河北省定兴县达标名校2022年中考押题数学预测卷含解析
展开1.考生要认真填写考场号和座位序号。
2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B 铅笔作答;第二部分必须用黑色字迹的签字笔作答。
3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。
一、选择题(共10小题,每小题3分,共30分)
1.如图,△ABC中,AD⊥BC,AB=AC,∠BAD=30°,且AD=AE,则∠EDC等于( )
A.10°B.12.5°C.15°D.20°
2.已知x1、x2是关于x的方程x2﹣ax﹣2=0的两根,下列结论一定正确的是( )
A.x1≠x2B.x1+x2>0C.x1•x2>0D.x1<0,x2<0
3.如图,在平面直角坐标系中,线段AB的端点坐标为A(-2,4),B(4,2),直线y=kx-2与线段AB有交点,则K的值不可能是( )
A.-5B.-2C.3D.5
4.如图,将边长为3a的正方形沿虚线剪成两块正方形和两块长方形.若拿掉边长2b的小正方形后,再将剩下的三块拼成一块矩形,则这块矩形较长的边长为( )
A.3a+2bB.3a+4bC.6a+2bD.6a+4b
5.如图,在中,点D、E、F分别在边、、上,且,.下列四种说法: ①四边形是平行四边形;②如果,那么四边形是矩形;③如果平分,那么四边形是菱形;④如果且,那么四边形是菱形. 其中,正确的有( ) 个
A.1B.2C.3D.4
6.如图,在平面直角坐标系xOy中,点A从出发,绕点O顺时针旋转一周,则点A不经过( )
A.点MB.点NC.点PD.点Q
7.国家主席习近平在2018年新年贺词中说道:“安得广厦千万间,大庇天下寒士俱欢颜!2017年我国3400000贫困人口实现易地扶贫搬迁、有了温暖的新家.”其中3400000用科学记数法表示为( )
A.0.34×107B.3.4×106C.3.4×105D.34×105
8.如图,在Rt△ABC中,∠ACB=90°,CD是AB边上的中线,AC=8,BC=6,则∠ACD的正切值是( )
A.B.C.D.
9.如图,∠AOB=45°,OC是∠AOB的角平分线,PM⊥OB,垂足为点M,PN∥OB,PN与OA相交于点N,那么的值等于( )
A.B.C.D.
10.下列命题是假命题的是( )
A.有一个外角是120°的等腰三角形是等边三角形
B.等边三角形有3条对称轴
C.有两边和一角对应相等的两个三角形全等
D.有一边对应相等的两个等边三角形全等
二、填空题(本大题共6个小题,每小题3分,共18分)
11.16的算术平方根是 .
12.计算:=________.
13.若分式的值为零,则x的值为________.
14.如图,在平面直角坐标系中,矩形活动框架ABCD的长AB为2,宽AD为,其中边AB在x轴上,且原点O为AB的中点,固定点A、B,把这个矩形活动框架沿箭头方向推,使D落在y轴的正半轴上点D′处,点C的对应点C′的坐标为______.
15.二次函数y=ax2+bx+c(a≠0)的部分对应值如下表:
则二次函数y=ax2+bx+c在x=2时,y=______.
16.化简:①=_____;②=_____;③=_____.
三、解答题(共8题,共72分)
17.(8分)如图,在△ABC中,∠ABC=90°,BD⊥AC,垂足为D,E为BC边上一动点(不与B、C重合),AE、BD交于点F.
(1)当AE平分∠BAC时,求证:∠BEF=∠BFE;
(2)当E运动到BC中点时,若BE=2,BD=2.4,AC=5,求AB的长.
18.(8分)(1)计算:(1﹣)0﹣|﹣2|+;
(2)如图,在等边三角形ABC中,点D,E分别是边BC,AC的中点,过点E作EF⊥DE,交BC的延长线于点F,求∠F的度数.
19.(8分)知识改变世界,科技改变生活.导航装备的不断更新极大方便了人们的出行.如图,某校组织学生乘车到黑龙滩(用C表示)开展社会实践活动,车到达A地后,发现C地恰好在A地的正北方向,且距离A地13千米,导航显示车辆应沿北偏东60°方向行驶至B地,再沿北偏西37°方向行驶一段距离才能到达C地,求B、C两地的距离.(参考数据:sin53°≈,cs53°≈,tan53°≈)
20.(8分)如图,在直角坐标系中△ABC的A、B、C三点坐标A(7,1)、B(8,2)、C(9,0).
(1)请在图中画出△ABC的一个以点P(12,0)为位似中心,相似比为3的位似图形△A′B′C′(要求与△ABC同在P点一侧),画出△A′B′C′关于y轴对称的△A′'B′'C′';
(2)写出点A'的坐标.
21.(8分)某手机经销商计划同时购进一批甲、乙两种型号的手机,若购进2部甲型号手机和1部乙型号手机,共需要资金2800元;若购进3部甲型号手机和2部乙型号手机,共需要资金4600元 求甲、乙型号手机每部进价为多少元? 该店计划购进甲、乙两种型号的手机销售,预计用不多于1.8万元且不少于1.74万元的资金购进这两部手机共20台,请问有几种进货方案?请写出进货方案 售出一部甲种型号手机,利润率为40%,乙型号手机的售价为1280元.为了促销,公司决定每售出一台乙型号手机,返还顾客现金m元,而甲型号手机售价不变,要使(2)中所有方案获利相同,求m的值
22.(10分)如图,点,在上,直线是的切线,.连接交于.
(1)求证:
(2)若,的半径为,求的长.
23.(12分)解不等式组 ,并把解集在数轴上表示出来.
24.已知抛物线y=x2+bx+c(b,c是常数)与x轴相交于A,B两点(A在B的左侧),与y轴交于点C.
(1)当A(﹣1,0),C(0,﹣3)时,求抛物线的解析式和顶点坐标;
(2)P(m,t)为抛物线上的一个动点.
①当点P关于原点的对称点P′落在直线BC上时,求m的值;
②当点P关于原点的对称点P′落在第一象限内,P′A2取得最小值时,求m的值及这个最小值.
参考答案
一、选择题(共10小题,每小题3分,共30分)
1、C
【解析】
试题分析:根据三角形的三线合一可求得∠DAC及∠ADE的度数,根据∠EDC=90°-∠ADE即可得到答案.
∵△ABC中,AD⊥BC,AB=AC,∠BAD=30°,
∴∠DAC=∠BAD=30°,
∵AD=AE(已知),
∴∠ADE=75°
∴∠EDC=90°-∠ADE=15°.
故选C.
考点:本题主要考查了等腰三角形的性质,三角形内角和定理
点评:解答本题的关键是掌握等腰三角形的顶角平分线、底边上的中线、底边上的高相互重合.
2、A
【解析】
分析:A、根据方程的系数结合根的判别式,可得出△>0,由此即可得出x1≠x2,结论A正确;
B、根据根与系数的关系可得出x1+x2=a,结合a的值不确定,可得出B结论不一定正确;
C、根据根与系数的关系可得出x1•x2=﹣2,结论C错误;
D、由x1•x2=﹣2,可得出x1<0,x2>0,结论D错误.
综上即可得出结论.
详解:A∵△=(﹣a)2﹣4×1×(﹣2)=a2+8>0,
∴x1≠x2,结论A正确;
B、∵x1、x2是关于x的方程x2﹣ax﹣2=0的两根,
∴x1+x2=a,
∵a的值不确定,
∴B结论不一定正确;
C、∵x1、x2是关于x的方程x2﹣ax﹣2=0的两根,
∴x1•x2=﹣2,结论C错误;
D、∵x1•x2=﹣2,
∴x1<0,x2>0,结论D错误.
故选A.
点睛:本题考查了根的判别式以及根与系数的关系,牢记“当△>0时,方程有两个不相等的实数根”是解题的关键.
3、B
【解析】
当直线y=kx-2与线段AB的交点为A点时,把A(-2,4)代入y=kx-2,求出k=-3,根据一次函数的有关性质得到当k≤-3时直线y=kx-2与线段AB有交点;当直线y=kx-2与线段AB的交点为B点时,把B(4,2)代入y=kx-2,求出k=1,根据一次函数的有关性质得到当k≥1时直线y=kx-2与线段AB有交点,从而能得到正确选项.
【详解】
把A(-2,4)代入y=kx-2得,4=-2k-2,解得k=-3,
∴当直线y=kx-2与线段AB有交点,且过第二、四象限时,k满足的条件为k≤-3;
把B(4,2)代入y=kx-2得,4k-2=2,解得k=1,
∴当直线y=kx-2与线段AB有交点,且过第一、三象限时,k满足的条件为k≥1.
即k≤-3或k≥1.
所以直线y=kx-2与线段AB有交点,则k的值不可能是-2.
故选B.
【点睛】
本题考查了一次函数y=kx+b(k≠0)的性质:当k>0时,图象必过第一、三象限,k越大直线越靠近y轴;当k<0时,图象必过第二、四象限,k越小直线越靠近y轴.
4、A
【解析】
根据这块矩形较长的边长=边长为3a的正方形的边长-边长为2b的小正方形的边长+边长为2b的小正方形的边长的2倍代入数据即可.
【详解】
依题意有:3a﹣2b+2b×2=3a﹣2b+4b=3a+2b.
故这块矩形较长的边长为3a+2b.故选A.
【点睛】
本题主要考查矩形、正方形和整式的运算,熟读题目,理解题意,清楚题中的等量关系是解答本题的关键.
5、D
【解析】
先由两组对边分别平行的四边形为平行四边形,根据DE∥CA,DF∥BA,得出AEDF为平行四边形,得出①正确;当∠BAC=90°,根据推出的平行四边形AEDF,利用有一个角为直角的平行四边形为矩形可得出②正确;若AD平分∠BAC,得到一对角相等,再根据两直线平行内错角相等又得到一对角相等,等量代换可得∠EAD=∠EDA,利用等角对等边可得一组邻边相等,根据邻边相等的平行四边形为菱形可得出③正确;由AB=AC,AD⊥BC,根据等腰三角形的三线合一可得AD平分∠BAC,同理可得四边形AEDF是菱形,④正确,进而得到正确说法的个数.
【详解】
解:∵DE∥CA,DF∥BA,
∴四边形AEDF是平行四边形,选项①正确;
若∠BAC=90°,
∴平行四边形AEDF为矩形,选项②正确;
若AD平分∠BAC,
∴∠EAD=∠FAD,
又DE∥CA,∴∠EDA=∠FAD,
∴∠EAD=∠EDA,
∴AE=DE,
∴平行四边形AEDF为菱形,选项③正确;
若AB=AC,AD⊥BC,
∴AD平分∠BAC,
同理可得平行四边形AEDF为菱形,选项④正确,
则其中正确的个数有4个.
故选D.
【点睛】
此题考查了平行四边形的定义,菱形、矩形的判定,涉及的知识有:平行线的性质,角平分线的定义,以及等腰三角形的判定与性质,熟练掌握平行四边形、矩形及菱形的判定与性质是解本题的关键.
6、C
【解析】
根据旋转的性质:对应点到旋转中心的距离相等,逐一判断即可.
【详解】
解:连接OA、OM、ON、OP,根据旋转的性质,点A的对应点到旋转中心的距离与OA的长度应相等
根据网格线和勾股定理可得:OA=,OM=,ON=,OP=,OQ=5
∵OA=OM=ON=OQ≠OP
∴则点A不经过点P
故选C.
【点睛】
此题考查的是旋转的性质和勾股定理,掌握旋转的性质:对应点到旋转中心的距离相等和用勾股定理求线段的长是解决此题的关键.
7、B
【解析】
解:3400000=.
故选B.
8、D
【解析】
根据直角三角形斜边上的中线等于斜边的一半可得CD=AD,再根据等边对等角的性质可得∠A=∠ACD,然后根据正切函数的定义列式求出∠A的正切值,即为tan∠ACD的值.
【详解】
∵CD是AB边上的中线,
∴CD=AD,
∴∠A=∠ACD,
∵∠ACB=90°,BC=6,AC=8,
∴tan∠A=,
∴tan∠ACD的值.
故选D.
【点睛】
本题考查了锐角三角函数的定义,直角三角形斜边上的中线等于斜边的一半的性质,等边对等角的性质,求出∠A=∠ACD是解本题的关键.
9、B
【解析】
过点P作PE⊥OA于点E,根据角平分线上的点到角的两边的距离相等可得PE=PM,再根据两直线平行,内错角相等可得∠POM=∠OPN,根据三角形的一个外角等于与它不相邻的两个内角的和求出∠PNE=∠AOB,再根据直角三角形解答.
【详解】
如图,过点P作PE⊥OA于点E,
∵OP是∠AOB的平分线,
∴PE=PM,
∵PN∥OB,
∴∠POM=∠OPN,
∴∠PNE=∠PON+∠OPN=∠PON+∠POM=∠AOB=45°,
∴=.
故选:B.
【点睛】
本题考查了角平分线上的点到角的两边距离相等的性质,直角三角形的性质,以及三角形的一个外角等于与它不相邻的两个内角的和,作辅助线构造直角三角形是解题的关键.
10、C
【解析】
解:A. 外角为120°,则相邻的内角为60°,根据有一个角为60°的等腰三角形是等边三角形可以判断,故A选项正确;
B. 等边三角形有3条对称轴,故B选项正确;
C.当两个三角形中两边及一角对应相等时,其中如果角是这两边的夹角时,可用SAS来判定两个三角形全等,如果角是其中一边的对角时,则可不能判定这两个三角形全等,故此选项错误;
D.利用SSS.可以判定三角形全等.故D选项正确;
故选C.
二、填空题(本大题共6个小题,每小题3分,共18分)
11、4
【解析】
正数的正的平方根叫算术平方根,0的算术平方根还是0;负数没有平方根也没有算术平方根
∵
∴16的平方根为4和-4
∴16的算术平方根为4
12、.
【解析】
根据异分母分式加减法法则计算即可.
【详解】
原式.
故答案为:.
【点睛】
本题考查了分式的加减,关键是掌握分式加减的计算法则.
13、1
【解析】
试题分析:根据题意,得|x|-1=0,且x-1≠0,解得x=-1.
考点:分式的值为零的条件.
14、(2,1)
【解析】
由已知条件得到AD′=AD=,AO=AB=1,根据勾股定理得到OD′==1,于是得到结论.
【详解】
解:∵ AD′=AD=,AO=AB=1,
∴OD′==1,
∵C′D′=2,C′D′∥AB,
∴C′(2,1),
故答案为:(2,1)
【点睛】
本题考查了矩形的性质,坐标与图形的性质,勾股定理,正确的识别图形是解题的关键.
15、﹣1
【解析】
试题分析:观察表中的对应值得到x=﹣3和x=5时,函数值都是7,则根据抛物线的对称性得到对称轴为直线x=1,所以x=0和x=2时的函数值相等,
解:∵x=﹣3时,y=7;x=5时,y=7,
∴二次函数图象的对称轴为直线x=1,
∴x=0和x=2时的函数值相等,
∴x=2时,y=﹣1.
故答案为﹣1.
16、4 5 5
【解析】
根据二次根式的性质即可求出答案.
【详解】
①原式=4;②原式==5;③原式==5,
故答案为:①4;②5;③5
【点睛】
本题考查二次根式的性质,解题的关键是熟练运用二次根式的性质,本题属于基础题型.
三、解答题(共8题,共72分)
17、(1)证明见解析;(1)2
【解析】
分析:(1)根据角平分线的定义可得∠1=∠1,再根据等角的余角相等求出∠BEF=∠AFD,然后根据对顶角相等可得∠BFE=∠AFD,等量代换即可得解;
(1)根据中点定义求出BC,利用勾股定理列式求出AB即可.
详解:(1)如图,∵AE平分∠BAC,∴∠1=∠1.
∵BD⊥AC,∠ABC=90°,∴∠1+∠BEF=∠1+∠AFD=90°,∴∠BEF=∠AFD.
∵∠BFE=∠AFD(对顶角相等),∴∠BEF=∠BFE;
(1)∵BE=1,∴BC=4,由勾股定理得:AB===2.
点睛:本题考查了直角三角形的性质,勾股定理的应用,等角的余角相等的性质,熟记各性质并准确识图是解题的关键.
18、(1)﹣1+3;(2)30°.
【解析】
(1) 根据零指数幂、 绝对值、 二次根式的性质求出每一部分的值, 代入求出即可;
(2)根据平行线的性质可得∠EDC=∠B=,根据三角形内角和定理即可求解;
【详解】
解:(1)原式=1﹣2+3=﹣1+3;
(2)∵△ABC是等边三角形,
∴∠B=60°,
∵点D,E分别是边BC,AC的中点,
∴DE∥AB,
∴∠EDC=∠B=60°,
∵EF⊥DE,
∴∠DEF=90°,
∴∠F=90°﹣∠EDC=30°.
【点睛】
(1) 主要考查零指数幂、 绝对值、 二次根式的性质;
(2)考查平行线的性质和三角形内角和定理.
19、(20-5)千米.
【解析】
分析:作BD⊥AC,设AD=x,在Rt△ABD中求得BD=x,在Rt△BCD中求得CD=x,由AC=AD+CD建立关于x的方程,解之求得x的值,最后由BC=可得答案.
详解:过点B作BD⊥ AC,
依题可得:∠BAD=60°,∠CBE=37°,AC=13(千米),
∵BD⊥AC,
∴∠ABD=30°,∠CBD=53°,
在Rt△ABD中,设AD=x,
∴tan∠ABD=
即tan30°=,
∴BD=x,
在Rt△DCB中,
∴tan∠CBD=
即tan53°=,
∴CD=
∵CD+AD=AC,
∴x+=13,解得,x=
∴BD=12-,
在Rt△BDC中,
∴cs∠CBD=tan60°=,
即:BC=(千米),
故B、C两地的距离为(20-5)千米.
点睛:此题考查了方向角问题.此题难度适中,解此题的关键是将方向角问题转化为解直角三角形的知识,利用三角函数的知识求解.
20、(1)见解析;(2)点A'的坐标为(-3,3)
【解析】
解:(1),△A′'B′'C′'如图所示.
(2)点A'的坐标为(-3,3).
21、 (1) 甲种型号手机每部进价为1000元,乙种型号手机每部进价为800元;(2) 共有四种方案;(3) 当m=80时,w始终等于8000,取值与a无关
【解析】
(1)设甲种型号手机每部进价为x元,乙种型号手机每部进价为y元根据题意列方程组求出x、y的值即可;(2)设购进甲种型号手机a部,这购进乙种型号手机(20-a)部,根据题意列不等式组求出a的取值范围,根据a为整数求出a的值即可明确方案(3)
利用利润=单个利润数量,用a表示出利润W,当利润与a无关时,(2)中的方案利润相同,求出m值即可;
【详解】
(1) 设甲种型号手机每部进价为x元,乙种型号手机每部进价为y元,
,解得,
(2) 设购进甲种型号手机a部,这购进乙种型号手机(20-a)部,
17400≤1000a+800(20-a)≤18000,解得7≤a≤10,
∵a为自然数,
∴有a为7、8、9、10共四种方案,
(3) 甲种型号手机每部利润为1000×40%=400,
w=400a+(1280-800-m)(20-a)=(m-80)a+9600-20m,
当m=80时,w始终等于8000,取值与a无关.
【点睛】
本题考查了列二元一次方程组解实际问题的运用,根据题意找出等量关系列出方程是解题关键.
22、(1)证明见解析;(2)1.
【解析】
(1)连结OA,由AC为圆的切线,利用切线的性质得到∠OAC为直角,再由,得到∠BOC为直角,由OA=OB得到,再利用对顶角相等及等角的余角相等得到,利用等角对等边即可得证;
(2)在中,利用勾股定理即可求出OC,由OC=OD+DC,DC=AC,即可求得OD的长.
【详解】
(1)如图,连接,
∵切于,
∴,
∴
又∵,
∴在中:
∵,
∴,
∴,
又∵,
∴,
∴;
(2)∵在中:, ,
由勾股定理得:,
由(1)得:,
∴.
【点睛】
此题考查了切线的性质、勾股定理、等腰三角形的判定与性质,熟练掌握切线的性质是解本题的关键.
23、不等式组的解集为,在数轴上表示见解析.
【解析】
先求出不等式组中每一个不等式的解集,再求出它们的公共部分,然后把不等式的解集表示在数轴上即可.
【详解】
由2(x+2)≤3x+3,可得:x≥1,
由,可得:x<3,
则不等式组的解为:1≤x<3,
不等式组的解集在数轴上表示如图所示:
【点睛】
本题考查了一元一次不等式组,把每个不等式的解集在数轴上表示出来(>,≥向右画;<,≤向左画),数轴上的点把数轴分成若干段,如果数轴的某一段上面表示解集的线的条数与不等式的个数一样,那么这段就是不等式组的解集.有几个就要几个.在表示解集时“≥”,“≤”要用实心圆点表示;“<”,“>”要用空心圆点表示.
24、(1)抛物线的解析式为y=x3﹣3x﹣1,顶点坐标为(1,﹣4);(3)①m=;②P′A3取得最小值时,m的值是,这个最小值是.
【解析】
(1)根据A(﹣1,3),C(3,﹣1)在抛物线y=x3+bx+c(b,c是常数)的图象上,可以求得b、c的值;
(3)①根据题意可以得到点P′的坐标,再根据函数解析式可以求得点B的坐标,进而求得直线BC的解析式,再根据点P′落在直线BC上,从而可以求得m的值;
②根据题意可以表示出P′A3,从而可以求得当P′A3取得最小值时,m的值及这个最小值.
【详解】
解:(1)∵抛物线y=x3+bx+c(b,c是常数)与x轴相交于A,B两点,与y轴交于点C,A(﹣1,3),C(3,﹣1),∴,解得:,∴该抛物线的解析式为y=x3﹣3x﹣1.
∵y=x3﹣3x﹣1=(x﹣1)3﹣4,∴抛物线的顶点坐标为(1,﹣4);
(3)①由P(m,t)在抛物线上可得:t=m3﹣3m﹣1.
∵点P和P′关于原点对称,∴P′(﹣m,﹣t),当y=3时,3=x3﹣3x﹣1,解得:x1=﹣1,x3=1,由已知可得:点B(1,3).
∵点B(1,3),点C(3,﹣1),设直线BC对应的函数解析式为:y=kx+d,,解得:,∴直线BC的直线解析式为y=x﹣1.
∵点P′落在直线BC上,∴﹣t=﹣m﹣1,即t=m+1,∴m3﹣3m﹣1=m+1,解得:m=;
②由题意可知,点P′(﹣m,﹣t)在第一象限,∴﹣m>3,﹣t>3,∴m<3,t<3.
∵二次函数的最小值是﹣4,∴﹣4≤t<3.
∵点P(m,t)在抛物线上,∴t=m3﹣3m﹣1,∴t+1=m3﹣3m,过点P′作P′H⊥x轴,H为垂足,有H(﹣m,3).
又∵A(﹣1,3),则P′H3=t3,AH3=(﹣m+1)3.在Rt△P′AH中,P′A3=AH3+P′H3,∴P′A3=(﹣m+1)3+t3=m3﹣3m+1+t3=t3+t+4=(t+)3+,∴当t=﹣时,P′A3有最小值,此时P′A3=,∴=m3﹣3m﹣1,解得:m=.
∵m<3,∴m=,即P′A3取得最小值时,m的值是,这个最小值是.
【点睛】
本题是二次函数综合题,解答本题的关键是明确题意,找出所求问题需要的条件,利用二次函数的性质解答.
x
…
﹣3
﹣2
0
1
3
5
…
y
…
7
0
﹣8
﹣9
﹣5
7
…
河北省秦皇岛市抚宁台营区达标名校2022年中考押题数学预测卷含解析: 这是一份河北省秦皇岛市抚宁台营区达标名校2022年中考押题数学预测卷含解析,共22页。试卷主要包含了直线y=3x+1不经过的象限是等内容,欢迎下载使用。
河北省廊坊市广阳区达标名校2021-2022学年中考押题数学预测卷含解析: 这是一份河北省廊坊市广阳区达标名校2021-2022学年中考押题数学预测卷含解析,共18页。试卷主要包含了考生必须保证答题卡的整洁,下列函数是二次函数的是,下列运算正确的是,五名女生的体重等内容,欢迎下载使用。
2022年河北省沧州市孟村县达标名校中考押题数学预测卷含解析: 这是一份2022年河北省沧州市孟村县达标名校中考押题数学预测卷含解析,共22页。试卷主要包含了考生必须保证答题卡的整洁,下列计算正确的是等内容,欢迎下载使用。