2021-2022学年浙江省慈溪市(区域联考)中考数学对点突破模拟试卷含解析
展开2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。
3.考试结束后,将本试卷和答题卡一并交回。
一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)
1.近似数精确到( )
A.十分位B.个位C.十位D.百位
2.计算(﹣)﹣1的结果是( )
A.﹣B.C.2D.﹣2
3.下面几何的主视图是( )
A.B.C.D.
4.共享单车已经成为城市公共交通的重要组成部分,某共享单车公司经过调查获得关于共享单车租用行驶时间的数据,并由此制定了新的收费标准:每次租用单车行驶a小时及以内,免费骑行;超过a小时后,每半小时收费1元,这样可保证不少于50%的骑行是免费的.制定这一标准中的a的值时,参考的统计量是此次调查所得数据的( )
A.平均数B.中位数C.众数D.方差
5.已知⊙O的半径为3,圆心O到直线L的距离为2,则直线L与⊙O的位置关系是( )
A.相交B.相切C.相离D.不能确定
6.如图,在四边形ABCD中,∠A+∠D=α,∠ABC的平分线与∠BCD的平分线交于点P,则∠P=( )
A.90°-αB.90°+ αC.D.360°-α
7.已知xa=2,xb=3,则x3a﹣2b等于( )
A.B.﹣1C.17D.72
8.某单位若干名职工参加普法知识竞赛,将成绩制成如图所示的扇形统计图和条形统计图,根据图中提供的信息,这些职工成绩的中位数和平均数分别是( )
A.94分,96分B.96分,96分
C.94分,96.4分D.96分,96.4分
9.下列立体图形中,主视图是三角形的是( )
A.B.C.D.
10.在如图所示的数轴上,点B与点C关于点A对称,A、B两点对应的实数分别是和﹣1,则点C所对应的实数是( )
A.1+B.2+C.2﹣1D.2+1
11.对于代数式ax2+bx+c(a≠0),下列说法正确的是( )
①如果存在两个实数p≠q,使得ap2+bp+c=aq2+bq+c,则a+bx+c=a(x-p)(x-q)
②存在三个实数m≠n≠s,使得am2+bm+c=an2+bn+c=as2+bs+c
③如果ac<0,则一定存在两个实数m<n,使am2+bm+c<0<an2+bn+c
④如果ac>0,则一定存在两个实数m<n,使am2+bm+c<0<an2+bn+c
A.③B.①③C.②④D.①③④
12.下列四个数表示在数轴上,它们对应的点中,离原点最远的是( )
A.﹣2B.﹣1C.0D.1
二、填空题:(本大题共6个小题,每小题4分,共24分.)
13.如图①,四边形ABCD中,AB∥CD,∠ADC=90°,P从A点出发,以每秒1个单位长度的速度,按A→B→C→D的顺序在边上匀速运动,设P点的运动时间为t秒,△PAD的面积为S,S关于t的函数图象如图②所示,当P运动到BC中点时,△PAD的面积为______.
14.已知是二元一次方程组的解,则m+3n的立方根为__.
15.如图,在平面直角坐标系xOy中,A(-2,0),B(0,2),⊙O的半径为1,点C为⊙O上一动点,过点B作BP⊥直线AC,垂足为点P,则P点纵坐标的最大值为 cm.
16.如图的三角形纸片中,,沿过点的直线折叠这个三角形,使点落在边上的点处,折痕为,则的周长为__________.
17.如果一个正多边形的中心角等于,那么这个正多边形的边数是__________.
18.的算术平方根为______.
三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.
19.(6分)如图1,直角梯形OABC中,BC∥OA,OA=6,BC=2,∠BAO=45°.
(1)OC的长为 ;
(2)D是OA上一点,以BD为直径作⊙M,⊙M交AB于点Q.当⊙M与y轴相切时,sin∠BOQ= ;
(3)如图2,动点P以每秒1个单位长度的速度,从点O沿线段OA向点A运动;同时动点D以相同的速度,从点B沿折线B﹣C﹣O向点O运动.当点P到达点A时,两点同时停止运动.过点P作直线PE∥OC,与折线O﹣B﹣A交于点E.设点P运动的时间为t(秒).求当以B、D、E为顶点的三角形是直角三角形时点E的坐标.
20.(6分)(阅读)如图1,在等腰△ABC中,AB=AC,AC边上的高为h,M是底边BC上的任意一点,点M到腰AB、AC的距离分别为h1,h1.连接AM.
∵ ∴
(思考)在上述问题中,h1,h1与h的数量关系为: .
(探究)如图1,当点M在BC延长线上时,h1、h1、h之间有怎样的数量关系式?并说明理由.
(应用)如图3,在平面直角坐标系中有两条直线l1:,l1:y=-3x+3,若l1上的一点M到l1的距离是1,请运用上述结论求出点M的坐标.
21.(6分)列方程解应用题:某地2016年为做好“精准扶贫”,投入资金1280万元用于异地安置,并规划投入资金逐年增加,2018年在2016年的基础上增加投入资金1600万元.从2016年到2018年,该地投入异地安置资金的年平均增长率为多少?
22.(8分)如图,△ABC中,点D在AB上,∠ACD=∠ABC,若AD=2,AB=6,求AC的长.
23.(8分)讲授“轴对称”时,八年级教师设计了如下:四种教学方法:
① 教师讲,学生听
② 教师让学生自己做
③ 教师引导学生画图发现规律
④ 教师让学生对折纸,观察发现规律,然后画图
为调查教学效果,八年级教师将上述教学方法作为调研内容发到全年级8个班420名同学手中,要求每位同学选出自己最喜欢的一种.他随机抽取了60名学生的调查问卷,统计如图
(1) 请将条形统计图补充完整;
(2) 计算扇形统计图中方法③的圆心角的度数是 ;
(3) 八年级同学中最喜欢的教学方法是哪一种?选择这种教学方法的约有多少人?
24.(10分)列方程解应用题
八年级学生去距学校10 km的博物馆参观,一部分学生骑自行车先走,过了20 min后,其余学生乘汽车出发,结果他们同时到达.已知汽车的速度是骑车学生速度的2倍,求骑车学生的速度.
25.(10分)某校计划购买篮球、排球共20个.购买2个篮球,3个排球,共需花费190元;购买3个篮球的费用与购买5个排球的费用相同.篮球和排球的单价各是多少元?若购买篮球不少于8个,所需费用总额不超过800元.请你求出满足要求的所有购买方案,并直接写出其中最省钱的购买方案.
26.(12分)随着移动计算技术和无线网络的快速发展,移动学习方式越来越引起人们的关注,某校计划将这种学习方式应用到教育学中,从全校1500名学生中随机抽取了部分学生,对其家庭中拥有的移动设备的情况进行调查,并绘制出如下的统计图①和图②,根据相关信息,解答下列问题:本次接受随机抽样调查的学生人数为 ,图①中m的值为 ;求本次调查获取的样本数据的众数、中位数和平均数;根据样本数据,估计该校1500名学生家庭中拥有3台移动设备的学生人数.
27.(12分)已知关于x的一元二次方程3x2﹣6x+1﹣k=0有实数根,k为负整数.求k的值;如果这个方程有两个整数根,求出它的根.
参考答案
一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)
1、C
【解析】
根据近似数的精确度:近似数5.0×102精确到十位.
故选C.
考点:近似数和有效数字
2、D
【解析】
根据负整数指数幂与正整数指数幂互为倒数,可得答案.
【详解】
解: ,
故选D.
【点睛】
本题考查了负整数指数幂,负整数指数幂与正整数指数幂互为倒数.
3、B
【解析】
主视图是从物体正面看所得到的图形.
【详解】
解:从几何体正面看
故选B.
【点睛】
本题考查了三视图的知识,主视图是从物体的正面看得到的视图.
4、B
【解析】
根据需要保证不少于50%的骑行是免费的,可得此次调查的参考统计量是此次调查所得数据的中位数.
【详解】
因为需要保证不少于50%的骑行是免费的,
所以制定这一标准中的a的值时,参考的统计量是此次调查所得数据的中位数,
故选B.
【点睛】
本题考查了中位数的知识,中位数是以它在所有标志值中所处的位置确定的全体单位标志值的代表值,不受分布数列的极大或极小值影响,从而在一定程度上提高了中位数对分布数列的代表性。
5、A
【解析】
试题分析:根据圆O的半径和,圆心O到直线L的距离的大小,相交:d<r;相切:d=r;相离:d>r;即可选出答案.
解:∵⊙O的半径为3,圆心O到直线L的距离为2,
∵3>2,即:d<r,
∴直线L与⊙O的位置关系是相交.
故选A.
考点:直线与圆的位置关系.
6、C
【解析】
试题分析:∵四边形ABCD中,∠ABC+∠BCD=360°﹣(∠A+∠D)=360°﹣α,
∵PB和PC分别为∠ABC、∠BCD的平分线,
∴∠PBC+∠PCB=(∠ABC+∠BCD)=(360°﹣α)=180°﹣α,
则∠P=180°﹣(∠PBC+∠PCB)=180°﹣(180°﹣α)=α.
故选C.
考点:1.多边形内角与外角2.三角形内角和定理.
7、A
【解析】
∵xa=2,xb=3,
∴x3a−2b=(xa)3÷(xb)2=8÷9= ,
故选A.
8、D
【解析】
解:总人数为6÷10%=60(人),
则91分的有60×20%=12(人),
98分的有60-6-12-15-9=18(人),
第30与31个数据都是96分,这些职工成绩的中位数是(96+96)÷2=96;
这些职工成绩的平均数是(92×6+91×12+96×15+98×18+100×9)÷60
=(552+1128+1110+1761+900)÷60
=5781÷60
=96.1.
故选D.
【点睛】
本题考查1.中位数;2.扇形统计图;3.条形统计图;1.算术平均数,掌握概念正确计算是关键.
9、A
【解析】
考查简单几何体的三视图.根据从正面看得到的图形是主视图,可得图形的主视图
【详解】
A、圆锥的主视图是三角形,符合题意;
B、球的主视图是圆,不符合题意;
C、圆柱的主视图是矩形,不符合题意;
D、正方体的主视图是正方形,不符合题意.
故选A.
【点睛】
主视图是从前往后看,左视图是从左往右看,俯视图是从上往下看
10、D
【解析】
设点C所对应的实数是x.根据中心对称的性质,对称点到对称中心的距离相等,则有
,解得.
故选D.
11、A
【解析】
设
(1)如果存在两个实数p≠q,使得ap2+bp+c=aq2+bq+c,则说明在中,当x=p和x=q时的y值相等,但并不能说明此时p、q是与x轴交点的横坐标,故①中结论不一定成立;
(2)若am2+bm+c=an2+bn+c=as2+bs+c,则说明在中当x=m、n、s时,对应的y值相等,因此m、n、s中至少有两个数是相等的,故②错误;
(3)如果ac<0,则b2-4ac>0,则的图象和x轴必有两个不同的交点,所以此时一定存在两个实数m<n,使am2+bm+c<0<an2+bn+c,故③在结论正确;
(4)如果ac>0,则b2-4ac的值的正负无法确定,此时的图象与x轴的交点情况无法确定,所以④中结论不一定成立.
综上所述,四种说法中正确的是③.
故选A.
12、A
【解析】
由于要求四个数的点中距离原点最远的点,所以求这四个点对应的实数绝对值即可求解.
【详解】
∵|-1|=1,|-1|=1,
∴|-1|>|-1|=1>0,
∴四个数表示在数轴上,它们对应的点中,离原点最远的是-1.
故选A.
【点睛】
本题考查了实数与数轴的对应关系,以及估算无理数大小的能力,也利用了数形结合的思想.
二、填空题:(本大题共6个小题,每小题4分,共24分.)
13、1
【解析】
解:由图象可知,AB+BC=6,AB+BC+CD=10,∴CD=4,根据题意可知,当P点运动到C点时,△PAD的面积最大,S△PAD=×AD×DC=8,∴AD=4,又∵S△ABD=×AB×AD=2,∴AB=1,∴当P点运动到BC中点时,△PAD的面积=×(AB+CD)×AD=1,故答案为1.
14、3
【解析】
把x与y的值代入方程组求出m与n的值,即可确定出所求.
【详解】
解:把代入方程组得:
相加得:m+3n=27,
则27的立方根为3,
故答案为3
【点睛】
此题考查了二元一次方程组的解,方程组的解即为能使方程组中两方程左右两边相等的未知数的值.
15、
【解析】
当AC与⊙O相切于点C时,P点纵坐标的最大值,如图,直线AC交y轴于点D,连结OC,作CH⊥x轴于H,PM⊥x轴于M,DN⊥PM于N,
∵AC为切线,
∴OC⊥AC,
在△AOC中,∵OA=2,OC=1,
∴∠OAC=30°,∠AOC=60°,
在Rt△AOD中,∵∠DAO=30°,
∴OD=OA=,
在Rt△BDP中,∵∠BDP=∠ADO=60°,
∴DP=BD=(2-)=1-,
在Rt△DPN中,∵∠PDN=30°,
∴PN=DP=-,
而MN=OD=,
∴PM=PN+MN=1-+=,
即P点纵坐标的最大值为.
【点睛】
本题是圆的综合题,先求出OD的长度,最后根据两点之间线段最短求出PN+MN的值.
16、
【解析】
由折叠的性质,可知:BE=BC,DE=DC,通过等量代换,即可得到答案.
【详解】
∵沿过点的直线折叠这个三角形,使点落在边上的点处,折痕为,
∴BE=BC,DE=DC,
∴的周长=AD+DE+AE=AD+DC+AE=AC+AE=AB+BC+AC-BC-BE=8+6+5-6-6=7cm,
故答案是:
【点睛】
本题主要考查折叠的性质,根据三角形的周长定义,进行等量代换是解题的关键.
17、12.
【解析】
根据正n边形的中心角的度数为进行计算即可得到答案.
【详解】
解:根据正n边形的中心角的度数为,则n=360÷30=12,故这个正多边形的边数为12,
故答案为:12.
【点睛】
本题考查的是正多边形内角和中心角的知识,掌握中心角的计算公式是解题的关键.
18、
【解析】
首先根据算术平方根的定义计算先=2,再求2的算术平方根即可.
【详解】
∵=2,
∴的算术平方根为.
【点睛】
本题考查了算术平方根,属于简单题,熟悉算数平方根的概念是解题关键.
三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.
19、(4)4;(2);(4)点E的坐标为(4,2)、(,)、(4,2).
【解析】
分析:(4)过点B作BH⊥OA于H,如图4(4),易证四边形OCBH是矩形,从而有OC=BH,只需在△AHB中运用三角函数求出BH即可.
(2)过点B作BH⊥OA于H,过点G作GF⊥OA于F,过点B作BR⊥OG于R,连接MN、DG,如图4(2),则有OH=2,BH=4,MN⊥OC.设圆的半径为r,则MN=MB=MD=r.在Rt△BHD中运用勾股定理可求出r=2,从而得到点D与点H重合.易证△AFG∽△ADB,从而可求出AF、GF、OF、OG、OB、AB、BG.设OR=x,利用BR2=OB2﹣OR2=BG2﹣RG2可求出x,进而可求出BR.在Rt△ORB中运用三角函数就可解决问题.
(4)由于△BDE的直角不确定,故需分情况讨论,可分三种情况(①∠BDE=90°,②∠BED=90°,③∠DBE=90°)讨论,然后运用相似三角形的性质及三角函数等知识建立关于t的方程就可解决问题.
详解:(4)过点B作BH⊥OA于H,如图4(4),则有∠BHA=90°=∠COA,∴OC∥BH.
∵BC∥OA,∴四边形OCBH是矩形,∴OC=BH,BC=OH.
∵OA=6,BC=2,∴AH=0A﹣OH=OA﹣BC=6﹣2=4.
∵∠BHA=90°,∠BAO=45°,
∴tan∠BAH==4,∴BH=HA=4,∴OC=BH=4.
故答案为4.
(2)过点B作BH⊥OA于H,过点G作GF⊥OA于F,过点B作BR⊥OG于R,连接MN、DG,如图4(2).
由(4)得:OH=2,BH=4.
∵OC与⊙M相切于N,∴MN⊥OC.
设圆的半径为r,则MN=MB=MD=r.
∵BC⊥OC,OA⊥OC,∴BC∥MN∥OA.
∵BM=DM,∴CN=ON,∴MN=(BC+OD),∴OD=2r﹣2,∴DH==.
在Rt△BHD中,∵∠BHD=90°,∴BD2=BH2+DH2,∴(2r)2=42+(2r﹣4)2.
解得:r=2,∴DH=0,即点D与点H重合,∴BD⊥0A,BD=AD.
∵BD是⊙M的直径,∴∠BGD=90°,即DG⊥AB,∴BG=AG.
∵GF⊥OA,BD⊥OA,∴GF∥BD,∴△AFG∽△ADB,
∴===,∴AF=AD=2,GF=BD=2,∴OF=4,
∴OG===2.
同理可得:OB=2,AB=4,∴BG=AB=2.
设OR=x,则RG=2﹣x.
∵BR⊥OG,∴∠BRO=∠BRG=90°,∴BR2=OB2﹣OR2=BG2﹣RG2,
∴(2)2﹣x2=(2)2﹣(2﹣x)2.
解得:x=,∴BR2=OB2﹣OR2=(2)2﹣()2=,∴BR=.
在Rt△ORB中,sin∠BOR===.
故答案为.
(4)①当∠BDE=90°时,点D在直线PE上,如图2.
此时DP=OC=4,BD+OP=BD+CD=BC=2,BD=t,OP=t. 则有2t=2.
解得:t=4.则OP=CD=DB=4.
∵DE∥OC,∴△BDE∽△BCO,∴==,∴DE=2,∴EP=2,
∴点E的坐标为(4,2).
②当∠BED=90°时,如图4.
∵∠DBE=OBC,∠DEB=∠BCO=90°,∴△DBE∽△OBC,
∴==,∴BE=t.
∵PE∥OC,∴∠OEP=∠BOC.
∵∠OPE=∠BCO=90°,∴△OPE∽△BCO,
∴==,∴OE=t.
∵OE+BE=OB=2t+t=2.
解得:t=,∴OP=,OE=,∴PE==,
∴点E的坐标为().
③当∠DBE=90°时,如图4.
此时PE=PA=6﹣t,OD=OC+BC﹣t=6﹣t.
则有OD=PE,EA==(6﹣t)=6﹣t,
∴BE=BA﹣EA=4﹣(6﹣t)=t﹣2.
∵PE∥OD,OD=PE,∠DOP=90°,∴四边形ODEP是矩形,
∴DE=OP=t,DE∥OP,∴∠BED=∠BAO=45°.
在Rt△DBE中,cs∠BED==,∴DE=BE,
∴t=t﹣2)=2t﹣4.
解得:t=4,∴OP=4,PE=6﹣4=2,∴点E的坐标为(4,2).
综上所述:当以B、D、E为顶点的三角形是直角三角形时点E的坐标为(4,2)、()、(4,2).
点睛:本题考查了圆周角定理、切线的性质、相似三角形的判定与性质、三角函数的定义、平行线分线段成比例、矩形的判定与性质、勾股定理等知识,还考查了分类讨论的数学思想,有一定的综合性.
20、【思考】h1+h1=h;【探究】h1-h1=h.理由见解析;【应用】所求点M的坐标为(,1)或(-,4).
【解析】
思考:根据等腰三角形的性质,把代数式化简可得.
探究:当点M在BC延长线上时,连接,可得,化简可得.
应用:先证明,△ABC为等腰三角形,即可运用上面得到的性质,再分点M在BC边上和在CB延长线上两种情况讨论,第一种有1+My=OB,第二种为My-1=OB,解得的纵坐标,再分别代入的解析式即可求解.
【详解】
思考
即
h1+h1=h.
探究
h1-h1=h.
理由.连接,
∵
∴
∴h1-h1=h.
应用
在中,令x=0得y=3;
令y=0得x=-4,则:
A(-4,0),B(0,3)
同理求得C(1,0),
,
又因为AC=5,
所以AB=AC,即△ABC为等腰三角形.
①当点M在BC边上时,
由h1+h1=h得:
1+My=OB,My=3-1=1,
把它代入y=-3x+3中求得:
,
∴;
②当点M在CB延长线上时,
由h1-h1=h得:
My-1=OB,My=3+1=4,
把它代入y=-3x+3中求得:
,
∴,
综上,所求点M的坐标为或.
【点睛】
本题结合三角形的面积和等腰三角形的性质考查了新性质的推理与证明,熟练掌握三角形的性质,结合图形层层推进是解答的关键.
21、从2015年到2017年,该地投入异地安置资金的年平均增长率为50%.
【解析】
设年平均增长率为x,根据:2016年投入资金×(1+增长率)2=2018年投入资金,列出方程求解可得.
【详解】
解:设该地投入异地安置资金的年平均增长率为x.
根据题意得:1280(1+x)2=1280+1600.
解得x1=0.5=50%,x2=-2.5(舍去),
答:从2016年到2018年,该地投入异地安置资金的年平均增长率为50%.
【点睛】
本题考查了一元二次方程的应用,由题意准确找出相等关系并据此列出方程是解题的关键.
22、.
【解析】
试题分析:可证明△ACD∽△ABC,则,即得出AC2=AD•AB,从而得出AC的长.
试题解析:∵∠ACD=∠ABC,∠A=∠A, ∴△ACD∽△ABC. ∴,∵AD=2,AB=6,∴.∴.∴AC=.
考点:相似三角形的判定与性质.
23、解:(1)见解析; (2) 108°;(3) 最喜欢方法④,约有189人.
【解析】
(1)由题意可知:喜欢方法②的学生有60-6-18-27=9(人);
(2)求方法③的圆心角应先求所占比值,再乘以360°;
(3)根据条形的高低可判断喜欢方法④的学生最多,人数应该等于总人数乘以喜欢方法④所占的比例;
【详解】
(1)方法②人数为60−6−18−27=9(人);
补条形图如图:
(2)方法③的圆心角为
故答案为108°
(3)由图可以看出喜欢方法④的学生最多,人数为 (人);
【点睛】
考查扇形统计图,条形统计图,用样本估计总体,比较基础,难度不大,是中考常考题型.
24、15
【解析】
试题分析:设骑车学生的速度为,利用时间关系列方程解应用题,一定要检验.
试题解析:
解:设骑车学生的速度为,由题意得
,
解得 .
经检验是原方程的解.
答: 骑车学生的速度为15.
25、(1)篮球每个50元,排球每个30元. (2)满足题意的方案有三种:①购买篮球8个,排球12个;②购买篮球9,排球11个;③购买篮球2个,排球2个;方案①最省钱
【解析】
试题分析:(1)设篮球每个x元,排球每个y元,根据费用可得等量关系为:购买2个篮球,3个排球,共需花费190元;购买3个篮球的费用与购买5个排球的费用相同,列方程求解即可;
(2)不等关系为:购买足球和篮球的总费用不超过1元,列式求得解集后得到相应整数解,从而求解.
试题解析:解:(1)设篮球每个x元,排球每个y元,依题意,得:
解得.
答:篮球每个50元,排球每个30元.
(2)设购买篮球m个,则购买排球(20-m)个,依题意,得:
50m+30(20-m)≤1.
解得:m≤2.
又∵m≥8,∴8≤m≤2.
∵篮球的个数必须为整数,∴只能取8、9、2.
∴满足题意的方案有三种:①购买篮球8个,排球12个,费用为760元;②购买篮球9,排球11个,费用为780元;③购买篮球2个,排球2个,费用为1元.
以上三个方案中,方案①最省钱.
点睛:本题主要考查了二元一次方程组及一元一次不等式的应用;得到相应总费用的关系式是解答本题的关键.
26、(Ⅰ)50、31;(Ⅱ)4;3;3.1;(Ⅲ)410人.
【解析】
(Ⅰ)利用家庭中拥有1台移动设备的人数除以其所占百分比即可得调查的学生人数,将拥有4台移动设备的人数除以总人数即可求得m的值;(Ⅱ)根据众数、中位数、加权平均数的定义计算即可;(Ⅲ)将样本中拥有3台移动设备的学生人数所占比例乘以总人数1500即可求解.
【详解】
解:(Ⅰ)本次接受随机抽样调查的学生人数为: =50(人),
∵×100=31%,
∴图①中m的值为31.
故答案为50、31;
(Ⅱ)∵这组样本数据中,4出现了16次,出现次数最多,
∴这组数据的众数为4;
∵将这组数据从小到大排列,其中处于中间的两个数均为3,有=3,
∴这组数据的中位数是3;
由条形统计图可得=3.1,
∴这组数据的平均数是3.1.
(Ⅲ)1500×18%=410(人).
答:估计该校学生家庭中;拥有3台移动设备的学生人数约为410人.
【点睛】
本题考查的是条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.
27、(2)k=﹣2,﹣2.(2)方程的根为x2=x2=2.
【解析】
(2)根据方程有实数根,得到根的判别式的值大于等于0列出关于k的不等式,求出不等式的解集即可得到k的值;
(2)将k的值代入原方程,求出方程的根,经检验即可得到满足题意的k的值.
【详解】
解:(2)根据题意,得△=(﹣6)2﹣4×3(2﹣k)≥0,
解得 k≥﹣2.
∵k为负整数,
∴k=﹣2,﹣2.
(2)当k=﹣2时,不符合题意,舍去;
当k=﹣2时,符合题意,此时方程的根为x2=x2=2.
【点睛】
本题考查了根的判别式,一元二次方程ax2+bx+c=0(a≠0)的根与△=b2-4ac有如下关系:(2)△>0时,方程有两个不相等的实数根;(2)△=0时,方程有两个相等的实数根;(3)△<0时,方程没有实数根.也考查了一元二次方程的解法.
甘肃省庆阳宁县联考2021-2022学年中考数学对点突破模拟试卷含解析: 这是一份甘肃省庆阳宁县联考2021-2022学年中考数学对点突破模拟试卷含解析,共21页。试卷主要包含了答题时请按要求用笔等内容,欢迎下载使用。
滁州凤阳县联考2021-2022学年中考数学对点突破模拟试卷含解析: 这是一份滁州凤阳县联考2021-2022学年中考数学对点突破模拟试卷含解析,共19页。试卷主要包含了实数﹣5.22的绝对值是,化简的结果是等内容,欢迎下载使用。
2021-2022学年浙江省温州中学中考数学对点突破模拟试卷含解析: 这是一份2021-2022学年浙江省温州中学中考数学对点突破模拟试卷含解析,共24页。试卷主要包含了考生必须保证答题卡的整洁等内容,欢迎下载使用。