2022年安徽省省城名校中考数学模试卷含解析
展开
这是一份2022年安徽省省城名校中考数学模试卷含解析,共26页。试卷主要包含了考生要认真填写考场号和座位序号等内容,欢迎下载使用。
1.考生要认真填写考场号和座位序号。
2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B 铅笔作答;第二部分必须用黑色字迹的签字笔作答。
3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。
一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)
1.如图,在中,面积是16,的垂直平分线分别交边于点,若点为边的中点,点为线段上一动点,则周长的最小值为( )
A.6B.8C.10D.12
2.对于实数x,我们规定[x]表示不大于x的最大整数,如[4]=4,[]=1,[﹣2.5]=﹣3.现对82进行如下操作:82 []=9 []=3 []=1,这样对82只需进行3次操作后变为1,类似地,对121只需进行多少次操作后变为1( )
A.1B.2C.3D.4
3.生物兴趣小组的学生,将自己收集的标本向本组其他成员各赠送一件,全组共互赠了132件.如果全组共有x名同学,则根据题意列出的方程是( )
A.x(x+1)=132B.x(x-1)=132C.x(x+1)=132×D.x(x-1)=132×2
4.已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,下列结论:①abc>0;②2a+b>0;③b2﹣4ac>0;④a﹣b+c>0,其中正确的个数是( )
A.1B.2C.3D.4
5.一元二次方程x2+2x﹣15=0的两个根为( )
A.x1=﹣3,x2=﹣5 B.x1=3,x2=5
C.x1=3,x2=﹣5 D.x1=﹣3,x2=5
6.如图,点P是∠AOB外的一点,点M,N分别是∠AOB两边上的点,点P关于OA的对称点Q恰好落在线段MN上,点P关于OB的对称点R落在MN的延长线上,若PM=2.5cm,PN=3cm,MN=4cm,则线段QR的长为( )
A.4.5cmB.5.5cmC.6.5cmD.7cm
7.如图,用一个半径为6cm的定滑轮带动重物上升,假设绳索(粗细不计)与滑轮之间没有滑动,绳索端点G向下移动了3πcm,则滑轮上的点F旋转了( )
A.60°B.90°C.120°D.45°
8.如图,在△ABC中,csB=,sinC=,AC=5,则△ABC的面积是( )
A. B.12C.14D.21
9.已知,两数在数轴上对应的点如图所示,下列结论正确的是( )
A.B.C.D.
10.如图,在平面直角坐标系中,把△ABC绕原点O旋转180°得到△CDA,点A,B,C的坐标分别为(﹣5,2),(﹣2,﹣2),(5,﹣2),则点D的坐标为( )
A.(2,2)B.(2,﹣2)C.(2,5)D.(﹣2,5)
11.下列调查中,最适合采用全面调查(普查)方式的是( )
A.对重庆市初中学生每天阅读时间的调查
B.对端午节期间市场上粽子质量情况的调查
C.对某批次手机的防水功能的调查
D.对某校九年级3班学生肺活量情况的调查
12.如图,正方形ABCD的对角线AC与BD相交于点O,∠ACB的角平分线分别交AB,BD于M,N两点.若AM=2,则线段ON的长为( )
A.B.C.1D.
二、填空题:(本大题共6个小题,每小题4分,共24分.)
13.某航空公司规定,乘客所携带行李的重量x(kg)与运费y(元)满足如图所示的函数图象,那么每位乘客最多可免费携带____kg的行李.
14.如图,点A为函数y=(x>0)图象上一点,连接OA,交函数y=(x>0)的图象于点B,点C是x轴上一点,且AO=AC,则△ABC的面积为______.
15.分解因式:= .
16.已知点P(a,b)在反比例函数y=的图象上,则ab=_____.
17.若一组数据1,2,3,的平均数是2,则的值为______.
18.如图,半圆O的直径AB=2,弦CD∥AB,∠COD=90°,则图中阴影部分的面积为_____.
三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.
19.(6分)如图,∠BAC的平分线交△ABC的外接圆于点D,交BC于点F,∠ABC的平分线交AD于点E.
(1)求证:DE=DB:
(2)若∠BAC=90°,BD=4,求△ABC外接圆的半径;
(3)若BD=6,DF=4,求AD的长
20.(6分)某居民小区一处圆柱形的输水管道破裂,维修人员为更换管道,需确定管道圆形截面的半径,下面是水平放置的破裂管道有水部分的截面.若这个输水管道有水部分的水面宽,水面最深地方的高度为4cm,求这个圆形截面的半径.
21.(6分)在△ABC中,∠A,∠B都是锐角,且sinA=,tanB=,AB=10,求△ABC的面积.
22.(8分)(定义)如图1,A,B为直线l同侧的两点,过点A作直线1的对称点A′,连接A′B交直线l于点P,连接AP,则称点P为点A,B关于直线l的“等角点”.
(运用)如图2,在平面直坐标系xOy中,已知A(2,),B(﹣2,﹣)两点.
(1)C(4,),D(4,),E(4,)三点中,点 是点A,B关于直线x=4的等角点;
(2)若直线l垂直于x轴,点P(m,n)是点A,B关于直线l的等角点,其中m>2,∠APB=α,求证:tan=;
(3)若点P是点A,B关于直线y=ax+b(a≠0)的等角点,且点P位于直线AB的右下方,当∠APB=60°时,求b的取值范围(直接写出结果).
23.(8分)某地一路段修建,甲队单独完成这项工程需要60天,若由甲队先做5天,再由甲、乙两队合作9天,共完成这项工程的三分之一.
(1)求甲、乙两队合作完成这项工程需要多少天?
(2)若甲队的工作效率提高20%,乙队工作效率提高50%,甲队施工1天需付工程款4万元,乙队施工一天需付工程款2.5万元,现由甲乙两队合作若干天后,再由乙队完成剩余部分,在完成此项工程的工程款不超过190万元的条件下要求尽早完成此项工程,则甲、乙两队至多要合作多少天?
24.(10分)某初级中学正在展开“文明城市创建人人参与,志愿服务我当先行”的“创文活动”为了了解该校志愿者参与服务情况,现对该校全体志愿者进行随机抽样调查.根据调查数据绘制了如下所示不完整统计图.条形统计图中七年级、八年级、九年级、教师分别指七年级、八年级、九年级、教师志愿者中被抽到的志愿者,扇形统计图中的百分数指的是该年级被抽到的志愿者数与样本容量的比.
请补全条形统计图;若该校共有志愿者600人,则该校九年级大约有多少志愿者?
25.(10分)如图,在△ABC中,AB>AC,点D在边AC上.
(1)作∠ADE,使∠ADE=∠ACB,DE交AB于点E;(尺规作图,保留作图痕迹,不写作法)
(2)若BC=5,点D是AC的中点,求DE的长.
26.(12分)(2017江苏省常州市)为了解某校学生的课余兴趣爱好情况,某调查小组设计了“阅读”、“打球”、“书法”和“其他”四个选项,用随机抽样的方法调查了该校部分学生的课余兴趣爱好情况(每个学生必须选一项且只能选一项),并根据调查结果绘制了如下统计图:
根据统计图所提供的信息,解答下列问题:
(1)本次抽样调查中的样本容量是 ;
(2)补全条形统计图;
(3)该校共有2000名学生,请根据统计结果估计该校课余兴趣爱好为“打球”的学生人数.
27.(12分)如图,在平面直角坐标系中,四边形的顶点是坐标原点,点在第一象限,点在第四象限,点在轴的正半轴上,且.
(1)求点和点的坐标;
(2)点是线段上的一个动点(点不与点重合) ,以每秒个单位的速度由点向点运动,过点的直线与轴平行,直线交边或边于点,交边或边于点,设点.运动时间为,线段的长度为,已知时,直线恰好过点 .
①当时,求关于的函数关系式;
②点出发时点也从点出发,以每秒个单位的速度向点运动,点停止时点也停止.设的面积为 ,求与的函数关系式;
③直接写出②中的最大值是 .
参考答案
一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)
1、C
【解析】
连接AD,AM,由于△ABC是等腰三角形,点D是BC的中点,故,在根据三角形的面积公式求出AD的长,再根据EF是线段AC的垂直平分线可知,点A关于直线EF的对称点为点C,,推出,故AD的长为BM+MD的最小值,由此即可得出结论.
【详解】
连接AD,MA
∵△ABC是等腰三角形,点D是BC边上的中点
∴
∴
解得
∵EF是线段AC的垂直平分线
∴点A关于直线EF的对称点为点C
∴
∵
∴AD的长为BM+MD的最小值
∴△CDM的周长最短
故选:C.
【点睛】
本题考查了三角形线段长度的问题,掌握等腰三角形的性质、三角形的面积公式、垂直平分线的性质是解题的关键.
2、C
【解析】
分析:[x]表示不大于x的最大整数,依据题目中提供的操作进行计算即可.
详解:121
∴对121只需进行3次操作后变为1.
故选C.
点睛:本题是一道关于无理数的题目,需要结合定义的新运算和无理数的估算进行求解.
3、B
【解析】
全组有x名同学,则每名同学所赠的标本为:(x-1)件,
那么x名同学共赠:x(x-1)件,
所以,x(x-1)=132,
故选B.
4、D
【解析】
由抛物线的对称轴的位置判断ab的符号,由抛物线与y轴的交点判断c的符号,然后根据对称轴及抛物线与x轴交点情况进行推理,进而对所得结论进行判断.
【详解】
①∵抛物线对称轴是y轴的右侧,
∴ab<0,
∵与y轴交于负半轴,
∴c<0,
∴abc>0,
故①正确;
②∵a>0,x=﹣<1,
∴﹣b<2a,
∴2a+b>0,
故②正确;
③∵抛物线与x轴有两个交点,
∴b2﹣4ac>0,
故③正确;
④当x=﹣1时,y>0,
∴a﹣b+c>0,
故④正确.
故选D.
【点睛】
本题主要考查了图象与二次函数系数之间的关系,二次函数y=ax2+bx+c系数符号由抛物线开口方向、对称轴和抛物线与y轴的交点、抛物线与x轴交点的个数确定.
5、C
【解析】
运用配方法解方程即可.
【详解】
解:x2+2x﹣15= x2+2x+1-16=(x+1)2-16=0,即(x+1)2=16,解得,x1=3,x2=-5.
故选择C.
【点睛】
本题考查了解一元二次方程,选择合适的解方程方法是解题关键.
6、A
【解析】
试题分析:利用轴对称图形的性质得出PM=MQ,PN=NR,进而利用PM=2.5cm,PN=3cm,MN=3cm,得出NQ=MN-MQ=3-2.5=2.5(cm),即可得出QR的长RN+NQ=3+2.5=3.5(cm).
故选A.
考点:轴对称图形的性质
7、B
【解析】
由弧长的计算公式可得答案.
【详解】
解:由圆弧长计算公式,将l=3π代入,
可得n =90,
故选B.
【点睛】
本题主要考查圆弧长计算公式,牢记并运用公式是解题的关键.
8、A
【解析】
根据已知作出三角形的高线AD,进而得出AD,BD,CD,的长,即可得出三角形的面积.
【详解】
解:过点A作AD⊥BC,
∵△ABC中,csB=,sinC=,AC=5,
∴csB==,
∴∠B=45°,
∵sinC===,
∴AD=3,
∴CD==4,
∴BD=3,
则△ABC的面积是:×AD×BC=×3×(3+4)=.
故选:A.
【点睛】
此题主要考查了解直角三角形的知识,作出AD⊥BC,进而得出相关线段的长度是解决问题的关键.
9、C
【解析】
根据各点在数轴上位置即可得出结论.
【详解】
由图可知,b
相关试卷
这是一份2024年安徽省省城名校中考最后三模(二)数学试题,共7页。试卷主要包含了 大致图象如下,等内容,欢迎下载使用。
这是一份2024年安徽省省城名校中考三模数学试题(含解析),共23页。试卷主要包含了选择题,填空题等内容,欢迎下载使用。
这是一份2024年安徽省省城名校中考最后三模(一)数学试题,文件包含2024年安徽省省城名校中考数学答案pdf、2024年安徽省省城名校中考最后三模一数学试题pdf等2份试卷配套教学资源,其中试卷共7页, 欢迎下载使用。