年终活动
搜索
    上传资料 赚现金
    英语朗读宝

    2022年广西防城港市上思县重点达标名校中考数学模拟试题含解析

    2022年广西防城港市上思县重点达标名校中考数学模拟试题含解析第1页
    2022年广西防城港市上思县重点达标名校中考数学模拟试题含解析第2页
    2022年广西防城港市上思县重点达标名校中考数学模拟试题含解析第3页
    还剩13页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    2022年广西防城港市上思县重点达标名校中考数学模拟试题含解析

    展开

    这是一份2022年广西防城港市上思县重点达标名校中考数学模拟试题含解析,共16页。试卷主要包含了的值是等内容,欢迎下载使用。
    2021-2022中考数学模拟试卷
    考生须知:
    1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。
    2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。
    3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。

    一、选择题(每小题只有一个正确答案,每小题3分,满分30分)
    1.2022年冬奥会,北京、延庆、张家口三个赛区共25个场馆,北京共12个,其中11个为2008年奥运会遗留场馆,唯一一个新建的场馆是国家速滑馆,可容纳12000人观赛,将12000用科学记数法表示应为( )
    A.12×10 B.1.2×10 C.1.2×10 D.0.12×10
    2.已知二次函数y=a(x﹣2)2+c,当x=x1时,函数值为y1;当x=x2时,函数值为y2,若|x1﹣2|>|x2﹣2|,则下列表达式正确的是(  )
    A.y1+y2>0 B.y1﹣y2>0 C.a(y1﹣y2)>0 D.a(y1+y2)>0
    3.的值等于( )
    A. B. C. D.
    4.已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,则下列结论: ① abc<0;② 2a+b=0; ③ b2-4ac<0;④ 9a+3b+c>0; ⑤ c+8a<0.正确的结论有(  ).

    A.1个 B.2个 C.3个 D.4个
    5.的值是
    A. B. C. D.
    6.为了开展阳光体育活动,某班计划购买毽子和跳绳两种体育用品,共花费35元,毽子单价3元,跳绳单价5元,购买方案有(  )
    A.1种 B.2种 C.3种 D.4种
    7.下列关于x的方程一定有实数解的是( )
    A. B.
    C. D.
    8.如图,边长为1的小正方形构成的网格中,半径为1的⊙O的圆心O在格点上,则∠BED的正切值等于(  )

    A. B. C.2 D.
    9.如图,在正五边形ABCDE中,连接BE,则∠ABE的度数为( )

    A.30° B.36° C.54° D.72°
    10.一个几何体的三视图如图所示,该几何体是  

    A.直三棱柱 B.长方体 C.圆锥 D.立方体
    二、填空题(共7小题,每小题3分,满分21分)
    11.如图,△ABC中,AB=6,AC=4,AD、AE分别是其角平分线和中线,过点C作CG⊥AD于F,交AB于G,连接EF,则线段EF的长为_____.

    12.如图,正方形ABCD中,AB=3,以B为圆心,AB长为半径画圆B,点P在圆B上移动,连接AP,并将AP绕点A逆时针旋转90°至Q,连接BQ,在点P移动过程中,BQ长度的最小值为_____.

    13.为增强学生身体素质,提高学生足球运动竞技水平,我市开展“市长杯”足球比赛,赛制为单循环形式(每两队之间赛一场).现计划安排21场比赛,应邀请多少个球队参赛?设邀请x个球队参赛,根据题意,可列方程为_____.
    14.阅读材料:设=(x1,y1),=(x2,y2),如果∥,则x1•y2=x2•y1.根据该材料填空:已知=(2,3),=(4,m),且∥,则m=_____.
    15.如图,在边长为3的菱形ABCD中,点E在边CD上,点F为BE延长线与AD延长线的交点.若DE=1,则DF的长为________.

    16.计算:___.
    17.比较大小: ___1.(填“>”、“<”或“=”)
    三、解答题(共7小题,满分69分)
    18.(10分)为厉行节能减排,倡导绿色出行,今年3月以来.“共享单车”(俗称“小黄车”)公益活动登陆我市中心城区.某公司拟在甲、乙两个街道社区投放一批“小黄车”,这批自行车包括A、B两种不同款型,请回答下列问题:
    问题1:单价
    该公司早期在甲街区进行了试点投放,共投放A、B两型自行车各50辆,投放成本共计7500元,其中B型车的成本单价比A型车高10元,A、B两型自行车的单价各是多少?
    问题2:投放方式
    该公司决定采取如下投放方式:甲街区每1000人投放a辆“小黄车”,乙街区每1000人投放辆“小黄车”,按照这种投放方式,甲街区共投放1500辆,乙街区共投放1200辆,如果两个街区共有15万人,试求a的值.
    19.(5分)某商场用24000元购入一批空调,然后以每台3000元的价格销售,因天气炎热,空调很快售完,商场又以52000元的价格再次购入该种型号的空调,数量是第一次购入的2倍,但购入的单价上调了200元,每台的售价也上调了200元.商场第一次购入的空调每台进价是多少元?商场既要尽快售完第二次购入的空调,又要在这两次空调销售中获得的利润率不低于22%,打算将第二次购入的部分空调按每台九五折出售,最多可将多少台空调打折出售?
    20.(8分)如图,分别以线段AB两端点A,B为圆心,以大于AB长为半径画弧,两弧交于C,D两点,作直线CD交AB于点M,DE∥AB,BE∥CD.
    (1)判断四边形ACBD的形状,并说明理由;
    (2)求证:ME=AD.

    21.(10分)如图,已知反比例函数y=的图象与一次函数y=x+b的图象交于点A(1,4),点B(﹣4,n).求n和b的值;求△OAB的面积;直接写出一次函数值大于反比例函数值的自变量x的取值范围.

    22.(10分)如图,△ABC与△A1B1C1是位似图形.
    (1)在网格上建立平面直角坐标系,使得点A的坐标为(-6,-1),点C1的坐标为(-3,2),则点B的坐标为____________;
    (2)以点A为位似中心,在网格图中作△AB2C2,使△AB2C2和△ABC位似,且位似比为1∶2;
    (3)在图上标出△ABC与△A1B1C1的位似中心P,并写出点P的坐标为________,计算四边形ABCP的周长为_______.

    23.(12分)如图,△ABC三个定点坐标分别为A(﹣1,3),B(﹣1,1),C(﹣3,2).
    请画出△ABC关于y轴对称的△A1B1C1;以原点O为位似中心,将△A1B1C1放大为原来的2倍,得到△A2B2C2,请在第三象限内画出△A2B2C2,并求出S△A1B1C1:S△A2B2C2的值.
    24.(14分)计算:2cos30°+--()-2



    参考答案

    一、选择题(每小题只有一个正确答案,每小题3分,满分30分)
    1、B
    【解析】
    科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.
    【详解】
    数据12000用科学记数法表示为1.2×104,故选:B.
    【点睛】
    此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.
    2、C
    【解析】
    分a>1和a<1两种情况根据二次函数的对称性确定出y1与y2的大小关系,然后对各选项分析判断即可得解.
    【详解】
    解:①a>1时,二次函数图象开口向上,
    ∵|x1﹣2|>|x2﹣2|,
    ∴y1>y2,
    无法确定y1+y2的正负情况,
    a(y1﹣y2)>1,
    ②a<1时,二次函数图象开口向下,
    ∵|x1﹣2|>|x2﹣2|,
    ∴y1<y2,
    无法确定y1+y2的正负情况,
    a(y1﹣y2)>1,
    综上所述,表达式正确的是a(y1﹣y2)>1.
    故选:C.
    【点睛】
    本题主要考查二次函数的性质,利用了二次函数的对称性,关键要掌握根据二次项系数a的正负分情况讨论.
    3、C
    【解析】
    试题解析:根据特殊角的三角函数值,可知:

    故选C.
    4、C
    【解析】
    由抛物线的开口方向判断a与0的关系,由抛物线与y轴的交点判断c与0的关系,然后根据对称轴及抛物线与x轴交点情况进行推理,进而对所得结论进行判断.
    【详解】
    解:抛物线开口向下,得:a<0;抛物线的对称轴为x=-=1,则b=-2a,2a+b=0,b=-2a,故b>0;抛物线交y轴于正半轴,得:c>0.
    ∴abc<0, ①正确;
    2a+b=0,②正确;
    由图知:抛物线与x轴有两个不同的交点,则△=b2-4ac>0,故③错误;
    由对称性可知,抛物线与x轴的正半轴的交点横坐标是x=3,所以当x=3时,y= 9a+3b+c=0,故④错误;
    观察图象得当x=-2时,y<0,
    即4a-2b+c<0
    ∵b=-2a,
    ∴4a+4a+c<0
    即8a+c<0,故⑤正确.
    正确的结论有①②⑤,
    故选:C
    【点睛】
    主要考查图象与二次函数系数之间的关系,会利用对称轴的表达式求2a与b的关系,以及二次函数与方程之间的转换,根的判别式的熟练运用.
    5、D
    【解析】
    根据特殊角三角函数值,可得答案.
    【详解】
    解:,
    故选:D.
    【点睛】
    本题考查了特殊角三角函数值,熟记特殊角三角函数值是解题关键.
    6、B
    【解析】
    首先设毽子能买x个,跳绳能买y根,根据题意列方程即可,再根据二元一次方程求解.
    【详解】
    解:设毽子能买x个,跳绳能买y根,根据题意可得:
    3x+5y=35,
    y=7-x,
    ∵x、y都是正整数,
    ∴x=5时,y=4;
    x=10时,y=1;
    ∴购买方案有2种.
    故选B.
    【点睛】
    本题主要考查二元一次方程的应用,关键在于根据题意列方程.
    7、A
    【解析】
    根据一元二次方程根的判别式、二次根式有意义的条件、分式方程的增根逐一判断即可得.
    【详解】
    A.x2-mx-1=0中△=m2+4>0,一定有两个不相等的实数根,符合题意;
    B.ax=3中当a=0时,方程无解,不符合题意;
    C.由可解得不等式组无解,不符合题意;
    D.有增根x=1,此方程无解,不符合题意;
    故选A.
    【点睛】
    本题主要考查方程的解,解题的关键是掌握一元二次方程根的判别式、二次根式有意义的条件、分式方程的增根.
    8、D
    【解析】
    根据同弧或等弧所对的圆周角相等可知∠BED=∠BAD,再结合图形根据正切的定义进行求解即可得.
    【详解】
    ∵∠DAB=∠DEB,
    ∴tan∠DEB= tan∠DAB=,
    故选D.
    【点睛】
    本题考查了圆周角定理(同弧或等弧所对的圆周角相等)和正切的概念,正确得出相等的角是解题关键.
    9、B
    【解析】
    在等腰三角形△ABE中,求出∠A的度数即可解决问题.
    【详解】
    解:在正五边形ABCDE中,∠A=×(5-2)×180=108°

    又知△ABE是等腰三角形,
    ∴AB=AE,
    ∴∠ABE=(180°-108°)=36°.
    故选B.
    【点睛】
    本题主要考查多边形内角与外角的知识点,解答本题的关键是求出正五边形的内角,此题基础题,比较简单.
    10、A
    【解析】
    根据三视图的形状可判断几何体的形状.
    【详解】
    观察三视图可知,该几何体是直三棱柱.
    故选A.
    本题考查了几何体的三视图和结构特征,根据三视图的形状可判断几何体的形状是关键.

    二、填空题(共7小题,每小题3分,满分21分)
    11、1
    【解析】
    在△AGF和△ACF中,

    ∴△AGF≌△ACF,
    ∴AG=AC=4,GF=CF,
    则BG=AB−AG=6−4=2.
    又∵BE=CE,
    ∴EF是△BCG的中位线,
    ∴EF=BG=1.
    故答案是:1.
    12、3﹣1
    【解析】
    通过画图发现,点Q的运动路线为以D为圆心,以1为半径的圆,可知:当Q在对角线BD上时,BQ最小,先证明△PAB≌△QAD,则QD=PB=1,再利用勾股定理求对角线BD的长,则得出BQ的长.
    【详解】
    如图,当Q在对角线BD上时,BQ最小.
    连接BP,由旋转得:AP=AQ,∠PAQ=90°,∴∠PAB+∠BAQ=90°.
    ∵四边形ABCD为正方形,∴AB=AD,∠BAD=90°,∴∠BAQ+∠DAQ=90°,∴∠PAB=∠DAQ,∴△PAB≌△QAD,∴QD=PB=1.在Rt△ABD中,∵AB=AD=3,由勾股定理得:BD=,∴BQ=BD﹣QD=3﹣1,即BQ长度的最小值为(3﹣1).

    故答案为3﹣1.
    【点睛】
    本题是圆的综合题.考查了正方形的性质、旋转的性质和最小值问题,寻找点Q的运动轨迹是本题的关键,通过证明两三角形全等求出BQ长度的最小值最小值.
    13、x(x﹣1)=1
    【解析】
    【分析】赛制为单循环形式(每两队之间都赛一场),x个球队比赛总场数为x(x﹣1),即可列方程.
    【详解】有x个队,每个队都要赛(x﹣1)场,但两队之间只有一场比赛,由题意得:
    x(x﹣1)=1,
    故答案为x(x﹣1)=1.
    【点睛】本题考查了一元二次方程的应用,弄清题意,找准等量关系列出方程是解题的关键.
    14、6
    【解析】
    根据题意得,2m=3×4,解得m=6,故答案为6.
    15、1.1
    【解析】
    求出EC,根据菱形的性质得出AD∥BC,得出相似三角形,根据相似三角形的性质得出比例式,代入求出即可.
    【详解】
    ∵DE=1,DC=3,
    ∴EC=3-1=2,
    ∵四边形ABCD是菱形,
    ∴AD∥BC,
    ∴△DEF∽△CEB,
    ∴,
    ∴,
    ∴DF=1.1,
    故答案为1.1.
    【点睛】
    此题主要考查了相似三角形的判定与性质,解题关键是根据菱形的性质证明△DEF∽△CEB,然后根据相似三角形的性质可求解.
    16、
    【解析】
    直接利用负指数幂的性质以及零指数幂的性质分别化简得出答案.
    【详解】
    原式.
    故答案为.
    【点睛】
    本题考查了实数运算,正确化简各数是解题的关键.
    17、<.
    【解析】
    根据算术平方根的定义即可求解.
    【详解】
    解:∵=1,
    ∴<=1,
    ∴<1.
    故答案为<.
    【点睛】
    考查了算术平方根,非负数a的算术平方根a有双重非负性:①被开方数a是非负数;②算术平方根a本身是非负数.

    三、解答题(共7小题,满分69分)
    18、问题1:A、B两型自行车的单价分别是70元和80元;问题2:a的值为1
    【解析】
    问题1:设A型车的成本单价为x元,则B型车的成本单价为(x+10)元,
    依题意得50x+50(x+10)=7500,
    解得x=70,
    ∴x+10=80,
    答:A、B两型自行车的单价分别是70元和80元;
    问题2:由题可得,×1000+×1000=10000,
    解得a=1,
    经检验:a=1是分式方程的解,
    故a的值为1.
    19、(1)2400元;(2)8台.
    【解析】
    试题分析:(1)设商场第一次购入的空调每台进价是x元,根据题目条件“商场又以52000元的价格再次购入该种型号的空调,数量是第一次购入的2倍,但购入的单价上调了200元,每台的售价也上调了200元”列出分式方程解答即可;
    (2)设最多将台空调打折出售,根据题目条件“在这两次空调销售中获得的利润率不低于22%,打算将第二次购入的部分空调按每台九五折出售”列出不等式并解答即可.
    试题解析:(1)设第一次购入的空调每台进价是x元,依题意,得
    解得
    经检验,是原方程的解.
    答:第一次购入的空调每台进价是2 400元.
    (2)由(1)知第一次购入空调的台数为24 000÷2 400=10(台),第二次购入空调的台数为10×2=20(台).
    设第二次将y台空调打折出售,由题意,得
    解得
    答:最多可将8台空调打折出售.
    20、(1)四边形ACBD是菱形;理由见解析;(2)证明见解析.
    【解析】
    (1)根据题意得出,即可得出结论;
    (2)先证明四边形是平行四边形,再由菱形的性质得出,证明四边形是矩形,得出对角线相等,即可得出结论.
    【详解】
    (1)解:四边形ACBD是菱形;理由如下:
    根据题意得:AC=BC=BD=AD,
    ∴四边形ACBD是菱形(四条边相等的四边形是菱形);
    (2)证明:∵DE∥AB,BE∥CD,
    ∴四边形BEDM是平行四边形,
    ∵四边形ACBD是菱形,
    ∴AB⊥CD,
    ∴∠BMD=90°,
    ∴四边形ACBD是矩形,
    ∴ME=BD,
    ∵AD=BD,
    ∴ME=AD.
    【点睛】
    本题考查了菱形的判定、矩形的判定与性质、平行四边形的判定,熟练掌握菱形的判定和矩形的判定与性质,并能进行推理结论是解决问题的关键.
    21、(1)-1;(2);(3)x>1或﹣4<x<0.
    【解析】
    (1)把A点坐标分别代入反比例函数与一次函数解析式,求出k和b的值,把B点坐标代入反比例函数解析式求出n的值即可;(2)设直线y=x+3与y轴的交点为C,由S△AOB=S△AOC+S△BOC,根据A、B两点坐标及C点坐标,利用三角形面积公式即可得答案;(3)利用函数图像,根据A、B两点坐标即可得答案.
    【详解】
    (1)把A点(1,4)分别代入反比例函数y=,一次函数y=x+b,
    得k=1×4,1+b=4,
    解得k=4,b=3,
    ∵点B(﹣4,n)也在反比例函数y=的图象上,
    ∴n==﹣1;
    (2)如图,设直线y=x+3与y轴的交点为C,
    ∵当x=0时,y=3,
    ∴C(0,3),
    ∴S△AOB=S△AOC+S△BOC=×3×1+×3×4=7.5,
    (3)∵B(﹣4,﹣1),A(1,4),
    ∴根据图象可知:当x>1或﹣4<x<0时,一次函数值大于反比例函数值.

    【点睛】
    本题主要考查了待定系数法求反比例函数与一次函数的解析式和反比例函数y=中k的几何意义,这里体现了数形结合的思想.
    22、(1)作图见解析;点B的坐标为:(﹣2,﹣5);(2)作图见解析;(3)
    【解析】
    分析:(1)直接利用已知点位置得出B点坐标即可;
    (2)直接利用位似图形的性质得出对应点位置进而得出答案;
    (3)直接利用位似图形的性质得出对应点交点即可位似中心,再利用勾股定理得出四边形ABCP的周长.
    详解:(1)如图所示:点B的坐标为:(﹣2,﹣5);
    故答案为(﹣2,﹣5);
    (2)如图所示:△AB2C2,即为所求;
    (3)如图所示:P点即为所求,P点坐标为:(﹣2,1),四边形ABCP的周长为:+++=4+2+2+2=6+4.
    故答案为6+4.

    点睛:本题主要考查了位似变换以及勾股定理,正确利用位似图形的性质分析是解题的关键.
    23、(1)见解析;(2)图见解析;.
    【解析】
    (1)根据网格结构找出点A、B、C关于y轴的对称点A1、B1、C1的位置,然后顺次连接即可.
    (2)连接A1O并延长至A2,使A2O=2A1O,连接B1O并延长至B2,使B2O=2B1O,连接C1O并延长至C2,使C2O=2C1O,然后顺次连接即可,再根据相似三角形面积的比等于相似比的平方解答.
    【详解】
    解:(1)△A1B1C1如图所示.
    (2)△A2B2C2如图所示.
    ∵△A1B1C1放大为原来的2倍得到△A2B2C2,∴△A1B1C1∽△A2B2C2,且相似比为.
    ∴S△A1B1C1:S△A2B2C2=()2=.

    24、5
    【解析】
    根据实数的计算,先把各数化简,再进行合并即可.
    【详解】
    原式=
    =5
    【点睛】
    此题主要考查实数的计算,解题的关键是熟知特殊三角函数的化简与二次根式的运算.

    相关试卷

    2022年广西防城港市上思县重点达标名校中考数学模拟精编试卷含解析:

    这是一份2022年广西防城港市上思县重点达标名校中考数学模拟精编试卷含解析,共19页。试卷主要包含了下列计算正确的是,不等式组的解集是,计算的结果等于等内容,欢迎下载使用。

    2022年广西省防城港市重点达标名校中考数学考试模拟冲刺卷含解析:

    这是一份2022年广西省防城港市重点达标名校中考数学考试模拟冲刺卷含解析,共23页。试卷主要包含了考生必须保证答题卡的整洁,在平面直角坐标系中,点,规定,如果将直线l1,下列运算正确的是等内容,欢迎下载使用。

    2021-2022学年广西防城港市港口区达标名校中考数学模拟预测题含解析:

    这是一份2021-2022学年广西防城港市港口区达标名校中考数学模拟预测题含解析,共19页。试卷主要包含了估计的值在,将一副三角板,下列几何体是棱锥的是等内容,欢迎下载使用。

    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map