|试卷下载
搜索
    上传资料 赚现金
    2022年广东省梅州市五华县重点名校中考联考数学试题含解析
    立即下载
    加入资料篮
    2022年广东省梅州市五华县重点名校中考联考数学试题含解析01
    2022年广东省梅州市五华县重点名校中考联考数学试题含解析02
    2022年广东省梅州市五华县重点名校中考联考数学试题含解析03
    还剩23页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    2022年广东省梅州市五华县重点名校中考联考数学试题含解析

    展开
    这是一份2022年广东省梅州市五华县重点名校中考联考数学试题含解析,共26页。试卷主要包含了下列命题是真命题的个数有等内容,欢迎下载使用。

    2021-2022中考数学模拟试卷
    考生须知:
    1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。
    2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。
    3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。

    一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)
    1.如图,在△ABC中,AB=AC,∠BAC=90°,直角∠EPF的顶点P是BC中点,PE,PF分别交AB,AC于点E,F,给出下列四个结论:①△APE≌△CPF;②AE=CF;③△EAF是等腰直角三角形;④S△ABC=2S四边形AEPF,上述结论正确的有( )

    A.1个 B.2个 C.3个 D.4个
    2.如图,AB∥CD,FE⊥DB,垂足为E,∠1=50°,则∠2的度数是( )

    A.60° B.50° C.40° D.30°
    3.完全相同的6个小矩形如图所示放置,形成了一个长、宽分别为n、m的大矩形,则图中阴影部分的周长是(  )

    A.6(m﹣n) B.3(m+n) C.4n D.4m
    4.如图,有5个相同的小立方体搭成的几何体如图所示,则它的左视图是( )

    A. B. C. D.
    5.如图是某公园的一角,∠AOB=90°,弧AB的半径OA长是6米,C是OA的中点,点D在弧AB上,CD∥OB,则图中休闲区(阴影部分)的面积是()

    A.米2 B.米2 C.米2 D.米2
    6.下列命题是真命题的个数有(  )
    ①菱形的对角线互相垂直;
    ②平分弦的直径垂直于弦;
    ③若点(5,﹣5)是反比例函数y=图象上的一点,则k=﹣25;
    ④方程2x﹣1=3x﹣2的解,可看作直线y=2x﹣1与直线y=3x﹣2交点的横坐标.
    A.1个 B.2个 C.3个 D.4个
    7.在如图的2016年6月份的日历表中,任意框出表中竖列上三个相邻的数,这三个数的和不可能是(   )

    A.27 B.51 C.69 D.72
    8.用五个完全相同的小正方体组成如图所示的立体图形,从正面看到的图形是(  )

    A. B. C. D.
    9.若关于x的不等式组无解,则a的取值范围是(  )
    A.a≤﹣3 B.a<﹣3 C.a>3 D.a≥3
    10.关于x的不等式组无解,那么m的取值范围为( )
    A.m≤-1 B.m<-1 C.-1 11.已知下列命题:①对顶角相等;②若a>b>0,则<;③对角线相等且互相垂直的四边形是正方形;④抛物线y=x2﹣2x与坐标轴有3个不同交点;⑤边长相等的多边形内角都相等.从中任选一个命题是真命题的概率为(  )
    A. B. C. D.
    12.如图所示是8个完全相同的小正方体组成的几何体,则该几何体的左视图是( )

    A. B.
    C. D.
    二、填空题:(本大题共6个小题,每小题4分,共24分.)
    13.如图,△ABC内接于⊙O,DA、DC分别切⊙O于A、C两点,∠ABC=114°,则∠ADC的度数为_______°.

    14.如图,在ABC中,AB=AC=6,∠BAC=90°,点D、E为BC边上的两点,分别沿AD、AE折叠,B、C两点重合于点F,若DE=5,则AD的长为_____.

    15.函数,当x<0时,y随x的增大而_____.
    16.如图,在平行四边ABCD中,AD=2AB,F是AD的中点,作CE⊥AB,垂足E在线段AB上,连接EF、CF,则下列结论中一定成立的是 (把所有正确结论的序号都填在横线上)∠DCF=∠BCD,(2)EF=CF;(3)SΔBEC=2SΔCEF;(4)∠DFE=3∠AEF

    17.四边形ABCD中,向量_____________.
    18.一个三角形的两边长分别为3和6,第三边长是方程x2-10x+21=0的根,则三角形的周长为______________.
    三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.
    19.(6分)已知x1﹣1x﹣1=1.求代数式(x﹣1)1+x(x﹣4)+(x﹣1)(x+1)的值.
    20.(6分)我校举行“汉字听写”比赛,每位学生听写汉字39个,比赛结束后随机抽查部分学生的听写结果,以下是根据抽查结果绘制的统计图的一部分.
    组别
    正确数字x
    人数
    A
    0≤x<8
    10
    B
    8≤x<16
    15
    C
    16≤x<24
    25
    D
    24≤x<32
    m
    E
    32≤x<40
    n
    根据以上信息解决下列问题:
    (1)在统计表中,m=   ,n=   ,并补全条形统计图.
    (2)扇形统计图中“C组”所对应的圆心角的度数是   .
    (3)有三位评委老师,每位老师在E组学生完成学校比赛后,出示“通过”或“淘汰”或“待定”的评定结果.学校规定:每位学生至少获得两位评委老师的“通过”才能代表学校参加鄂州市“汉字听写”比赛,请用树形图求出E组学生王云参加鄂州市“汉字听写”比赛的概率.

    21.(6分)如图所示,某工程队准备在山坡(山坡视为直线l)上修一条路,需要测量山坡的坡度,即tanα的值.测量员在山坡P处(不计此人身高)观察对面山顶上的一座铁塔,测得塔尖C的仰角为37°,塔底B的仰角为26.6°.已知塔高BC=80米,塔所在的山高OB=220米,OA=200米,图中的点O、B、C、A、P在同一平面内,求山坡的坡度.(参考数据sin26.6°≈0.45,tan26.6°≈0.50;sin37°≈0.60,tan37°≈0.75)

    22.(8分)已知:如图,平行四边形ABCD中,E、F分别是边BC和AD上的点,且BE=DF,求证:AE=CF
    23.(8分)如今很多初中生购买饮品饮用,既影响身体健康又给家庭增加不必要的开销,为此数学兴趣小组对本班同学一天饮用饮品的情况进行了调查,大致可分为四种:
    A:自带白开水;B:瓶装矿泉水;C:碳酸饮料;D:非碳酸饮料.
    根据统计结果绘制如下两个统计图(如图),根据统计图提供的信息,解答下列问题:
    请你补全条形统计图;在扇形统计图中,求“碳酸饮料”所在的扇形的圆心角的度数;为了养成良好的生活习惯,班主任决定在自带白开水的5名同学(男生2人,女生3人)中随机抽取2名同学担任生活监督员,请用列表法或树状图法求出恰好抽到一男一女的概率.
    24.(10分)(1)问题发现
    如图1,在Rt△ABC中,∠A=90°,=1,点P是边BC上一动点(不与点B重合),∠PAD=90°,∠APD=∠B,连接 CD.
    (1)①求的值;②求∠ACD的度数.
    (2)拓展探究
    如图 2,在Rt△ABC中,∠A=90°,=k.点P是边BC上一动点(不与点B重合),∠PAD=90°,∠APD=∠B,连接CD,请判断∠ACD与∠B 的数量关系以及PB与CD之间的数量关系,并说明理由.
    (3)解决问题
    如图 3,在△ABC中,∠B=45°,AB=4,BC=12,P 是边BC上一动点(不与点B重合),∠PAD=∠BAC,∠APD=∠B,连接CD.若 PA=5,请直接写出CD的长.

    25.(10分)如图,在平面直角坐标系中,二次函数的图象与轴交于,两点,与轴交于点,点的坐标为.

    (1)求二次函数的解析式;
    (2)若点是抛物线在第四象限上的一个动点,当四边形的面积最大时,求点的坐标,并求出四边形的最大面积;
    (3)若为抛物线对称轴上一动点,直接写出使为直角三角形的点的坐标.
    26.(12分)如图所示,正方形网格中,△ABC为格点三角形(即三角形的顶点都在格点上).把△ABC沿BA方向平移后,点A移到点A1,在网格中画出平移后得到的△A1B1C1;把△A1B1C1绕点A1按逆时针方向旋转90°,在网格中画出旋转后的△A1B2C2;如果网格中小正方形的边长为1,求点B经过(1)、(2)变换的路径总长.

    27.(12分)M中学为创建园林学校,购买了若干桂花树苗,计划把迎宾大道的一侧全部栽上桂花树(两端必须各栽一棵),并且每两棵树的间隔相等,如果每隔5米栽1棵,则树苗缺11棵;如果每隔6米栽1棵,则树苗正好用完,求购买了桂花树苗多少棵?



    参考答案

    一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)
    1、C
    【解析】
    利用“角边角”证明△APE和△CPF全等,根据全等三角形的可得AE=CF,再根据等腰直角三角形的定义得到△EFP是等腰直角三角形,根据全等三角形的面积相等可得△APE的面积等于△CPF的面积相等,然后求出四边形AEPF的面积等于△ABC的面积的一半.
    【详解】
    ∵AB=AC,∠BAC=90°,点P是BC的中点,
    ∴AP⊥BC,AP=PC,∠EAP=∠C=45°,
    ∴∠APF+∠CPF=90°,
    ∵∠EPF是直角,
    ∴∠APF+∠APE=90°,
    ∴∠APE=∠CPF,
    在△APE和△CPF中,

    ∴△APE≌△CPF(ASA),
    ∴AE=CF,故①②正确;
    ∵△AEP≌△CFP,同理可证△APF≌△BPE,
    ∴△EFP是等腰直角三角形,故③错误;
    ∵△APE≌△CPF,
    ∴S△APE=S△CPF,
    ∴四边形AEPF=S△AEP+S△APF=S△CPF+S△BPE=S△ABC.故④正确,
    故选C.
    【点睛】
    本题考查了全等三角形的判定与性质,等腰直角三角形的判定与性质,根据同角的余角相等求出∠APE=∠CPF,从而得到△APE和△CPF全等是解题的关键,也是本题的突破点.
    2、C
    【解析】
    试题分析:∵FE⊥DB,∵∠DEF=90°,∵∠1=50°,∴∠D=90°﹣50°=40°,∵AB∥CD,∴∠2=∠D=40°.故选C.
    考点:平行线的性质.
    3、D
    【解析】
    解:设小长方形的宽为a,长为b,则有b=n-3a,
    阴影部分的周长:
    2(m-b)+2(m-3a)+2n=2m-2b+2m-6a+2n=4m-2(n-3a)-6a+2n=4m-2n+6a-6a+2n=4m.
    故选D.
    4、C
    【解析】
    试题解析:左视图如图所示:

    故选C.
    5、C
    【解析】
    连接OD,
    ∵弧AB的半径OA长是6米,C是OA的中点,∴OC=OA=×6=1.
    ∵∠AOB=90°,CD∥OB,∴CD⊥OA.
    在Rt△OCD中,∵OD=6,OC=1,∴.
    又∵,∴∠DOC=60°.
    ∴(米2).
    故选C.

    6、C
    【解析】
    根据菱形的性质、垂径定理、反比例函数和一次函数进行判断即可.
    【详解】
    解:①菱形的对角线互相垂直是真命题;
    ②平分弦(非直径)的直径垂直于弦,是假命题;
    ③若点(5,-5)是反比例函数y=图象上的一点,则k=-25,是真命题;
    ④方程2x-1=3x-2的解,可看作直线y=2x-1与直线y=3x-2交点的横坐标,是真命题;
    故选C.
    【点睛】
    本题考查了命题与定理:判断一件事情的语句,叫做命题.许多命题都是由题设和结论两部分组成,题设是已知事项,结论是由已知事项推出的事项,一个命题可以写成“如果…那么…”形式.一些命题的正确性是用推理证实的,这样的真命题叫做定理.
    7、D
    【解析】
    设第一个数为x,则第二个数为x+7,第三个数为x+1.列出三个数的和的方程,再根据选项解出x,看是否存在.
    解:设第一个数为x,则第二个数为x+7,第三个数为x+1
    故三个数的和为x+x+7+x+1=3x+21
    当x=16时,3x+21=69;
    当x=10时,3x+21=51;
    当x=2时,3x+21=2.
    故任意圈出一竖列上相邻的三个数的和不可能是3.
    故选D.
    “点睛“此题主要考查了一元一次方程的应用,解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系列出方程,再求解.
    8、A
    【解析】
    从正面看第一层是三个小正方形,第二层左边一个小正方形,
    故选:A.
    9、A
    【解析】
    【分析】利用不等式组取解集的方法,根据不等式组无解求出a的取值范围即可.
    【详解】∵不等式组无解,
    ∴a﹣4≥3a+2,
    解得:a≤﹣3,
    故选A.
    【点睛】本题考查了一元一次不等式组的解集,熟知一元一次不等式组的解集的确定方法“同大取大、同小取小、大小小大中间找、大大小小无处找”是解题的关键.
    10、A
    【解析】
    【分析】先求出每一个不等式的解集,然后再根据不等式组无解得到有关m的不等式,就可以求出m的取值范围了.
    【详解】,
    解不等式①得:x 解不等式②得:x>-1,
    由于原不等式组无解,所以m≤-1,
    故选A.
    【点睛】本题考查了一元一次不等式组无解问题,熟知一元一次不等式组解集的确定方法“大大取大,小小取小,大小小大中间找,大大小小无处找”是解题的关键.
    11、B
    【解析】
    ∵①对顶角相等,故此选项正确;
    ②若a>b>0,则<,故此选项正确;
    ③对角线相等且互相垂直平分的四边形是正方形,故此选项错误;
    ④抛物线y=x2﹣2x与坐标轴有2个不同交点,故此选项错误;
    ⑤边长相等的多边形内角不一定都相等,故此选项错误;
    ∴从中任选一个命题是真命题的概率为:.
    故选:B.
    12、A
    【解析】
    分析:根据主视图、左视图、俯视图是分别从物体正面、侧面和上面看所得到的图形,从而得出该几何体的左视图.
    详解:该几何体的左视图是:

    故选A.
    点睛:本题考查了学生的思考能力和对几何体三种视图的空间想象能力.

    二、填空题:(本大题共6个小题,每小题4分,共24分.)
    13、48°
    【解析】
    如图,在⊙O上取一点K,连接AK、KC、OA、OC,由圆的内接四边形的性质可求出∠AKC的度数,利用圆周角定理可求出∠AOC的度数,由切线性质可知∠OAD=∠OCB=90°,可知∠ADC+∠AOC=180°,即可得答案.
    【详解】
    如图,在⊙O上取一点K,连接AK、KC、OA、OC.
    ∵四边形AKCB内接于圆,
    ∴∠AKC+∠ABC=180°,
    ∵∠ABC=114°,
    ∴∠AKC=66°,
    ∴∠AOC=2∠AKC=132°,
    ∵DA、DC分别切⊙O于A、C两点,
    ∴∠OAD=∠OCB=90°,
    ∴∠ADC+∠AOC=180°,
    ∴∠ADC=48°

    故答案为48°.
    【点睛】
    本题考查圆内接四边形的性质、周角定理及切线性质,圆内接四边形的对角互补;在同圆或等圆中,同弧或等弧所对的圆周角等于圆心角的一半;圆的切线垂直于过切点的直径;熟练掌握相关知识是解题关键.
    14、或
    【解析】
    过点A作AG⊥BC,垂足为G,根据等腰直角三角形的性质可得AG=BG=CG=6,设BD=x,则DF=BD=x,EF=7-x,然后利用勾股定理可得到关于x的方程,从而求得DG的长,继而可求得AD的长.
    【详解】
    如图所示,过点A作AG⊥BC,垂足为G,
    ∵AB=AC=6,∠BAC=90°,
    ∴BC==12,
    ∵AB=AC,AG⊥BC,
    ∴AG=BG=CG=6,
    设BD=x,则EC=12-DE-BD=12-5-x=7-x,
    由翻折的性质可知:∠DFA=∠B=∠C=∠AFE=45°,DB=DF,EF=FC,
    ∴DF=x,EF=7-x,
    在Rt△DEF中,DE2=DF2+EF2,即25=x2+(7-x)2,
    解得:x=3或x=4,
    当BD=3时,DG=3,AD=,
    当BD=4时,DG=2,AD=,
    ∴AD的长为或,
    故答案为:或.

    【点睛】
    本题考查了翻折的性质、勾股定理的应用、等腰直角三角形的性质,正确添加辅助线,灵活运用勾股定理是解题的关键.
    15、减小
    【解析】
    先根据反比例函数的性质判断出函数的图象所在的象限,再根据反比例函数的性质进行解答即可.
    【详解】
    解:∵反比例函数中,
    ∴此函数的图象在一、三象限,在每一象限内y随x的增大而减小.
    故答案为减小.
    【点睛】
    考查反比例函数的图象与性质,反比例函数
    当时,图象在第一、三象限.在每个象限,y随着x的增大而减小,
    当时,图象在第二、四象限.在每个象限,y随着x的增大而增大.
    16、①②④
    【解析】
    试题解析:①∵F是AD的中点,
    ∴AF=FD,
    ∵在▱ABCD中,AD=2AB,
    ∴AF=FD=CD,
    ∴∠DFC=∠DCF,
    ∵AD∥BC,
    ∴∠DFC=∠FCB,
    ∴∠DCF=∠BCF,
    ∴∠DCF=∠BCD,故此选项正确;
    延长EF,交CD延长线于M,

    ∵四边形ABCD是平行四边形,
    ∴AB∥CD,
    ∴∠A=∠MDF,
    ∵F为AD中点,
    ∴AF=FD,
    在△AEF和△DFM中,

    ∴△AEF≌△DMF(ASA),
    ∴FE=MF,∠AEF=∠M,
    ∵CE⊥AB,
    ∴∠AEC=90°,
    ∴∠AEC=∠ECD=90°,
    ∵FM=EF,
    ∴FC=FM,故②正确;
    ③∵EF=FM,
    ∴S△EFC=S△CFM,
    ∵MC>BE,
    ∴S△BEC<2S△EFC
    故S△BEC=2S△CEF错误;
    ④设∠FEC=x,则∠FCE=x,
    ∴∠DCF=∠DFC=90°-x,
    ∴∠EFC=180°-2x,
    ∴∠EFD=90°-x+180°-2x=270°-3x,
    ∵∠AEF=90°-x,
    ∴∠DFE=3∠AEF,故此选项正确.
    考点:1.平行四边形的性质;2.全等三角形的判定与性质;3.直角三角形斜边上的中线.
    17、
    【解析】
    分析:
    根据“向量运算”的三角形法则进行计算即可.
    详解:
    如下图所示,由向量运算的三角形法则可得:

    =
    =.
    故答案为.

    点睛:理解向量运算的三角形法则是正确解答本题的关键.
    18、2
    【解析】
    分析:首先求出方程的根,再根据三角形三边关系定理,确定第三边的长,进而求其周长.
    详解:解方程x2-10x+21=0得x1=3、x2=1,
    ∵3<第三边的边长<9,
    ∴第三边的边长为1.
    ∴这个三角形的周长是3+6+1=2.
    故答案为2.
    点睛:本题考查了解一元二次方程和三角形的三边关系.已知三角形的两边,则第三边的范围是:大于已知的两边的差,而小于两边的和.

    三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.
    19、2.
    【解析】
    将原式化简整理,整体代入即可解题.
    【详解】
    解:(x﹣1)1+x(x﹣4)+(x﹣1)(x+1)
    =x1﹣1x+1+x1﹣4x+x1﹣4
    =3x1﹣2x﹣3,
    ∵x1﹣1x﹣1=1
    ∴原式=3x1﹣2x﹣3=3(x1﹣1x﹣1)=3×1=2.
    【点睛】
    本题考查了代数式的化简求值,属于简单题,整体代入是解题关键.
    20、(1)m=30, n=20,图详见解析;(2)90°;(3).
    【解析】
    分析:(1)、根据B的人数和百分比得出总人数,从而根据总人数分别求出m和n的值;(2)、根据C的人数和总人数的比值得出扇形的圆心角度数;(3)、首先根据题意画出树状图,然后根据概率的计算法则得出答案.
    详解:(1)∵总人数为15÷15%=100(人),
    ∴D组人数m=100×30%=30,E组人数n=100×20%=20,
    补全条形图如下:

    (2)扇形统计图中“C组”所对应的圆心角的度数是360°×=90°,
    (3)记通过为A、淘汰为B、待定为C,
    画树状图如下:

    由树状图可知,共有27种等可能结果,其中获得两位评委老师的“通过”有7种情况,
    ∴E组学生王云参加鄂州市“汉字听写”比赛的概率为.
    点睛:本题主要考查的就是扇形统计图、条形统计图以及概率的计算法则,属于基础题型.解决这个问题,我们一定要明白样本容量=频数÷频率,根据这个公式即可进行求解.
    21、
    【解析】
    过点P作PD⊥OC于D,PE⊥OA于E,则四边形ODPE为矩形,先解Rt△PBD,得出BD=PD•tan26.6°;解Rt△CBD,得出CD=PD•tan37°;再根据CD﹣BD=BC,列出方程,求出PD=2,进而求出PE=4,AE=5,然后在△APE中利用三角函数的定义即可求解.
    【详解】
    解:如图,过点P作PD⊥OC于D,PE⊥OA于E,则四边形ODPE为矩形.

    在Rt△PBD中,∵∠BDP=90°,∠BPD=26.6°,
    ∴BD=PD•tan∠BPD=PD•tan26.6°.
    在Rt△CBD中,∵∠CDP=90°,∠CPD=37°,
    ∴CD=PD•tan∠CPD=PD•tan37°.
    ∵CD﹣BD=BC,∴PD•tan37°﹣PD•tan26.6°=1.
    ∴0.75PD﹣0.50PD=1,解得PD=2.
    ∴BD=PD•tan26.6°≈2×0.50=3.
    ∵OB=220,∴PE=OD=OB﹣BD=4.
    ∵OE=PD=2,∴AE=OE﹣OA=2﹣200=5.
    ∴.
    22、详见解析
    【解析】
    根据平行四边形的性质和已知条件证明△ABE≌△CDF,再利用全等三角形的性质:即可得到AE=CF.
    【详解】
    证:∵四边形ABCD是平行四边形,∴AB=CD,∠B=∠D,又∵BE=DF,∴△ABE≌△CDF,∴AE=CF. (其他证法也可)
    23、(1)详见解析;(2)72°;(3)
    【解析】
    (1)由B类型的人数及其百分比求得总人数,在用总人数减去其余各组人数得出C类型人数,即可补全条形图;
    (2)用360°乘以C类别人数所占比例即可得;
    (3)用列表法或画树状图法列出所有等可能结果,从中确定恰好抽到一男一女的结果数,根据概率公式求解可得.
    【详解】
    解:(1)∵ 抽 查的总人数为:(人)
    ∴ 类人数为:(人)
    补全条形统计图如下:

    (2)“碳酸饮料”所在的扇形的圆心角度数为:
    (3)设男生为、,女生为、、,
    画树状图得:

    ∴恰好抽到一男一女的情况共有12 种,分别是
    ∴ (恰好抽到一男一女).
    【点睛】
    本题考查的是条形统计图和扇形统计图的综合运用以及概率的求法,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.
    24、(1)1,45°;(2)∠ACD=∠B, =k;(3).
    【解析】
    (1)根据已知条件推出△ABP≌△ACD,根据全等三角形的性质得到PB=CD,∠ACD=∠B=45°,于是得到
    根据已知条件得到△ABC∽△APD,由相似三角形的性质得到,得到 ABP∽△CAD,根据相似三角形的性质得到结论;
    过A作AH⊥BC 于 H,得到△ABH 是等腰直角三角形,求得 AH=BH=4, 根据勾股定理得到根据相似三角形的性质得到 ,推出△ABP∽△CAD,根据相似三角形的性质即可得到结论.
    【详解】
    (1)∵∠A=90°,

    ∴AB=AC,
    ∴∠B=45°,
    ∵∠PAD=90°,∠APD=∠B=45°,
    ∴AP=AD,
    ∴∠BAP=∠CAD,
    在△ABP 与△ACD 中,
    AB=AC, ∠BAP=∠CAD,AP=AD,
    ∴△ABP≌△ACD,
    ∴PB=CD,∠ACD=∠B=45°,
    ∴=1,
    (2)
    ∵∠BAC=∠PAD=90°,∠B=∠APD,
    ∴△ABC∽△APD,

    ∵∠BAP+∠PAC=∠PAC+∠CAD=90°,
    ∴∠BAP=∠CAD,
    ∴△ABP∽△CAD,
    ∴∠ACD=∠B,

    (3)过 A 作 AH⊥BC 于 H,

    ∵∠B=45°,
    ∴△ABH 是等腰直角三角形,

    ∴AH=BH=4,
    ∵BC=12,
    ∴CH=8,

    ∴PH==3,
    ∴PB=1,
    ∵∠BAC=∠PAD=,∠B=∠APD,
    ∴△ABC∽△APD,
    ∴,
    ∵∠BAP+∠PAC=∠PAC+∠CAD,
    ∴∠BAP=∠CAD,
    ∴△ABP∽△CAD,
    ∴即

    过 A 作 AH⊥BC 于 H,

    ∵∠B=45°,
    ∴△ABH 是等腰直角三角形,

    ∴AH=BH=4,
    ∵BC=12,
    ∴CH=8,

    ∴PH==3,
    ∴PB=7,
    ∵∠BAC=∠PAD=,∠B=∠APD,
    ∴△ABC∽△APD,
    ∴,
    ∵∠BAP+∠PAC=∠PAC+∠CAD,
    ∴∠BAP=∠CAD,
    ∴△ABP∽△CAD,
    ∴即

    【点睛】
    本题考查了等腰直角三角形的性质,全等三角形的判定和性质,相似三角形的判定
    和性质,勾股定理,熟练掌握相似三角形的判定和性质是解题的关键.
    25、(1);(2)P点坐标为, ;(3) 或或或.
    【解析】
    (1)根据待定系数法把A、C两点坐标代入可求得二次函数的解析式;
    (2)由抛物线解析式可求得B点坐标,由B、C坐标可求得直线BC解析式,可设出P点坐标,用P点坐标表示出四边形ABPC的面积,根据二次函数的性质可求得其面积的最大值及P点坐标;
    (3)首先设出Q点的坐标,则可表示出QB2、QC2和BC2,然后分∠BQC=90°、∠CBQ=90°和∠BCQ=90°三种情况,求解即可.
    【详解】
    解:(1)∵A(-1,0),在上,
    ,解得,
    ∴二次函数的解析式为;
    (2)在中,令可得,解得或,
    ,且,
    ∴经过、两点的直线为,
    设点的坐标为,如图,过点作轴,垂足为,与直线交于点,则,


    ∴当时,四边形的面积最大,此时P点坐标为,
    ∴四边形的最大面积为;
    (3),
    ∴对称轴为,
    ∴可设点坐标为,
    ,,
    ,,,
    为直角三角形,
    ∴有、和三种情况,
    ①当时,则有,即,解得或,此时点坐标为或;
    ②当时,则有,即,解得,此时点坐标为;
    ③当时,则有,即,解得,此时点坐标为;
    综上可知点的坐标为或或或.
    【点睛】
    本题考查了待定系数法、三角形的面积、二次函数的性质、勾股定理、方程思想及分类讨论思想等知识,注意分类讨论思想的应用.
    26、(1)(2)作图见解析;(3).
    【解析】
    (1)利用平移的性质画图,即对应点都移动相同的距离.
    (2)利用旋转的性质画图,对应点都旋转相同的角度.
    (3)利用勾股定理和弧长公式求点B经过(1)、(2)变换的路径总长.
    【详解】
    解:(1)如答图,连接AA1,然后从C点作AA1的平行线且A1C1=AC,同理找到点B1,分别连接三点,△A1B1C1即为所求.
    (2)如答图,分别将A1B1,A1C1绕点A1按逆时针方向旋转90°,得到B2,C2,连接B2C2,△A1B2C2即为所求.

    (3)∵,
    ∴点B所走的路径总长=.
    考点:1.网格问题;2.作图(平移和旋转变换);3.勾股定理;4.弧长的计算.
    27、购买了桂花树苗1棵
    【解析】
    分析:首先设购买了桂花树苗x棵,然后根据题意列出一元一次方程,从而得出答案.
    详解:设购买了桂花树苗x棵,根据题意,得:5(x+11-1)=6(x-1), 解得x=1.
    答:购买了桂花树苗1棵.
    点睛:本题主要考查的是一元一次方程的应用,属于基础题型.解决这个问题的关键就是找出等量关系以及路的长度与树的棵树之间的关系.

    相关试卷

    2024年广东省梅州市五华县中考模拟预测数学试题: 这是一份2024年广东省梅州市五华县中考模拟预测数学试题,共12页。

    2023年广东省梅州市五华县中考数学一模试卷(含解析): 这是一份2023年广东省梅州市五华县中考数学一模试卷(含解析),共22页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    2022年广东省梅州市五华县中考一模数学试卷(含解析): 这是一份2022年广东省梅州市五华县中考一模数学试卷(含解析),共26页。试卷主要包含了单选题,填空题,解答题等内容,欢迎下载使用。

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单

        欢迎来到教习网

        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        还可免费领教师专享福利「樊登读书VIP」

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        返回
        顶部
        Baidu
        map