|试卷下载
终身会员
搜索
    上传资料 赚现金
    2022届浙江省宁波市慈溪中学中考联考数学试题含解析
    立即下载
    加入资料篮
    2022届浙江省宁波市慈溪中学中考联考数学试题含解析01
    2022届浙江省宁波市慈溪中学中考联考数学试题含解析02
    2022届浙江省宁波市慈溪中学中考联考数学试题含解析03
    还剩18页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    2022届浙江省宁波市慈溪中学中考联考数学试题含解析

    展开
    这是一份2022届浙江省宁波市慈溪中学中考联考数学试题含解析,共21页。试卷主要包含了下列各式计算正确的是,对于函数y=,下列说法正确的是,﹣18的倒数是等内容,欢迎下载使用。

    1. 答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。
    2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。
    3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。
    4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。
    一、选择题(共10小题,每小题3分,共30分)
    1.对于二次函数,下列说法正确的是( )
    A.当x>0,y随x的增大而增大
    B.当x=2时,y有最大值-3
    C.图像的顶点坐标为(-2,-7)
    D.图像与x轴有两个交点
    2.对于任意实数k,关于x的方程的根的情况为
    A.有两个相等的实数根B.没有实数根
    C.有两个不相等的实数根D.无法确定
    3.若一组数据1、、2、3、4的平均数与中位数相同,则不可能是下列选项中的( )
    A.0B.2.5C.3 D.5
    4.如图,已知∠1=∠2,要使△ABD≌△ACD,需从下列条件中增加一个,错误的选法是( )
    A.∠ADB=∠ADCB.∠B=∠CC.AB=ACD.DB=DC
    5.如图,将矩形 ABCD 绕点 A 顺时针旋转到矩形 AB′C′D′的位置,旋转角为α(0°<α<90°).若∠1=112°,则∠α的大小是( )
    A.68°B.20°C.28°D.22°
    6.下列实数0,,,π,其中,无理数共有( )
    A.1个B.2个C.3个D.4个
    7.下列各式计算正确的是( )
    A.B.C.D.
    8.对于函数y=,下列说法正确的是( )
    A.y是x的反比例函数B.它的图象过原点
    C.它的图象不经过第三象限D.y随x的增大而减小
    9.如图,将绕直角顶点顺时针旋转,得到,连接,若,则的度数是( )
    A.B.C.D.
    10.﹣18的倒数是( )
    A.18B.﹣18C.-D.
    二、填空题(本大题共6个小题,每小题3分,共18分)
    11.在某公益活动中,小明对本年级同学的捐款情况进行了统计,绘制成如图所示的不完整的统计图,其中捐10元的人数占年级总人数的25%,则本次捐款20元的人数为______ 人.
    12.如图,点分别在正三角形的三边上,且也是正三角形.若的边长为,的边长为,则的内切圆半径为__________.
    13.如图,△ABC与△DEF位似,点O为位似中心,若AC=3DF,则OE:EB=_____.
    14.已知 x(x+1)=x+1,则x=________.
    15.如图,D、E分别是△ABC的边AB、BC上的点,DE∥AC,若S△BDE:S△CDE=1:3,则BE:BC的值为_________.
    16.用换元法解方程,设y=,那么原方程化为关于y的整式方程是_____.
    三、解答题(共8题,共72分)
    17.(8分)为了维护国家主权和海洋权利,海监部门对我国领海实现了常态化巡航管理,如图,正在执行巡航任务的海监船以每小时50海里的速度向正东方航行,在A处测得灯塔P在北偏东60°方向上,继续航行1小时到达B处,此时测得灯塔P在北偏东30°方向上.求∠APB的度数;已知在灯塔P的周围25海里内有暗礁,问海监船继续向正东方向航行是否安全?

    18.(8分)如图,在10×10的网格中,每个小方格都是边长为1的小正方形,每个小正方形的顶点称为格点.如果抛物线经过图中的三个格点,那么以这三个格点为顶点的三角形称为该抛物线的“内接格点三角形”.设对称轴平行于y轴的抛物线与网格对角线OM的两个交点为A,B,其顶点为C,如果△ABC是该抛物线的内接格点三角形,AB=3,且点A,B,C的横坐标xA,xB,xC满足xA<xC<xB,那么符合上述条件的抛物线条数是( )
    A.7B.8C.14D.16
    19.(8分)如图,菱形ABCD的边长为20cm,∠ABC=120°,对角线AC,BD相交于点O,动点P从点A出发,以4cm/s的速度,沿A→B的路线向点B运动;过点P作PQ∥BD,与AC相交于点Q,设运动时间为t秒,0<t<1.
    (1)设四边形PQCB的面积为S,求S与t的关系式;
    (2)若点Q关于O的对称点为M,过点P且垂直于AB的直线l交菱形ABCD的边AD(或CD)于点N,当t为何值时,点P、M、N在一直线上?
    (3)直线PN与AC相交于H点,连接PM,NM,是否存在某一时刻t,使得直线PN平分四边形APMN的面积?若存在,求出t的值;若不存在,请说明理由.
    20.(8分)如图,AB为⊙O的直径,C是⊙O上一点,过点C的直线交AB的延长线于点D,AE⊥DC,垂足为E,F是AE与⊙O的交点,AC平分∠BAE.求证:DE是⊙O的切线;若AE=6,∠D=30°,求图中阴影部分的面积.
    21.(8分)如图,直线y=﹣x+2与反比例函数 (k≠0)的图象交于A(a,3),B(3,b)两点,过点A作AC⊥x轴于点C,过点B作BD⊥x轴于点D.
    求a,b的值及反比例函数的解析式;若点P在直线y=﹣x+2上,且S△ACP=S△BDP,请求出此时点P的坐标;在x轴正半轴上是否存在点M,使得△MAB为等腰三角形?若存在,请直接写出M点的坐标;若不存在,说明理由.
    22.(10分)如图,△ABD是⊙O的内接三角形,E是弦BD的中点,点C是⊙O外一点且∠DBC=∠A,连接OE延长与圆相交于点F,与BC相交于点C.求证:BC是⊙O的切线;若⊙O的半径为6,BC=8,求弦BD的长.
    23.(12分)如图,△ABC中,AB=AC,以AB为直径的⊙O交BC边于点D,连接AD,过D作AC的垂线,交AC边于点E,交AB 边的延长线于点F.
    (1)求证:EF是⊙O的切线;
    (2)若∠F=30°,BF=3,求弧AD的长.
    24.解不等式组并写出它的所有整数解.
    参考答案
    一、选择题(共10小题,每小题3分,共30分)
    1、B
    【解析】
    二次函数,
    所以二次函数的开口向下,当x<2,y随x的增大而增大,选项A错误;
    当x=2时,取得最大值,最大值为-3,选项B正确;
    顶点坐标为(2,-3),选项C错误;
    顶点坐标为(2,-3),抛物线开口向下可得抛物线与x轴没有交点,选项D错误,
    故答案选B.
    考点:二次函数的性质.
    2、C
    【解析】
    判断一元二次方程的根的情况,只要看根的判别式的值的符号即可:
    ∵a=1,b=,c=,
    ∴.
    ∴此方程有两个不相等的实数根.故选C.
    3、C
    【解析】
    解:这组数据1、a、2、1、4的平均数为:(1+a+2+1+4)÷5=(a+10)÷5=0.2a+2,
    (1)将这组数据从小到大的顺序排列后为a,1,2,1,4,中位数是2,平均数是0.2a+2,
    ∵这组数据1、a、2、1、4的平均数与中位数相同,∴0.2a+2=2,解得a=0,符合排列顺序.
    (2)将这组数据从小到大的顺序排列后为1,a,2,1,4,中位数是2,平均数是0.2a+2,
    ∵这组数据1、a、2、1、4的平均数与中位数相同,∴0.2a+2=2,解得a=0,不符合排列顺序.
    (1)将这组数据从小到大的顺序排列后1,2,a,1,4,中位数是a,平均数是0.2a+2,
    ∵这组数据1、a、2、1、4的平均数与中位数相同,∴0.2a+2=a,解得a=2.5,符合排列顺序.
    (4)将这组数据从小到大的顺序排列后为1,2,1,a,4,中位数是1,平均数是0.2a+2,
    ∵这组数据1、a、2、1、4的平均数与中位数相同,∴0.2a+2=1,解得a=5,不符合排列顺序.
    (5)将这组数据从小到大的顺序排列为1,2,1,4,a,中位数是1,平均数是0.2a+2,
    ∵这组数据1、a、2、1、4的平均数与中位数相同,∴0.2a+2=1,解得a=5;符合排列顺序;
    综上,可得:a=0、2.5或5,∴a不可能是1.
    故选C.
    【点睛】
    本题考查中位数;算术平均数.
    4、D
    【解析】
    由全等三角形的判定方法ASA证出△ABD≌△ACD,得出A正确;由全等三角形的判定方法AAS证出△ABD≌△ACD,得出B正确;由全等三角形的判定方法SAS证出△ABD≌△ACD,得出C正确.由全等三角形的判定方法得出D不正确;
    【详解】
    A正确;理由:
    在△ABD和△ACD中,
    ∵∠1=∠2,AD=AD,∠ADB=∠ADC,
    ∴△ABD≌△ACD(ASA);
    B正确;理由:
    在△ABD和△ACD中,
    ∵∠1=∠2,∠B=∠C,AD=AD
    ∴△ABD≌△ACD(AAS);
    C正确;理由:
    在△ABD和△ACD中,
    ∵AB=AC,∠1=∠2,AD=AD,
    ∴△ABD≌△ACD(SAS);
    D不正确,由这些条件不能判定三角形全等;
    故选:D.
    【点睛】
    本题考查了全等三角形的判定方法;三角形全等的判定是中考的热点,熟练掌握全等三角形的判定方法是解决问题的关键.
    5、D
    【解析】
    试题解析:∵四边形ABCD为矩形,
    ∴∠BAD=∠ABC=∠ADC=90°,
    ∵矩形ABCD绕点A顺时针旋转到矩形AB′C′D′的位置,旋转角为α,
    ∴∠BAB′=α,∠B′AD′=∠BAD=90°,∠D′=∠D=90°,
    ∵∠2=∠1=112°,
    而∠ABD=∠D′=90°,
    ∴∠3=180°-∠2=68°,
    ∴∠BAB′=90°-68°=22°,
    即∠α=22°.
    故选D.
    6、B
    【解析】
    根据无理数的概念可判断出无理数的个数.
    【详解】
    解:无理数有:,.
    故选B.
    【点睛】
    本题主要考查了无理数的定义,注意带根号的要开不尽方才是无理数,无限不循环小数为无理数.
    7、C
    【解析】
    解:A.2a与2不是同类项,不能合并,故本选项错误;
    B.应为,故本选项错误;
    C.,正确;
    D.应为,故本选项错误.
    故选C.
    【点睛】
    本题考查幂的乘方与积的乘方;同底数幂的乘法.
    8、C
    【解析】
    直接利用反比例函数的性质结合图象分布得出答案.
    【详解】
    对于函数y=,y是x2的反比例函数,故选项A错误;
    它的图象不经过原点,故选项B错误;
    它的图象分布在第一、二象限,不经过第三象限,故选项C正确;
    第一象限,y随x的增大而减小,第二象限,y随x的增大而增大,
    故选C.
    【点睛】
    此题主要考查了反比例函数的性质,正确得出函数图象分布是解题关键.
    9、B
    【解析】
    根据旋转的性质可得AC=A′C,然后判断出△ACA′是等腰直角三角形,根据等腰直角三角形的性质可得∠CAA′=45°,再根据三角形的一个外角等于与它不相邻的两个内角的和求出∠A′B′C,最后根据旋转的性质可得∠B=∠A′B′C.
    【详解】
    解:∵Rt△ABC绕直角顶点C顺时针旋转90°得到△A′B′C,
    ∴AC=A′C,
    ∴△ACA′是等腰直角三角形,
    ∴∠CAA′=45°,
    ∴∠A′B′C=∠1+∠CAA′=20°+45°=65°,
    ∴∠B=∠A′B′C=65°.
    故选B.
    【点睛】
    本题考查了旋转的性质,等腰直角三角形的判定与性质,三角形的一个外角等于与它不相邻的两个内角的和的性质,熟记各性质并准确识图是解题的关键.
    10、C
    【解析】
    根据乘积为1的两个数互为倒数,可得一个数的倒数.
    【详解】
    ∵-18=1,
    ∴﹣18的倒数是,
    故选C.
    【点睛】
    本题考查了倒数,分子分母交换位置是求一个数的倒数的关键.
    二、填空题(本大题共6个小题,每小题3分,共18分)
    11、35
    【解析】
    分析:根据捐款10元的人数占总人数25%可得捐款总人数,将总人数减去其余各组人数可得答案.
    详解:根据题意可知,本年级捐款捐款的同学一共有20÷25%=80(人),
    则本次捐款20元的有:80−(20+10+15)=35(人),
    故答案为:35.
    点睛:本题考查了条形统计图.计算出捐款总人数是解决问题的关键.
    12、
    【解析】
    根据△ABC、△EFD都是等边三角形,可证得△AEF≌△BDE≌△CDF,即可求得AE+AF=AE+BE=a,然后根据切线长定理得到AH=(AE+AF-EF)=(a-b);,再根据直角三角形的性质即可求出△AEF的内切圆半径.
    【详解】
    解:如图1,⊙I是△ABC的内切圆,由切线长定理可得:AD=AE,BD=BF,CE=CF,
    ∴AD=AE=[(AB+AC)-(BD+CE)]= [(AB+AC)-(BF+CF)]=(AB+AC-BC),
    如图2,∵△ABC,△DEF都为正三角形,
    ∴AB=BC=CA,EF=FD=DE,∠BAC=∠B=∠C=∠FED=∠EFD=∠EDF=60°,
    ∴∠1+∠2=∠2+∠3=120°,∠1=∠3;
    在△AEF和△CFD中,

    ∴△AEF≌△CFD(AAS);
    同理可证:△AEF≌△CFD≌△BDE;
    ∴BE=AF,即AE+AF=AE+BE=a.
    设M是△AEF的内心,过点M作MH⊥AE于H,
    则根据图1的结论得:AH=(AE+AF-EF)=(a-b);
    ∵MA平分∠BAC,
    ∴∠HAM=30°;
    ∴HM=AH•tan30°=(a-b)•=
    故答案为:.
    【点睛】
    本题主要考查的是三角形的内切圆、等边三角形的性质、全等三角形的性质和判定,切线的性质,圆的切线长定理,根据已知得出AH的长是解题关键.
    13、1:2
    【解析】
    △ABC与△DEF是位似三角形,则DF∥AC,EF∥BC,先证明△OAC∽△ODF,利用相似比求得AC=3DF,所以可求OE:OB=DF:AC=1:3,据此可得答案.
    【详解】
    解:∵△ABC与△DEF是位似三角形,
    ∴DF∥AC,EF∥BC
    ∴△OAC∽△ODF,OE:OB=OF:OC
    ∴OF:OC=DF:AC
    ∵AC=3DF
    ∴OE:OB=DF:AC=1:3,
    则OE:EB=1:2
    故答案为:1:2
    【点睛】
    本题考查了位似的相关知识,位似是相似的特殊形式,位似比等于相似比,位似图形的对应顶点的连线平行或共线.
    14、1或-1
    【解析】
    方程可化为:

    ∴或,
    ∴或.
    故答案为1或-1.
    15、1:4
    【解析】
    由S△BDE:S△CDE=1:3,得到 ,于是得到 .
    【详解】
    解: 两个三角形同高,底边之比等于面积比.


    故答案为
    【点睛】
    本题考查了三角形的面积,比例的性质等知识,知道等高不同底的三角形的面积的比等于底的比是解题的关键.
    16、6y2-5y+2=0
    【解析】
    根据y=,将方程变形即可.
    【详解】
    根据题意得:3y+,
    得到6y2-5y+2=0
    故答案为6y2-5y+2=0
    【点睛】
    此题考查了换元法解分式方程,利用了整体的思想,将方程进行适当的变形是解本题的关键.
    三、解答题(共8题,共72分)
    17、(1)30°;(2)海监船继续向正东方向航行是安全的.
    【解析】
    (1)根据直角的性质和三角形的内角和求解;
    (2)过点P作PH⊥AB于点H,根据解直角三角形,求出点P到AB的距离,然后比较即可.
    【详解】
    解:(1)在△APB中,∠PAB=30°,∠ABP=120°
    ∴∠APB=180°-30°-120°=30°
    (2)过点P作PH⊥AB于点H

    在Rt△APH中,∠PAH=30°,AH=PH
    在Rt△BPH中,∠PBH=30°,BH=PH
    ∴AB=AH-BH=PH=50
    解得PH=25>25,因此不会进入暗礁区,继续航行仍然安全.
    考点:解直角三角形
    18、C
    【解析】
    根据在OB上的两个交点之间的距离为3,可知两交点的横坐标的差为3,然后作出最左边开口向下的抛物线,再向右平移1个单位,向上平移1个单位得到开口向下的抛物线的条数,同理可得开口向上的抛物线的条数,然后相加即可得解.
    【详解】
    解:如图,开口向下,经过点(0,0),(1,3),(3,3)的抛物线的解析式为y=﹣x2+4x,然后向右平移1个单位,向上平移1个单位一次得到一条抛物线,可平移6次,所以,一共有7条抛物线,同理可得开口向上的抛物线也有7条,所以,满足上述条件且对称轴平行于y轴的抛物线条数是:7+7=1.
    故选C.
    【点睛】
    本题是二次函数综合题.主要考查了网格结构的知识与二次函数的性质,二次函数图象与几何变换,作出图形更形象直观.
    19、 (1) S=﹣2(0<t<1); (2) ;(3)见解析.
    【解析】
    (1)如图1,根据S=S△ABC-S△APQ,代入可得S与t的关系式;
    (2)设PM=x,则AM=2x,可得AP=x=4t,计算x的值,根据直角三角形30度角的性质可得AM=2PM=,根据AM=AO+OM,列方程可得t的值;
    (3)存在,通过画图可知:N在CD上时,直线PN平分四边形APMN的面积,根据面积相等可得MG=AP,由AM=AO+OM,列式可得t的值.
    【详解】
    解:(1)如图1,∵四边形ABCD是菱形,
    ∴∠ABD=∠DBC=∠ABC=60°,AC⊥BD,
    ∴∠OAB=30°,
    ∵AB=20,
    ∴OB=10,AO=10,
    由题意得:AP=4t,
    ∴PQ=2t,AQ=2t,
    ∴S=S△ABC﹣S△APQ,
    =,
    = ,
    =﹣2t2+100(0<t<1);
    (2)如图2,在Rt△APM中,AP=4t,
    ∵点Q关于O的对称点为M,
    ∴OM=OQ,
    设PM=x,则AM=2x,
    ∴AP=x=4t,
    ∴x=,
    ∴AM=2PM=,
    ∵AM=AO+OM,
    ∴=10+10﹣2t,
    t=;
    答:当t为秒时,点P、M、N在一直线上;
    (3)存在,
    如图3,∵直线PN平分四边形APMN的面积,
    ∴S△APN=S△PMN,
    过M作MG⊥PN于G,
    ∴ ,
    ∴MG=AP,
    易得△APH≌△MGH,
    ∴AH=HM=t,
    ∵AM=AO+OM,
    同理可知:OM=OQ=10﹣2t,
    t=10=10﹣2t,
    t=.
    答:当t为秒时,使得直线PN平分四边形APMN的面积.
    【点睛】
    考查了全等三角形的判定与性质,对称的性质,三角形和四边形的面积,二次根式的化简等知识点,计算量大,解答本题的关键是熟练掌握动点运动时所构成的三角形各边的关系.
    20、(1)证明见解析;(2)阴影部分的面积为.
    【解析】
    (1)连接OC,先证明∠OAC=∠OCA,进而得到OC∥AE,于是得到OC⊥CD,进而证明DE是⊙O的切线;(2)分别求出△OCD的面积和扇形OBC的面积,利用S阴影=S△COD﹣S扇形OBC即可得到答案.
    【详解】
    解:(1)连接OC, ∵OA=OC, ∴∠OAC=∠OCA,
    ∵AC平分∠BAE, ∴∠OAC=∠CAE,
    ∴∠OCA=∠CAE, ∴OC∥AE, ∴∠OCD=∠E,
    ∵AE⊥DE, ∴∠E=90°, ∴∠OCD=90°, ∴OC⊥CD,
    ∵点C在圆O上,OC为圆O的半径, ∴CD是圆O的切线;
    (2)在Rt△AED中, ∵∠D=30°,AE=6, ∴AD=2AE=12,
    在Rt△OCD中,∵∠D=30°,∴DO=2OC=DB+OB=DB+OC,
    ∴DB=OB=OC=AD=4,DO=8,
    ∴CD=
    ∴S△OCD==8, ∵∠D=30°,∠OCD=90°,
    ∴∠DOC=60°, ∴S扇形OBC=×π×OC2=,
    ∵S阴影=S△COD﹣S扇形OBC ∴S阴影=8﹣,
    ∴阴影部分的面积为8﹣.
    21、(1)y=;(2)P(0,2)或(-3,5);(3)M(,0)或(,0).
    【解析】
    (1)利用点在直线上,将点的坐标代入直线解析式中求解即可求出a,b,最后用待定系数法求出反比例函数解析式;
    (2)设出点P坐标,用三角形的面积公式求出S△ACP=×3×|n+1|,S△BDP=×1×|3−n|,进而建立方程求解即可得出结论;
    (3)设出点M坐标,表示出MA2=(m+1)2+9,MB2=(m−3)2+1,AB2=32,再三种情况建立方程求解即可得出结论.
    【详解】
    (1)∵直线y=-x+2与反比例函数y=(k≠0)的图象交于A(a,3),B(3,b)两点,∴-a+2=3,-3+2=b,
    ∴a=-1,b=-1,
    ∴A(-1,3),B(3,-1),
    ∵点A(-1,3)在反比例函数y=上,
    ∴k=-1×3=-3,
    ∴反比例函数解析式为y=;
    (2)设点P(n,-n+2),
    ∵A(-1,3),
    ∴C(-1,0),
    ∵B(3,-1),
    ∴D(3,0),
    ∴S△ACP=AC×|xP−xA|=×3×|n+1|,S△BDP=BD×|xB−xP|=×1×|3−n|,
    ∵S△ACP=S△BDP,
    ∴×3×|n+1|=×1×|3−n|,
    ∴n=0或n=−3,
    ∴P(0,2)或(−3,5);
    (3)设M(m,0)(m>0),
    ∵A(−1,3),B(3,−1),
    ∴MA2=(m+1)2+9,MB2=(m−3)2+1,AB2=(3+1)2+(−1−3)2=32,
    ∵△MAB是等腰三角形,
    ∴①当MA=MB时,
    ∴(m+1)2+9=(m−3)2+1,
    ∴m=0,(舍)
    ②当MA=AB时,
    ∴(m+1)2+9=32,
    ∴m=−1+或m=−1−(舍),
    ∴M(−1+,0)
    ③当MB=AB时,(m−3)2+1=32,
    ∴m=3+或m=3−(舍),
    ∴M(3+,0)
    即:满足条件的M(−1+,0)或(3+,0).
    【点睛】
    此题是反比例函数综合题,主要考查了待定系数法,三角形的面积的求法,等腰三角形的性质,用方程的思想解决问题是解本题的关键.
    22、(1)详见解析;(2)BD=9.6.
    【解析】
    试题分析:(1)连接OB,由垂径定理可得BE=DE,OE⊥BD, ,再由圆周角定理可得 ,从而得到∠ OBE+∠ DBC=90°,即 ,命题得证.
    (2)由勾股定理求出OC,再由△OBC的面积求出BE,即可得出弦BD的长.
    试题解析:(1)证明:如下图所示,连接OB.
    ∵ E是弦BD的中点,∴ BE=DE,OE⊥ BD,,
    ∴∠ BOE=∠ A,∠ OBE+∠ BOE=90°.
    ∵∠ DBC=∠ A,∴∠ BOE=∠ DBC,
    ∴∠ OBE+∠ DBC=90°,∴∠ OBC=90°,即BC⊥OB,∴ BC是⊙ O的切线.
    (2)解:∵ OB=6,BC=8,BC⊥OB,∴ ,
    ∵ ,∴ ,
    ∴.
    点睛:本题主要考查圆中的计算问题,解题的关键在于清楚角度的转换方式和弦长的计算方法.
    23、(1)见解析;(2)2π.
    【解析】
    证明:(1)连接OD,
    ∵AB是直径,
    ∴∠ADB=90°,即AD⊥BC,
    ∵AB=AC,
    ∴AD平分∠BAC,
    ∴∠OAD=∠CAD,
    ∵OA=OD,
    ∴∠OAD=∠ODA,
    ∴∠ODA=∠CAD,
    ∴OD∥AC,
    ∵DE⊥AC,
    ∴OD⊥EF,
    ∵OD过O,
    ∴EF是⊙O的切线.
    (2)∵OD⊥DF,
    ∴∠ODF=90°,
    ∵∠F=30°,
    ∴OF=2OD,即OB+3=2OD,
    而OB=OD,
    ∴OD=3,
    ∵∠AOD=90°+∠F=90°+30°=120°,
    ∴的长度=.
    【点睛】
    本题考查了切线的判定和性质:圆的切线垂直于经过切点的半径.运用切线的性质来进行计算或论证,常通过作辅助线连接圆心和切点,利用垂直构造直角三角形解决有关问题.也考查了弧长公式.
    24、不等式组的整数解有﹣1、0、1.
    【解析】
    先解不等式组,求得不等式组的解集,再确定不等式组的整数解即可.
    【详解】

    解不等式①可得,x>-2;
    解不等式②可得,x≤1;
    ∴不等式组的解集为:﹣2<x≤1,
    ∴不等式组的整数解有﹣1、0、1.
    【点睛】
    本题考查了解一元一次不等式组,正确求出每一个不等式解集是基础, 熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则求不等式组的解集是解答本题的关键.
    相关试卷

    2022届浙江省宁波市慈溪市阳光实验中学中考数学模试卷含解析: 这是一份2022届浙江省宁波市慈溪市阳光实验中学中考数学模试卷含解析,共19页。试卷主要包含了下列命题中假命题是等内容,欢迎下载使用。

    2022届浙江省宁波市慈溪市阳光实验中学中考数学猜题卷含解析: 这是一份2022届浙江省宁波市慈溪市阳光实验中学中考数学猜题卷含解析,共19页。试卷主要包含了答题时请按要求用笔等内容,欢迎下载使用。

    2021-2022学年浙江省宁波市慈溪市阳光实验中学中考适应性考试数学试题含解析: 这是一份2021-2022学年浙江省宁波市慈溪市阳光实验中学中考适应性考试数学试题含解析,共22页。试卷主要包含了考生必须保证答题卡的整洁,2016的相反数是等内容,欢迎下载使用。

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单

        欢迎来到教习网

        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        使用学贝下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        返回
        顶部
        Baidu
        map