,正确的是(  )
    A. B.
    C. D.
    7.如图,在平行线l1、l2之间放置一块直角三角板,三角板的锐角顶点A,B分别在直线l1、l2上,若∠l=65°,则∠2的度数是(  )

    A.25° B.35° C.45° D.65°
    8.如图图形中,可以看作中心对称图形的是(  )
    A. B. C. D.
    9.计算6m3÷(-3m2)的结果是(  )
    A.-3m B.-2m C.2m D.3m
    10.已知点 A(x1,y1),B(x2,y2),C(x3,y3)在反比例函数y=(k<0)的图象上,若x1<x2<0<x3,则y1,y2,y3的大小关系是(  )
    A.y1<y2<y3 B.y2<y1<y3 C.y3<y2<y1 D.y3<y1<y2
    二、填空题(本大题共6个小题,每小题3分,共18分)
    11.如图,是由形状相同的正六边形和正三角形镶嵌而成的一组有规律的图案,则第n个图案中阴影小三角形的个数是 .
    12.如图,在⊙O中,直径AB⊥弦CD,∠A=28°,则∠D=_______.

    13.如图,在平面直角坐标系中,函数y=(k>0)的图象经过点A(1,2)、B两点,过点A作x轴的垂线,垂足为C,连接AB、BC.若三角形ABC的面积为3,则点B的坐标为___________.

    14.如图,点C在以AB为直径的半圆上,AB=8,∠CBA=30°,点D在线段AB上运动,点E与点D关于AC对称,DF⊥DE于点D,并交EC的延长线于点F.下列结论:①CE=CF;②线段EF的最小值为;③当AD=2时,EF与半圆相切;④若点F恰好落在BC上,则AD=;⑤当点D从点A运动到点B时,线段EF扫过的面积是.其中正确结论的序号是 .

    15.如图,正方形ABCD边长为1,以AB为直径作半圆,点P是CD 中点,BP与半圆交于点Q,连结DQ.给出如下结论:①DQ=1;②;③S△PDQ=;④cos∠ADQ=.其中正确结论是_________.(填写序号)

    16.廊桥是我国古老的文化遗产如图,是某座抛物线型的廊桥示意图,已知抛物线的函数表达式为,为保护廊桥的安全,在该抛物线上距水面AB高为8米的点E,F处要安装两盏警示灯,则这两盏灯的水平距离EF是______米精确到1米

    三、解答题(共8题,共72分)
    17.(8分)五一期间,小红到郊野公园游玩,在景点P处测得景点B位于南偏东45°方向,然后沿北偏东37°方向走200m米到达景点A,此时测得景点B正好位于景点A的正南方向,求景点A与景点B之间的距离.(结果保留整数)参考数据:sin37≈0.60,cos37°=0.80,tan37°≈0.75

    18.(8分)一辆汽车在某次行驶过程中,油箱中的剩余油量y(升)与行驶路程x(千米)之间是一次函数关系,其部分图象如图所示.求y关于x的函数关系式;(不需要写定义域)已知当油箱中的剩余油量为8升时,该汽车会开始提示加油,在此次行驶过程中,行驶了500千米时,司机发现离前方最近的加油站有30千米的路程,在开往该加油站的途中,汽车开始提示加油,这时离加油站的路程是多少千米?

    19.(8分)如图,ABC中,∠ACB=90°,以BC为直径的⊙O交AB于点D,过点D作⊙O的切线交CB的延长线于点E,交AC于点F.
    (1)求证:点F是AC的中点;
    (2)若∠A=30°,AF=,求图中阴影部分的面积.

    20.(8分)学习了正多边形之后,小马同学发现利用对称、旋转等方法可以计算等分正多边形面积的方案.
    (1)请聪明的你将下面图①、图②、图③的等边三角形分别割成2个、3个、4个全等三角形;
    (2)如图④,等边△ABC边长AB=4,点O为它的外心,点M、N分别为边AB、BC上的动点(不与端点重合),且∠MON=120°,若四边形BMON的面积为s,它的周长记为l,求最小值;
    (3)如图⑤,等边△ABC的边长AB=4,点P为边CA延长线上一点,点Q为边AB延长线上一点,点D为BC边中点,且∠PDQ=120°,若PA=x,请用含x的代数式表示△BDQ的面积S△BDQ.

    21.(8分)某种型号油电混合动力汽车,从A地到B地燃油行驶需纯燃油费用76元,从A地到B地用电行驶需纯用电费用26元,已知每行驶1千米,纯燃油费用比纯用电费用多0.5元.求每行驶1千米纯用电的费用;若要使从A地到B地油电混合行驶所需的油、电费用合计不超过39元,则至少需用电行驶多少千米?
    22.(10分)已知抛物线y=ax2+bx+2过点A(5,0)和点B(﹣3,﹣4),与y轴交于点C.
    (1)求抛物线y=ax2+bx+2的函数表达式;
    (2)求直线BC的函数表达式;
    (3)点E是点B关于y轴的对称点,连接AE、BE,点P是折线EB﹣BC上的一个动点,
    ①当点P在线段BC上时,连接EP,若EP⊥BC,请直接写出线段BP与线段AE的关系;
    ②过点P作x轴的垂线与过点C作的y轴的垂线交于点M,当点M不与点C重合时,点M关于直线PC的对称点为点M′,如果点M′恰好在坐标轴上,请直接写出此时点P的坐标.

    23.(12分)在“双十二”期间,两个超市开展促销活动,活动方式如下:
    超市:购物金额打9折后,若超过2000元再优惠300元;
    超市:购物金额打8折.
    某学校计划购买某品牌的篮球做奖品,该品牌的篮球在两个超市的标价相同,根据商场的活动方式:
    (1)若一次性付款4200元购买这种篮球,则在商场购买的数量比在商场购买的数量多5个,请求出这种篮球的标价;
    (2)学校计划购买100个篮球,请你设计一个购买方案,使所需的费用最少.(直接写出方案)
    24.如图,已知点C是以AB为直径的⊙O上一点,CH⊥AB于点H,过点B作⊙O的切线交直线AC于点D,点E为CH的中点,连接AE并延长交BD于点F,直线CF交AB的延长线于G.
    (1)求证:AE•FD=AF•EC;
    (2)求证:FC=FB;
    (3)若FB=FE=2,求⊙O的半径r的长.




    参考答案

    一、选择题(共10小题,每小题3分,共30分)
    1、D
    【解析】
    试题分析:根据中位数和众数的定义分别进行解答即可.把这组数据从小到大排列:3,6,7,7,8,8,8,
    8出现了3次,出现的次数最多,则众数是8;最中间的数是7,则这组数据的中位数是7
    考点:(1)众数;(2)中位数.
    2、B
    【解析】
    分析:根据已知画出图象,把x=−2代入得:4a−2b+c=0,把x=−1代入得:y=a−b+c>0,根据不等式的两边都乘以a(a<0)得:c>−2a,由4a−2b+c=0得而00.
    详解:根据二次函数y=ax2+bx+c的图象与x轴交于点(−2,0)、(x1,0),且1
    把x=−2代入得:4a−2b+c=0,∴①正确;
    把x=−1代入得:y=a−b+c>0,如图A点,∴②错误;
    ∵(−2,0)、(x1,0),且1 ∴取符合条件1 ∴由一元二次方程根与系数的关系知
    ∴不等式的两边都乘以a(a<0)得:c>−2a,
    ∴2a+c>0,∴③正确;
    ④由4a−2b+c=0得
    而0 ∴−1<2a−b<0
    ∴2a−b+1>0,
    ∴④正确.
    所以①③④三项正确.
    故选B.
    点睛:属于二次函数综合题,考查二次函数图象与系数的关系, 二次函数图象上点的坐标特征, 抛物线与轴的交点,属于常考题型.
    3、A
    【解析】
    连接OB,根据切线的性质和直角三角形的两锐角互余求得∠AOB=64°,再由等腰三角形的性质可得∠C=∠OBC,根据三角形外角的性质即可求得∠ACB的度数.
    【详解】
    连接OB,
    ∵AB与☉O相切于点B,
    ∴∠OBA=90°,
    ∵∠A=26°,
    ∴∠AOB=90°-26°=64°,
    ∵OB=OC,
    ∴∠C=∠OBC,
    ∴∠AOB=∠C+∠OBC=2∠C,
    ∴∠C=32°.

    故选A.
    【点睛】
    本题考查了切线的性质,利用切线的性质,结合三角形外角的性质求出角的度数是解决本题的关键.
    4、B
    【解析】
    根据合并同类项的法则、平方差公式、幂的乘方与积的乘方运算法则对各选项依次进行判断即可解答.
    【详解】
    A. 2a2+3a2=5a2,故本选项错误;
    B. (−)-2=4,正确;
    C. (a+b)(−a−b)=−a2−2ab−b2,故本选项错误;
    D. 8ab÷4ab=2,故本选项错误.
    故答案选B.
    【点睛】
    本题考查了合并同类项的法则、平方差公式、幂的乘方与积的乘方运算法则,解题的关键是熟练的掌握合并同类项的法则、平方差公式、幂的乘方与积的乘方运算法则.
    5、A
    【解析】
    利用三角形内角和求∠B,然后根据相似三角形的性质求解.
    【详解】
    解:根据三角形内角和定理可得:∠B=30°,
    根据相似三角形的性质可得:∠B′=∠B=30°.
    故选:A.
    【点睛】
    本题考查相似三角形的性质,掌握相似三角形对应角相等是本题的解题关键.
    6、C
    【解析】
    解不等式组,再将解集在数轴上正确表示出来即可
    【详解】
    解1+x≥0得x≥﹣1,解2x-4<0得x<2,所以不等式的解集为﹣1≤x<2,故选C.
    【点睛】
    本题主要考查了一元一次不等式组的求解,求出题中不等式组的解集是解题的关键.
    7、A
    【解析】
    如图,过点C作CD∥a,再由平行线的性质即可得出结论.
    【详解】
    如图,过点C作CD∥a,则∠1=∠ACD,
    ∵a∥b,
    ∴CD∥b,
    ∴∠2=∠DCB,
    ∵∠ACD+∠DCB=90°,
    ∴∠1+∠2=90°,
    又∵∠1=65°,
    ∴∠2=25°,
    故选A.

    【点睛】
    本题考查了平行线的性质与判定,根据题意作出辅助线,构造出平行线是解答此题的关键.
    8、D
    【解析】
    根据 把一个图形绕某一点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形就叫做中心对称图形,这个点叫做对称中心进行分析即可.
    【详解】
    解:A、不是中心对称图形,故此选项不合题意;
    B、不是中心对称图形,故此选项不合题意;
    C、不是中心对称图形,故此选项不合题意;
    D、是中心对称图形,故此选项符合题意;
    故选D.
    【点睛】
    此题主要考查了中心对称图形,关键掌握中心对称图形定义.
    9、B
    【解析】
    根据单项式相除,把系数与同底数幂分别相除作为商的因式,对于只在被除式里含有的字母,则连同它的指数作为商的一个因式计算,然后选取答案即可.
    【详解】
    6m3÷(﹣3m2)=[6÷(﹣3)](m3÷m2)=﹣2m.
    故选B.
    10、D
    【解析】
    试题分析:反比例函数y=-的图象位于二、四象限,在每一象限内,y随x的增大而增大,∵A(x1,y1)、B(x2,y2)、C(x3,y3)在该函数图象上,且x1<x2<0<x3,,∴y3<y1<y2;
    故选D.
    考点:反比例函数的性质.

    二、填空题(本大题共6个小题,每小题3分,共18分)
    11、4n﹣1.
    【解析】
    由图可知:第一个图案有阴影小三角形1个,第二图案有阴影小三角形1+4=6个,第三个图案有阴影小三角形1+8=11个,···那么第n个就有阴影小三角形1+4(n﹣1)=4n﹣1个.
    12、34°
    【解析】
    分析:首先根据垂径定理得出∠BOD的度数,然后根据三角形内角和定理得出∠D的度数.
    详解:∵直径AB⊥弦CD, ∴∠BOD=2∠A=56°, ∴∠D=90°-56°=34°.
    点睛:本题主要考查的是圆的垂径定理,属于基础题型.求出∠BOD的度数是解题的关键.
    13、(4,).
    【解析】
    由于函数y=(x>0常数k>0)的图象经过点A(1,1),把(1,1)代入解析式求出k=1,然后得到AC=1.设B点的横坐标是m,则AC边上的高是(m-1),根据三角形的面积公式得到关于m的方程,从而求出,然后把m的值代入y=,即可求得B的纵坐标,最后就求出了点B的坐标.
    【详解】
    ∵函数y=(x>0、常数k>0)的图象经过点A(1,1),
    ∴把(1,1)代入解析式得到1=,
    ∴k=1,
    设B点的横坐标是m,
    则AC边上的高是(m-1),
    ∵AC=1
    ∴根据三角形的面积公式得到×1•(m-1)=3,
    ∴m=4,把m=4代入y=,
    ∴B的纵坐标是,
    ∴点B的坐标是(4,).
    故答案为(4,).
    【点睛】
    解答本题的关键是根据已知坐标系中点的坐标,可以表示图形中线段的长度.根据三角形的面积公式即可解答.
    14、①③⑤.
    【解析】
    试题分析:①连接CD,如图1所示,∵点E与点D关于AC对称,∴CE=CD,∴∠E=∠CDE,∵DF⊥DE,∴∠EDF=90°,∴∠E+∠F=90°,∠CDE+∠CDF=90°,∴∠F=∠CDF,∴CD=CF,∴CE=CD=CF,∴结论“CE=CF”正确;

    ②当CD⊥AB时,如图2所示,∵AB是半圆的直径,∴∠ACB=90°,∵AB=8,∠CBA=30°,∴∠CAB=60°,AC=4,BC=.∵CD⊥AB,∠CBA=30°,∴CD=BC=.根据“点到直线之间,垂线段最短”可得:点D在线段AB上运动时,CD的最小值为.∵CE=CD=CF,∴EF=2CD.∴线段EF的最小值为.∴结论“线段EF的最小值为”错误;

    ③当AD=2时,连接OC,如图3所示,∵OA=OC,∠CAB=60°,∴△OAC是等边三角形,∴CA=CO,∠ACO=60°,∵AO=4,AD=2,∴DO=2,∴AD=DO,∴∠ACD=∠OCD=30°,∵点E与点D关于AC对称,∴∠ECA=∠DCA,∴∠ECA=30°,∴∠ECO=90°,∴OC⊥EF,∵EF经过半径OC的外端,且OC⊥EF,∴EF与半圆相切,∴结论“EF与半圆相切”正确;

    ④当点F恰好落在上时,连接FB、AF,如图4所示,∵点E与点D关于AC对称,∴ED⊥AC,∴∠AGD=90°,∴∠AGD=∠ACB,∴ED∥BC,∴△FHC∽△FDE,∴FH:FD=FC:FE,∵FC=EF,∴FH=FD,∴FH=DH,∵DE∥BC,∴∠FHC=∠FDE=90°,∴BF=BD,∴∠FBH=∠DBH=30°,∴∠FBD=60°,∵AB是半圆的直径,∴∠AFB=90°,∴∠FAB=30°,∴FB=AB=4,∴DB=4,∴AD=AB﹣DB=4,∴结论“AD=”错误;

    ⑤∵点D与点E关于AC对称,点D与点F关于BC对称,∴当点D从点A运动到点B时,点E的运动路径AM与AB关于AC对称,点F的运动路径NB与AB关于BC对称,∴EF扫过的图形就是图5中阴影部分,∴S阴影=2S△ABC=2×AC•BC=AC•BC=4×=,∴EF扫过的面积为,∴结论“EF扫过的面积为”正确.
    故答案为①③⑤.

    考点:1.圆的综合题;2.等边三角形的判定与性质;3.切线的判定;4.相似三角形的判定与性质.
    15、①②④
    【解析】
    ①连接OQ,OD,如图1.易证四边形DOBP是平行四边形,从而可得DO∥BP.结合OQ=OB,可证到∠AOD=∠QOD,从而证到△AOD≌△QOD,则有DQ=DA=1;
    ②连接AQ,如图4,根据勾股定理可求出BP.易证Rt△AQB∽Rt△BCP,运用相似三角形的性质可求出BQ,从而求出PQ的值,就可得到的值;
    ③过点Q作QH⊥DC于H,如图4.易证△PHQ∽△PCB,运用相似三角形的性质可求出QH,从而可求出S△DPQ的值;
    ④过点Q作QN⊥AD于N,如图3.易得DP∥NQ∥AB,根据平行线分线段成比例可得,把AN=1-DN代入,即可求出DN,然后在Rt△DNQ中运用三角函数的定义,就可求出cos∠ADQ的值.
    【详解】
    解:①连接OQ,OD,如图1.

    易证四边形DOBP是平行四边形,从而可得DO∥BP.
    结合OQ=OB,可证到∠AOD=∠QOD,从而证到△AOD≌△QOD,
    则有DQ=DA=1.
    故①正确;
    ②连接AQ,如图4.

    则有CP=,BP=.
    易证Rt△AQB∽Rt△BCP,
    运用相似三角形的性质可求得BQ=,
    则PQ=,
    ∴.
    故②正确;
    ③过点Q作QH⊥DC于H,如图4.

    易证△PHQ∽△PCB,
    运用相似三角形的性质可求得QH=,
    ∴S△DPQ=DP•QH=××=.
    故③错误;
    ④过点Q作QN⊥AD于N,如图3.

    易得DP∥NQ∥AB,
    根据平行线分线段成比例可得,
    则有,
    解得:DN=.
    由DQ=1,得cos∠ADQ=.
    故④正确.
    综上所述:正确结论是①②④.
    故答案为:①②④.
    【点睛】
    本题主要考查了圆周角定理、平行四边形的判定与性质、相似三角形的判定与性质、全等三角形的判定与性质、平行线分线段成比例、等腰三角形的性质、平行线的性质、锐角三角函数的定义、勾股定理等知识,综合性比较强,常用相似三角形的性质、勾股定理、三角函数的定义来建立等量关系,应灵活运用.
    16、
    【解析】
    由于两盏E、F距离水面都是8m,因而两盏景观灯之间的水平距离就
    是直线y=8与抛物线两交点的横坐标差的绝对值.
    故有,
    即,,.
    所以两盏警示灯之间的水平距离为:

    三、解答题(共8题,共72分)
    17、景点A与B之间的距离大约为280米
    【解析】
    由已知作PC⊥AB于C,可得△ABP中∠A=37°,∠B=45°且PA=200m,要求AB的长,可以先求出AC和BC的长.
    【详解】
    解:如图,作PC⊥AB于C,则∠ACP=∠BCP=90°,
    由题意,可得∠A=37°,∠B=45°,PA=200m.
    在Rt△ACP中,∵∠ACP=90°,∠A=37°,
    ∴AC=AP•cosA=200×0.80=160,PC=AP•sinA=200×0.60=1.
    在Rt△BPC中,∵∠BCP=90°,∠B=45°,
    ∴BC=PC=1.
    ∴AB=AC+BC=160+1=280(米).
    答:景点A与B之间的距离大约为280米.

    【点睛】
    本题考查了解直角三角形的应用-方向角问题,对于解一般三角形,求三角形的边或高的问题一般可以转化为解直角三角形的问题,解决的方法就是作高线.
    18、(1)该一次函数解析式为y=﹣x+1.(2)在开往该加油站的途中,汽车开始提示加油,这时离加油站的路程是10千米.
    【解析】
    【分析】(1)根据函数图象中点的坐标利用待定系数法求出一次函数解析式;
    (2)根据一次函数图象上点的坐标特征即可求出剩余油量为8升时行驶的路程,即可求得答案.
    【详解】(1)设该一次函数解析式为y=kx+b,
    将(150,45)、(0,1)代入y=kx+b中,得
    ,解得:,
    ∴该一次函数解析式为y=﹣x+1;
    (2)当y=﹣x+1=8时,
    解得x=520,
    即行驶520千米时,油箱中的剩余油量为8升.
    530﹣520=10千米,
    油箱中的剩余油量为8升时,距离加油站10千米,
    ∴在开往该加油站的途中,汽车开始提示加油,这时离加油站的路程是10千米.
    【点睛】本题考查了一次函数的应用,熟练掌握待定系数法,弄清题意是解题的关键.
    19、(1)见解析;(2)
    【解析】
    (1)连接OD、CD,如图,利用圆周角定理得到∠BDC=90°,再判定AC为⊙O的切线,则根据切线长定理得到FD=FC,然后证明∠3=∠A得到FD=FA,从而有FC=FA;
    (2)在Rt△ACB中利用含30度的直角三角形三边的关系得到BC=AC=2,再证明△OBD为等边三角形得到∠BOD=60°,接着根据切线的性质得到OD⊥EF,从而可计算出DE的长,然后根据扇形的面积公式,利用S阴影部分=S△ODE-S扇形BOD进行计算即可.
    【详解】
    (1)证明:连接OD、CD,如图,

    ∵BC为直径,
    ∴∠BDC=90°,
    ∵∠ACB=90°,
    ∴AC为⊙O的切线,
    ∵EF为⊙O的切线,
    ∴FD=FC,
    ∴∠1=∠2,
    ∵∠1+∠A=90°,∠2+∠3=90°,
    ∴∠3=∠A,
    ∴FD=FA,
    ∴FC=FA,
    ∴点F是AC中点;
    (2)解:在Rt△ACB中,AC=2AF=2,
    而∠A=30°,
    ∴∠CBA=60°,BC=AC=2,
    ∵OB=OD,
    ∴△OBD为等边三角形,
    ∴∠BOD=60°,
    ∵EF为切线,
    ∴OD⊥EF,
    在Rt△ODE中,DE=OD=,
    ∴S阴影部分=S△ODE﹣S扇形BOD=×1×﹣=﹣π.
    【点睛】
    本题考查了切线的性质:圆的切线垂直于经过切点的半径.若出现圆的切线,必连过切点的半径,构造定理图,得出垂直关系.简记作:见切点,连半径,见垂直.也考查了圆周角定理和扇形的面积公式.
    20、(1)详见解析;(2)2+2;(3)S△BDQx+.
    【解析】
    (1)根据要求利用全等三角形的判定和性质画出图形即可.
    (2)如图④中,作OE⊥AB于E,OF⊥BC于F,连接OB.证明△OEM≌△OFN(ASA),推出EM=FN,ON=OM,S△EOM=S△NOF,推出S四边形BMON=S四边形BEOF=定值,证明Rt△OBE≌Rt△OBF(HL),推出BM+BN=BE+EM+BF﹣FN=2BE=定值,推出欲求最小值,只要求出l的最小值,因为l=BM+BN+ON+OM=定值+ON+OM所以欲求最小值,只要求出ON+OM的最小值,因为OM=ON,根据垂线段最短可知,当OM与OE重合时,OM定值最小,由此即可解决问题.
    (3)如图⑤中,连接AD,作DE⊥AB于E,DF⊥AC于F.证明△PDF≌△QDE(ASA),即可解决问题.
    【详解】
    解:(1)如图1,作一边上的中线可分割成2个全等三角形,
    如图2,连接外心和各顶点的线段可分割成3个全等三角形,
    如图3,连接各边的中点可分割成4个全等三角形,

    (2)如图④中,作OE⊥AB于E,OF⊥BC于F,连接OB.

    ∵△ABC是等边三角形,O是外心,
    ∴OB平分∠ABC,∠ABC=60°∵OE⊥AB,OF⊥BC,
    ∴OE=OF,
    ∵∠OEB=∠OFB=90°,
    ∴∠EOF+∠EBF=180°,
    ∴∠EOF=∠NOM=120°,
    ∴∠EOM=∠FON,
    ∴△OEM≌△OFN(ASA),
    ∴EM=FN,ON=OM,S△EOM=S△NOF,
    ∴S四边形BMON=S四边形BEOF=定值,
    ∵OB=OB,OE=OF,∠OEB=∠OFB=90°,
    ∴Rt△OBE≌Rt△OBF(HL),
    ∴BE=BF,
    ∴BM+BN=BE+EM+BF﹣FN=2BE=定值,
    ∴欲求最小值,只要求出l的最小值,
    ∵l=BM+BN+ON+OM=定值+ON+OM,
    欲求最小值,只要求出ON+OM的最小值,
    ∵OM=ON,根据垂线段最短可知,当OM与OE重合时,OM定值最小,
    此时定值最小,s=×2×=,l=2+2++=4+,
    ∴的最小值==2+2.
    (3)如图⑤中,连接AD,作DE⊥AB于E,DF⊥AC于F.

    ∵△ABC是等边三角形,BD=DC,
    ∴AD平分∠BAC,
    ∵DE⊥AB,DF⊥AC,
    ∴DE=DF,
    ∵∠DEA=∠DEQ=∠AFD=90°,
    ∴∠EAF+∠EDF=180°,
    ∵∠EAF=60°,
    ∴∠EDF=∠PDQ=120°,
    ∴∠PDF=∠QDE,
    ∴△PDF≌△QDE(ASA),
    ∴PF=EQ,
    在Rt△DCF中,∵DC=2,∠C=60°,∠DFC=90°,
    ∴CF=CD=1,DF=,
    同法可得:BE=1,DE=DF=,
    ∵AF=AC﹣CF=4﹣1=3,PA=x,
    ∴PF=EQ=3+x,
    ∴BQ=EQ﹣BE=2+x,
    ∴S△BDQ=•BQ•DE=×(2+x)×=x+.
    【点睛】
    本题主要考查多边形的综合题,主要涉及的知识点:全等三角形的判定和性质、多边形内角和、角平分线的性质、等量代换、三角形的面积等,牢记并熟练运用这些知识点是解此类综合题的关键。
    21、(1)每行驶1千米纯用电的费用为0.26元.(2)至少需用电行驶74千米.
    【解析】
    (1)根据某种型号油电混合动力汽车,从A地到B地燃油行驶纯燃油费用76元,从A地到B地用电行驶纯电费用26元,已知每行驶1千米,纯燃油费用比纯用电费用多0.5元,可以列出相应的分式方程,然后解分式方程即可解答本题;
    (2)根据(1)中用电每千米的费用和本问中的信息可以列出相应的不等式,解不等式即可解答本题.
    【详解】
    (1)设每行驶1千米纯用电的费用为x元,根据题意得:
    =
    解得:x=0.26
    经检验,x=0.26是原分式方程的解,
    答:每行驶1千米纯用电的费用为0.26元;
    (2)从A地到B地油电混合行驶,用电行驶y千米,得:
    0.26y+(﹣y)×(0.26+0.50)≤39
    解得:y≥74,即至少用电行驶74千米.
    22、(1)y=﹣x2+x+2;(2)y=2x+2;(3)①线段BP与线段AE的关系是相互垂直;②点P的坐标为:(﹣4+2,﹣8+4)或(﹣4﹣2,﹣8﹣4)或(0,﹣4)或(﹣,﹣4).
    【解析】
    (1)将A(5,0)和点B(﹣3,﹣4)代入y=ax2+bx+2,即可求解;
    (2)C点坐标为(0,2),把点B、C的坐标代入直线方程y=kx+b即可求解;
    (3)①AE直线的斜率kAE=2,而直线BC斜率的kAE=2即可求解;
    ②考虑当P点在线段BC上时和在线段BE上时两种情况,利用PM′=PM即可求解.
    【详解】
    (1)将A(5,0)和点B(﹣3,﹣4)代入y=ax2+bx+2,
    解得:a=﹣,b=,
    故函数的表达式为y=﹣x2+x+2;
    (2)C点坐标为(0,2),把点B、C的坐标代入直线方程y=kx+b,
    解得:k=2,b=2,
    故:直线BC的函数表达式为y=2x+2,
    (3)①E是点B关于y轴的对称点,E坐标为(3,﹣4),
    则AE直线的斜率kAE=2,而直线BC斜率的kAE=2,
    ∴AE∥BC,而EP⊥BC,∴BP⊥AE
    而BP=AE,∴线段BP与线段AE的关系是相互垂直;
    ②设点P的横坐标为m,
    当P点在线段BC上时,
    P坐标为(m,2m+2),M坐标为(m,2),则PM=2m,
    直线MM′⊥BC,∴kMM′=﹣,
    直线MM′的方程为:y=﹣x+(2+m),
    则M′坐标为(0,2+m)或(4+m,0),
    由题意得:PM′=PM=2m,
    PM′2=42+m2=(2m)2,此式不成立,
    或PM′2=m2+(2m+2)2=(2m)2,
    解得:m=﹣4±2,
    故点P的坐标为(﹣4±2,﹣8±4);
    当P点在线段BE上时,
    点P坐标为(m,﹣4),点M坐标为(m,2),
    则PM=6,
    直线MM′的方程不变,为y=﹣x+(2+m),
    则M′坐标为(0,2+m)或(4+m,0),
    PM′2=m2+(6+m)2=(2m)2,
    解得:m=0,或﹣;
    或PM′2=42+42=(6)2,无解;
    故点P的坐标为(0,﹣4)或(﹣,﹣4);
    综上所述:
    点P的坐标为:(﹣4+2,﹣8+4)或(﹣4﹣2,﹣8﹣4)或(0,﹣4)或(﹣,﹣4).
    【点睛】
    主要考查了二次函数的解析式的求法和与几何图形结合的综合能力的培养.要会利用数形结合的思想把代数和几何图形结合起来,利用点的坐标的意义表示线段的长度,从而求出线段之间的关系.
    23、(1)这种篮球的标价为每个50元;(2)见解析
    【解析】
    (1)设这种篮球的标价为每个x元,根据题意可知在B超市可买篮球个,在A超市可买篮球个,根据在B商场比在A商场多买5个列方程进行求解即可;
    (2)分情况,单独在A超市买100个、单独在B超市买100个、两家超市共买100个进行讨论即可得.
    【详解】
    (1)设这种篮球的标价为每个x元,
    依题意,得,
    解得:x=50,
    经检验:x=50是原方程的解,且符合题意,
    答:这种篮球的标价为每个50元;
    (2)购买100个篮球,最少的费用为3850元,
    单独在A超市一次买100个,则需要费用:100×50×0.9-300=4200元,
    在A超市分两次购买,每次各买50个,则需要费用:2(50×50×0.9-300)=3900元,
    单独在B超市购买:100×50×0.8=4000元,
    在A、B两个超市共买100个,
    根据A超市的方案可知在A超市一次购买:=44,即购买45个时花费最小,为45×50×0.9-300=1725元,两次购买,每次各买45个,需要1725×2=3450元,其余10个在B超市购买,需要10×50×0.8=400元,这样一共需要3450+400=3850元,
    综上可知最少费用的购买方案:在A超市分两次购买,每次购买45个篮球,费用共为3450元;在B超市购买10个,费用400元,两超市购买100个篮球总费用3850元.
    【点睛】
    本题考查了分式方程的应用,弄清题意,找准等量关系列出方程是解题的关键.
    24、(1)详见解析;(2)详见解析;(3)2.
    【解析】
    (1)由BD是⊙O的切线得出∠DBA=90°,推出CH∥BD,证△AEC∽△AFD,得出比例式即可.
    (2)证△AEC∽△AFD,△AHE∽△ABF,推出BF=DF,根据直角三角形斜边上中线性质得出CF=DF=BF即可.
    (3)求出EF=FC,求出∠G=∠FAG,推出AF=FG,求出AB=BG,连接OC,BC,求出∠FCB=∠CAB推出CG是⊙O切线,由切割线定理(或△AGC∽△CGB)得出(2+FG)2=BG×AG=2BG2,在Rt△BFG中,由勾股定理得出BG2=FG2﹣BF2,推出FG2﹣4FG﹣12=0,求出FG即可,从而由勾股定理求得AB=BG
    的长,从而得到⊙O的半径r.

    相关试卷

    河北省保定市高阳县市级名校2021-2022学年中考押题数学预测卷含解析: 这是一份河北省保定市高阳县市级名校2021-2022学年中考押题数学预测卷含解析,共20页。试卷主要包含了考生必须保证答题卡的整洁,我省2013年的快递业务量为1,如图所示的几何体的主视图是等内容,欢迎下载使用。

    2022届河北省邯郸市涉县重点达标名校中考押题数学预测卷含解析: 这是一份2022届河北省邯郸市涉县重点达标名校中考押题数学预测卷含解析,共18页。试卷主要包含了答题时请按要求用笔,把a•的根号外的a移到根号内得,下列运算正确的是,-3的相反数是等内容,欢迎下载使用。

    2021-2022学年湛江市重点名校中考押题数学预测卷含解析: 这是一份2021-2022学年湛江市重点名校中考押题数学预测卷含解析,共18页。试卷主要包含了下列说法正确的是等内容,欢迎下载使用。

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单

        欢迎来到教习网

        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        返回
        顶部
        Baidu
        map