2022年广西来宾市忻城县重点名校中考数学模拟试题含解析
展开
这是一份2022年广西来宾市忻城县重点名校中考数学模拟试题含解析,共23页。试卷主要包含了考生要认真填写考场号和座位序号,如图,在中,边上的高是,点A关于原点对称的点的坐标是等内容,欢迎下载使用。
2021-2022中考数学模拟试卷
注意事项
1.考生要认真填写考场号和座位序号。
2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B 铅笔作答;第二部分必须用黑色字迹的签字笔作答。
3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。
一、选择题(共10小题,每小题3分,共30分)
1.如图,要使□ABCD成为矩形,需添加的条件是()
A.AB=BC B.∠ABC=90° C.AC⊥BD D.∠1=∠2
2.设x1,x2是一元二次方程x2﹣2x﹣3=0的两根,则x12+x22=( )
A.6 B.8 C.10 D.12
3.下列计算中正确的是( )
A.x2+x2=x4 B.x6÷x3=x2 C.(x3)2=x6 D.x-1=x
4.如图,在中,边上的高是( )
A. B. C. D.
5.如图,P为⊙O外一点,PA、PB分别切⊙O于点A、B,CD切⊙O于点E,分别交PA、PB于点C、D,若PA=6,则△PCD的周长为( )
A.8 B.6 C.12 D.10
6.据财政部网站消息,2018年中央财政困难群众救济补助预算指标约为929亿元,数据929亿元科学记数法表示为( )
A.9.29×109 B.9.29×1010 C.92.9×1010 D.9.29×1011
7.如图,中,E是BC的中点,设,那么向量用向量表示为( )
A. B. C. D.
8.如图,中,,,将绕点逆时针旋转得到,使得,延长交于点,则线段的长为( )
A.4 B.5 C.6 D.7
9.在下列条件中,能够判定一个四边形是平行四边形的是( )
A.一组对边平行,另一组对边相等
B.一组对边相等,一组对角相等
C.一组对边平行,一条对角线平分另一条对角线
D.一组对边相等,一条对角线平分另一条对角线
10.点A(-2,5)关于原点对称的点的坐标是 ( )
A.(2,5) B.(2,-5) C.(-2,-5) D.(-5,-2)
二、填空题(本大题共6个小题,每小题3分,共18分)
11.现有八个大小相同的矩形,可拼成如图1、2所示的图形,在拼图2时,中间留下了一个边长为2的小正方形,则每个小矩形的面积是_____.
12.Rt△ABC的边AB=5,AC=4,BC=3,矩形DEFG的四个顶点都在Rt△ABC的边上,当矩形DEFG的面积最大时,其对角线的长为_______.
13.如图,一艘海轮位于灯塔P的北偏东方向60°,距离灯塔为4海里的点A处,如果海轮沿正南方向航行到灯塔的正东位置,海轮航行的距离AB长_____海里.
14.甲乙两地9月上旬的日平均气温如图所示,则甲乙两地这10天日平均气温方差大小关系为________.(填“>”或“
【解析】
观察平均气温统计图可知:乙地的平均气温比较稳定,波动小;波动越小越稳定.
【详解】
解:观察平均气温统计图可知:乙地的平均气温比较稳定,波动小;
则乙地的日平均气温的方差小,
故S2甲>S2乙.
故答案为:>.
【点睛】
本题考查方差的意义.方差是用来衡量一组数据波动大小的量,方差越大,表明这组数据偏离平均数越大,即波动越大,数据越不稳定.反之,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.
15、-
【解析】
根据二次根式的运算法则即可求出答案.
【详解】
原式=2.
故答案为-.
【点睛】
本题考查二次根式的运算法则,解题的关键是熟练运用二次根式的运算法则,本题属于基础题型.
16、3
【解析】
如图,延长CE、DE,分别交AB于G、H,由∠BAD=∠ADE=60°可得三角形ADH是等边三角形,根据等腰直角三角形的性质可知CG⊥AB,可求出AG的长,进而可得GH的长,根据含30°角的直角三角形的性质可求出EH的长,根据DE=DH-EH即可得答案.
【详解】
如图,延长CE、DE,分别交AB于G、H,
∵∠BAD=∠ADE=60°,
∴△ADH是等边三角形,
∴DH=AD=AH=5,∠DHA=60°,
∵AC=BC,CE平分∠ACB,∠ACB=90°,
∴AB==8,AG=AB=4,CG⊥AB,
∴GH=AH=AG=5-4=1,
∵∠DHA=60°,
∴∠GEH=30°,
∴EH=2GH=2
∴DE=DH-EH=5=2=3.
故答案为:3
【点睛】
本题考查等边三角形的判定及性质、等腰直角三角形的性质及含30°角的直角三角形的性质,熟记30°角所对的直角边等于斜边的一半的性质并正确作出辅助线是解题关键.
三、解答题(共8题,共72分)
17、(1);(2)
【解析】
(1)直接利用概率公式求解;
(2)画树状图展示所有12种等可能的结果数,再找出选中的恰好是正确答案A,B的结果数,然后根据概率公式求解.
【详解】
解:(1)选中的恰好是正确答案A的概率为;
(2)画树状图:
共有12种等可能的结果数,其中选中的恰好是正确答案A,B的结果数为2,
所以选中的恰好是正确答案A,B的概率=.
【点睛】
本题考查了列表法与树状图法:利用列表法或树状图法展示所有等可能的结果n,再从中选出符合事件A或B的结果数目m,然后利用概率公式计算事件A或事件B的概率.
18、(1)1;2-;;(1)4+;(4)(200-25-40)米.
【解析】
(1)由于△PAD是等腰三角形,底边不定,需三种情况讨论,运用三角形全等、矩形的性质、勾股定理等知识即可解决问题.
(1)以EF为直径作⊙O,易证⊙O与BC相切,从而得到符合条件的点Q唯一,然后通过添加辅助线,借助于正方形、特殊角的三角函数值等知识即可求出BQ长.
(4)要满足∠AMB=40°,可构造以AB为边的等边三角形的外接圆,该圆与线段CD的交点就是满足条件的点,然后借助于等边三角形的性质、特殊角的三角函数值等知识,就可算出符合条件的DM长.
【详解】
(1)①作AD的垂直平分线交BC于点P,如图①,
则PA=PD.
∴△PAD是等腰三角形.
∵四边形ABCD是矩形,
∴AB=DC,∠B=∠C=90°.
∵PA=PD,AB=DC,
∴Rt△ABP≌Rt△DCP(HL).
∴BP=CP.
∵BC=2,
∴BP=CP=1.
②以点D为圆心,AD为半径画弧,交BC于点P′,如图①,
则DA=DP′.
∴△P′AD是等腰三角形.
∵四边形ABCD是矩形,
∴AD=BC,AB=DC,∠C=90°.
∵AB=4,BC=2,
∴DC=4,DP′=2.
∴CP′==.
∴BP′=2-.
③点A为圆心,AD为半径画弧,交BC于点P″,如图①,
则AD=AP″.
∴△P″AD是等腰三角形.
同理可得:BP″=.
综上所述:在等腰三角形△ADP中,
若PA=PD,则BP=1;
若DP=DA,则BP=2-;
若AP=AD,则BP=.
(1)∵E、F分别为边AB、AC的中点,
∴EF∥BC,EF=BC.
∵BC=11,
∴EF=4.
以EF为直径作⊙O,过点O作OQ⊥BC,垂足为Q,连接EQ、FQ,如图②.
∵AD⊥BC,AD=4,
∴EF与BC之间的距离为4.
∴OQ=4
∴OQ=OE=4.
∴⊙O与BC相切,切点为Q.
∵EF为⊙O的直径,
∴∠EQF=90°.
过点E作EG⊥BC,垂足为G,如图②.
∵EG⊥BC,OQ⊥BC,
∴EG∥OQ.
∵EO∥GQ,EG∥OQ,∠EGQ=90°,OE=OQ,
∴四边形OEGQ是正方形.
∴GQ=EO=4,EG=OQ=4.
∵∠B=40°,∠EGB=90°,EG=4,
∴BG=.
∴BQ=GQ+BG=4+.
∴当∠EQF=90°时,BQ的长为4+.
(4)在线段CD上存在点M,使∠AMB=40°.
理由如下:
以AB为边,在AB的右侧作等边三角形ABG,
作GP⊥AB,垂足为P,作AK⊥BG,垂足为K.
设GP与AK交于点O,以点O为圆心,OA为半径作⊙O,
过点O作OH⊥CD,垂足为H,如图③.
则⊙O是△ABG的外接圆,
∵△ABG是等边三角形,GP⊥AB,
∴AP=PB=AB.
∵AB=170,
∴AP=145.
∵ED=185,
∴OH=185-145=6.
∵△ABG是等边三角形,AK⊥BG,
∴∠BAK=∠GAK=40°.
∴OP=AP•tan40°
=145×
=25.
∴OA=1OP=90.
∴OH<OA.
∴⊙O与CD相交,设交点为M,连接MA、MB,如图③.
∴∠AMB=∠AGB=40°,OM=OA=90..
∵OH⊥CD,OH=6,OM=90,
∴HM==40.
∵AE=200,OP=25,
∴DH=200-25.
若点M在点H的左边,则DM=DH+HM=200-25+40.
∵200-25+40>420,
∴DM>CD.
∴点M不在线段CD上,应舍去.
若点M在点H的右边,则DM=DH-HM=200-25-40.
∵200-25-40<420,
∴DM<CD.
∴点M在线段CD上.
综上所述:在线段CD上存在唯一的点M,使∠AMB=40°,
此时DM的长为(200-25-40)米.
【点睛】
本题考查了垂直平分线的性质、矩形的性质、等边三角形的性质、正方形的判定与性质、直线与圆的位置关系、圆周角定理、三角形的中位线定理、全等三角形的判定与性质、勾股定理、特殊角的三角函数值等知识,考查了操作、探究等能力,综合性非常强.而构造等边三角形及其外接圆是解决本题的关键.
19、(1)200;(2)答案见解析;(3).
【解析】
(1)由题意得:这次调查中,一共调查的学生数为:40÷20%=200(名);
(2)根据题意可求得B占的百分比为:1-20%-30%-15%=35%,C的人数为:200×30%=60(名);则可补全统计图;
(3)首先根据题意画出树状图,然后由树状图求得所有等可能的结果与一人是喜欢跳绳、一人是喜欢足球的学生的情况,再利用概率公式即可求得答案.
【详解】
解:(1)根据题意得:这次调查中,一共调查的学生数为:40÷20%=200(名);
故答案为:200;
(2)C组人数:200-40-70-30=60(名)
B组百分比:70÷200×100%=35%
如图
(3)分别用A,B,C表示3名喜欢跳绳的学生,D表示1名喜欢足球的学生;
画树状图得:
∵共有12种等可能的结果,一人是喜欢跳绳、一人是喜欢足球的学生的有6种情况,
∴一人是喜欢跳绳、一人是喜欢足球的学生的概率为:.
【点睛】
此题考查了列表法或树状图法求概率以及条形统计图与扇形统计图.用到的知识点为:概率=所求情况数与总情况数之比.
20、(1)10,0.28,50(2)图形见解析(3)6.4(4)528
【解析】
分析:(1)首先求出总人数,再根据频率,总数,频数的关系即可解决问题;
(2)根据a的值画出条形图即可;
(3)根据平均数的定义计算即可;
(4)用样本估计总体的思想解决问题即可;
详解:(1)由题意c==50,
a=50×0.2=10,b==0.28,c=50;
故答案为10,0.28,50;
(2)将频数分布表直方图补充完整,如图所示:
(3)所有被调查学生课外阅读的平均本数为:
(5×10+6×18+7×14+8×8)÷50=320÷50=6.4(本).
(4)该校七年级学生课外阅读7本及以上的人数为:
(0.28+0.16)×1200=528(人).
点睛:本题考查频数分布直方图、扇形统计图、样本估计总体等知识,解题的关键是熟练掌握基本概念,灵活运用所学知识解决问题,属于中考常考题型.
21、操作平台C离地面的高度为7.6m.
【解析】
分析:作CE⊥BD于F,AF⊥CE于F,如图2,易得四边形AHEF为矩形,则EF=AH=3.4m,∠HAF=90°,再计算出∠CAF=28°,则在Rt△ACF中利用正弦可计算出CF,然后计算CF+EF即可.
详解:作CE⊥BD于F,AF⊥CE于F,如图2,
易得四边形AHEF为矩形,
∴EF=AH=3.4m,∠HAF=90°,
∴∠CAF=∠CAH-∠HAF=118°-90°=28°,
在Rt△ACF中,∵sin∠CAF=,
∴CF=9sin28°=9×0.47=4.23,
∴CE=CF+EF=4.23+3.4≈7.6(m),
答:操作平台C离地面的高度为7.6m.
点睛:本题考查了解直角三角形的应用:先将实际问题抽象为数学问题(画出平面图形,构造出直角三角形转化为解直角三角形问题),然后利用勾股定理和三角函数的定义进行几何计算.
22、(1)每台型挖掘机一小时挖土30立方米,每台型挖据机一小时挖土15立方米;
(2)共有三种调配方案.方案一: 型挖据机7台,型挖掘机5台;方案二: 型挖掘机8台,型挖掘机4台;方案三: 型挖掘机9台,型挖掘机3台.当A型挖掘机7台, 型挖掘机5台的施工费用最低,最低费用为12000元.
【解析】
分析:(1)根据题意列出方程组即可;
(2)利用总费用不超过12960元求出方案数量,再利用一次函数增减性求出最低费用.
详解:(1)设每台型,型挖掘机一小时分别挖土立方米和立方米,根据题意,得
解得
所以,每台型挖掘机一小时挖土30立方米,每台型挖据机一小时挖土15立方米.
(2)设型挖掘机有台,总费用为元,则型挖据机有台.根据题意,得
,
因为,解得,
又因为,解得,所以.
所以,共有三种调配方案.
方案一:当时, ,即型挖据机7台,型挖掘机5台;
方案二:当时, ,即型挖掘机8台,型挖掘机4台;
方案三:当时, ,即型挖掘机9台,型挖掘机3台.
,由一次函数的性质可知,随的减小而减小,
当时,,
此时型挖掘机7台, 型挖掘机5台的施工费用最低,最低费用为12000元.
点睛:本题考查了二元一次方程组和一次函数增减性,解答时先根据题意确定自变量取值范围,再应用一次函数性质解答问题.
23、1+
【解析】
先把小括号内的通分,按照分式的减法和分式除法法则进行化简,再把字母的值代入运算即可.
【详解】
解:原式
当时,
原式=
【点睛】
考查分式的混合运算,掌握运算顺序是解题的关键.
24、 (1)y1=a(x+1)2﹣1,顶点为(﹣1,﹣1);(2)①;②k的取值范围是≤k≤或k=﹣1.
【解析】
(1)化成顶点式即可求得;
(2)①把点A(﹣3,1)代入二次函数C1:y1=ax2+2ax+a﹣1即可求得a的值;
②根据对称的性质得出B的坐标,然后分两种情况讨论即可求得;
【详解】
(1)y1=ax2+2ax+a﹣1=a(x+1)2﹣1,
∴顶点为(﹣1,﹣1);
(2)①∵二次函数C1的图象经过点A(﹣3,1),
∴a(﹣3+1)2﹣1=1,
∴a=;
②∵A(﹣3,1),对称轴为直线x=﹣1,
∴B(1,1),
当k>0时,
二次函数C2:y2=kx2+kx(k≠0)的图象经过A(﹣3,1)时,1=9k﹣3k,解得k=,
二次函数C2:y2=kx2+kx(k≠0)的图象经过B(1,1)时,1=k+k,解得k=,
∴≤k≤,
当k<0时,∵二次函数C2:y2=kx2+kx=k(x+)2﹣k,
∴﹣k=1,
∴k=﹣1,
综上,二次函数C2:y2=kx2+kx(k≠0)的图象,与线段AB只有一个交点,k的取值范围是≤k≤或k=﹣1.
【点睛】
本题考查了二次函数和系数的关系,二次函数的最值问题,轴对称的性质等,分类讨论是解题的关键.
相关试卷
这是一份2022年广西来宾市忻城县重点名校中考数学全真模拟试题含解析,共19页。试卷主要包含了答题时请按要求用笔,计算 的结果为等内容,欢迎下载使用。
这是一份2022年广西壮族自治区来宾市重点名校中考数学模拟精编试卷含解析,共20页。试卷主要包含了﹣的绝对值是等内容,欢迎下载使用。
这是一份2021-2022学年广西来宾市忻城县中考数学模试卷含解析,共19页。