|试卷下载
终身会员
搜索
    上传资料 赚现金
    2022届内蒙古杭锦旗重点名校中考数学仿真试卷含解析
    立即下载
    加入资料篮
    2022届内蒙古杭锦旗重点名校中考数学仿真试卷含解析01
    2022届内蒙古杭锦旗重点名校中考数学仿真试卷含解析02
    2022届内蒙古杭锦旗重点名校中考数学仿真试卷含解析03
    还剩20页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    2022届内蒙古杭锦旗重点名校中考数学仿真试卷含解析

    展开
    这是一份2022届内蒙古杭锦旗重点名校中考数学仿真试卷含解析,共23页。试卷主要包含了二次函数y=﹣,若点,下列运算结果为正数的是,下列说法中,正确的是等内容,欢迎下载使用。

    1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。
    2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。
    一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)
    1.下列各式计算正确的是( )
    A.B.C.D.
    2.如图,反比例函数(x>0)的图象经过矩形OABC对角线的交点M,分别于AB、BC交于点D、E,若四边形ODBE的面积为9,则k的值为( )
    A.1B.2C.3D.4
    3.二次函数y=﹣(x+2)2﹣1的图象的对称轴是( )
    A.直线x=1B.直线x=﹣1C.直线x=2D.直线x=﹣2
    4.若点(x1,y1),(x2,y2),(x3,y3)都是反比例函数y=﹣图象上的点,并且y1<0<y2<y3,则下列各式中正确的是( )
    A.x1<x2<x3B.x1<x3<x2C.x2<x1<x3D.x2<x3<x1
    5.已知矩形ABCD中,AB=3,BC=4,E为BC的中点,以点B为圆心,BA的长为半径画圆,交BC于点F,再以点C为圆心,CE的长为半径画圆,交CD于点G,则S1-S2=( )
    A.6B.C.12﹣πD.12﹣π
    6.下列运算结果为正数的是( )
    A.1+(–2)B.1–(–2)C.1×(–2)D.1÷(–2)
    7.如图,将△ABC绕点A逆时针旋转一定角度,得到△ADE,若∠CAE=65°,∠E=70°,且AD⊥BC,∠BAC的度数为( ).
    A.60 °B.75°C.85°D.90°
    8.下列说法中,正确的是( )
    A.长度相等的弧是等弧
    B.平分弦的直径垂直于弦,并且平分弦所对的两条弧
    C.经过半径并且垂直于这条半径的直线是圆的切线
    D.在同圆或等圆中90°的圆周角所对的弦是这个圆的直径
    9.如图,已知直线 PQ⊥MN 于点 O,点 A,B 分别在 MN,PQ 上,OA=1,OB=2,在直线 MN 或直线 PQ 上找一点 C,使△ABC是等腰三角形,则这样的 C 点有( )
    A.3 个 B.4 个 C.7 个 D.8 个
    10.不等式5+2x <1的解集在数轴上表示正确的是( ).
    A.B.C.D.
    11.某共享单车前a公里1元,超过a公里的,每公里2元,若要使使用该共享单车50%的人只花1元钱,a应该要取什么数( )
    A.平均数 B.中位数 C.众数 D.方差
    12.对于命题“如果∠1+∠1=90°,那么∠1≠∠1.”能说明它是假命题的是( )
    A.∠1=50°,∠1=40°B.∠1=40°,∠1=50°
    C.∠1=30°,∠1=60°D.∠1=∠1=45°
    二、填空题:(本大题共6个小题,每小题4分,共24分.)
    13.抛物线向右平移1个单位,再向下平移2个单位所得抛物线是__________.
    14.如图,在平面直角坐标系中,正方形ABOC和正方形DOFE的顶点B,F在x轴上,顶点C,D在y轴上,且S△ADC=4,反比例函数y=(x>0)的图像经过点E, 则k=_______ 。
    15.请看杨辉三角(1),并观察下列等式(2):
    根据前面各式的规律,则(a+b)6= .
    16.已知方程x2﹣5x+2=0的两个解分别为x1、x2,则x1+x2﹣x1•x2的值为______.
    17.如图,在平面直角坐标系中,将矩形AOCD沿直线AE折叠(点E在边DC上),折叠后顶点D恰好落在边OC上的点F处.若点D的坐标为(10,8),则点E的坐标为 .
    18.某种药品原来售价100元,连续两次降价后售价为81元,若每次下降的百分率相同,则这个百分率是 .
    三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.
    19.(6分)某跳水队为了解运动员的年龄情况,作了一次年龄调查,根据跳水运动员的年龄(单位:岁),绘制出如下的统计图①和图②.请根据相关信息,解答下列问题:
    本次接受调查的跳水运动员人数为 ,图①中m的值为 ;求统计的这组跳水运动员年龄数据的平均数、众数和中位数.
    20.(6分)已知:如图,在□ABCD中,点G为对角线AC的中点,过点G的直线EF分别交边AB、CD于点E、F,过点G的直线MN分别交边AD、BC于点M、N,且∠AGE=∠CGN.
    (1)求证:四边形ENFM为平行四边形;
    (2)当四边形ENFM为矩形时,求证:BE=BN.
    21.(6分)随着通讯技术迅猛发展,人与人之间的沟通方式更多样、便捷某校数学兴趣小组设计了“你最喜欢的沟通方式”调查问卷每人必选且只选一种,在全校范围内随机调查了部分学生,将统计结果绘制了如下两幅不完整的统计图,请结合图中所给的信息解答下列问题:
    这次统计共抽查了______名学生;在扇形统计图中,表示“QQ”的扇形圆心角的度数为______;
    将条形统计图补充完整;
    该校共有1500名学生,请估计该校最喜欢用“微信”进行沟通的学生有多少名.
    22.(8分)给定关于x的二次函数y=kx2﹣4kx+3(k≠0),当该二次函数与x轴只有一个公共点时,求k的值;当该二次函数与x轴有2个公共点时,设这两个公共点为A、B,已知AB=2,求k的值;由于k的变化,该二次函数的图象性质也随之变化,但也有不会变化的性质,某数学学习小组在探究时得出以下结论:
    ①与y轴的交点不变;②对称轴不变;③一定经过两个定点;
    请判断以上结论是否正确,并说明理由.
    23.(8分)某种商品每天的销售利润元,销售单价元,间满足函数关系式:,其图象如图所示.
    (1)销售单价为多少元时,该种商品每天的销售利润最大? 最大利润为多少元?
    (2)销售单价在什么范围时,该种商品每天的销售利润不低于21 元?
    24.(10分)甲、乙两名队员的10次射击训练,成绩分别被制成下列两个统计图.
    并整理分析数据如下表:
    (1)求,,的值;分别运用表中的四个统计量,简要分析这两名队员的射击训练成绩.若选派其中一名参赛,你认为应选哪名队员?
    25.(10分)综合与实践﹣猜想、证明与拓广
    问题情境:
    数学课上同学们探究正方形边上的动点引发的有关问题,如图1,正方形ABCD中,点E是BC边上的一点,点D关于直线AE的对称点为点F,直线DF交AB于点H,直线FB与直线AE交于点G,连接DG,CG.
    猜想证明
    (1)当图1中的点E与点B重合时得到图2,此时点G也与点B重合,点H与点A重合.同学们发现线段GF与GD有确定的数量关系和位置关系,其结论为: ;
    (2)希望小组的同学发现,图1中的点E在边BC上运动时,(1)中结论始终成立,为证明这两个结论,同学们展开了讨论:
    小敏:根据轴对称的性质,很容易得到“GF与GD的数量关系”…
    小丽:连接AF,图中出现新的等腰三角形,如△AFB,…
    小凯:不妨设图中不断变化的角∠BAF的度数为n,并设法用n表示图中的一些角,可证明结论.
    请你参考同学们的思路,完成证明;
    (3)创新小组的同学在图1中,发现线段CG∥DF,请你说明理由;
    联系拓广:
    (4)如图3若将题中的“正方形ABCD”变为“菱形ABCD“,∠ABC=α,其余条件不变,请探究∠DFG的度数,并直接写出结果(用含α的式子表示).
    26.(12分)如图,在一个可以自由转动的转盘中,指针位置固定,三个扇形的面积都相等,且分别标有数字2,3、1.
    (1)小明转动转盘一次,当转盘停止转动时,指针所指扇形中的数字是奇数的概率为 ;
    (2)小明先转动转盘一次,当转盘停止转动时,记录下指针所指扇形中的数字;接着再转动转盘一次,当转盘停止转动时,再次记录下指针所指扇形中的数字,求这两个数字之和是3的倍数的概率(用画树状图或列表等方法求解).
    27.(12分)益马高速通车后,将桃江马迹塘的农产品运往益阳的运输成本大大降低.马迹塘一农户需要将A,B两种农产品定期运往益阳某加工厂,每次运输A,B产品的件数不变,原来每运一次的运费是1200元,现在每运一次的运费比原来减少了300元,A,B两种产品原来的运费和现在的运费(单位:元∕件)如下表所示:
    (1)求每次运输的农产品中A,B产品各有多少件;
    (2)由于该农户诚实守信,产品质量好,加工厂决定提高该农户的供货量,每次运送的总件数增加8件,但总件数中B产品的件数不得超过A产品件数的2倍,问产品件数增加后,每次运费最少需要多少元.
    参考答案
    一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)
    1、B
    【解析】
    A选项中,∵不是同类二次根式,不能合并,∴本选项错误;
    B选项中,∵,∴本选项正确;
    C选项中,∵,而不是等于,∴本选项错误;
    D选项中,∵,∴本选项错误;
    故选B.
    2、C
    【解析】
    本题可从反比例函数图象上的点E、M、D入手,分别找出△OCE、△OAD、矩形OABC的面积与|k|的关系,列出等式求出k值.
    【详解】
    由题意得:E、M、D位于反比例函数图象上,
    则,
    过点M作MG⊥y轴于点G,作MN⊥x轴于点N,则S□ONMG=|k|.
    又∵M为矩形ABCO对角线的交点,
    ∴S矩形ABCO=4S□ONMG=4|k|,
    ∵函数图象在第一象限,k>0,
    ∴.
    解得:k=1.
    故选C.
    【点睛】
    本题考查反比例函数系数k的几何意义,过双曲线上的任意一点分别向两条坐标轴作垂线,与坐标轴围成的矩形面积就等于|k|,本知识点是中考的重要考点,同学们应高度关注.
    3、D
    【解析】
    根据二次函数顶点式的性质解答即可.
    【详解】
    ∵y=﹣(x+2)2﹣1是顶点式,
    ∴对称轴是:x=-2,
    故选D.
    【点睛】
    本题考查二次函数顶点式y=a(x-h)2+k的性质,对称轴为x=h,顶点坐标为(h,k)熟练掌握顶点式的性质是解题关键.
    4、D
    【解析】
    先根据反比例函数的解析式判断出函数图象所在的象限及在每一象限内函数的增减性,再根据y1<0<y2<y3判断出三点所在的象限,故可得出结论.
    【详解】
    解:∵反比例函数y=﹣中k=﹣1<0,
    ∴此函数的图象在二、四象限,且在每一象限内y随x的增大而增大,
    ∵y1<0<y2<y3,
    ∴点(x1,y1)在第四象限,(x2,y2)、(x3,y3)两点均在第二象限,
    ∴x2<x3<x1.
    故选:D.
    【点睛】
    本题考查的是反比例函数图象上点的坐标特点,先根据题意判断出函数图象所在的象限是解答此题的关键.
    5、D
    【解析】
    根据题意可得到CE=2,然后根据S1﹣S2 =S矩形ABCD-S扇形ABF-S扇形GCE,即可得到答案
    【详解】
    解:∵BC=4,E为BC的中点,
    ∴CE=2,
    ∴S1﹣S2=3×4﹣ ,
    故选D.
    【点睛】
    此题考查扇形面积的计算,矩形的性质及面积的计算.
    6、B
    【解析】
    分别根据有理数的加、减、乘、除运算法则计算可得.
    【详解】
    解:A、1+(﹣2)=﹣(2﹣1)=﹣1,结果为负数;
    B、1﹣(﹣2)=1+2=3,结果为正数;
    C、1×(﹣2)=﹣1×2=﹣2,结果为负数;
    D、1÷(﹣2)=﹣1÷2=﹣,结果为负数;
    故选B.
    【点睛】
    本题主要考查有理数的混合运算,熟练掌握有理数的四则运算法则是解题的关键.
    7、C
    【解析】
    试题分析:根据旋转的性质知,∠EAC=∠BAD=65°,∠C=∠E=70°.
    如图,设AD⊥BC于点F.则∠AFB=90°,
    ∴在Rt△ABF中,∠B=90°-∠BAD=25°,
    ∴在△ABC中,∠BAC=180°-∠B-∠C=180°-25°-70°=85°,
    即∠BAC的度数为85°.故选C.
    考点: 旋转的性质.
    8、D
    【解析】
    根据切线的判定,圆的知识,可得答案.
    【详解】
    解:A、在等圆或同圆中,长度相等的弧是等弧,故A错误;
    B、平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧,故B错误;
    C、经过半径的外端并且垂直于这条半径的直线是圆的切线,故C错误;
    D、在同圆或等圆中90°的圆周角所对的弦是这个圆的直径,故D正确;
    故选:D.
    【点睛】
    本题考查了切线的判定及圆的知识,利用圆的知识及切线的判定是解题关键.
    9、D
    【解析】
    试题分析:根据等腰三角形的判定分类别分别找寻,分AB可能为底,可能是腰进行分析.
    解:使△ABC是等腰三角形,
    当AB当底时,则作AB的垂直平分线,交PQ,MN的有两点,即有两个三角形.
    当让AB当腰时,则以点A为圆心,AB为半径画圆交PQ,MN有三点,所以有三个.
    当以点B为圆心,AB为半径画圆,交PQ,MN有三点,所以有三个.
    所以共8个.
    故选D.
    点评:本题考查了等腰三角形的判定;解题的关键是要分情况而定,所以学生一定要思维严密,不可遗漏.
    10、C
    【解析】
    先解不等式得到x<-1,根据数轴表示数的方法得到解集在-1的左边.
    【详解】
    5+1x<1,
    移项得1x<-4,
    系数化为1得x<-1.
    故选C.
    【点睛】
    本题考查了在数轴上表示不等式的解集:先求出不等式组的解集,然后根据数轴表示数的方法把对应的未知数的取值范围通过画区间的方法表示出来,等号时用实心,不等时用空心.
    11、B
    【解析】解:根据中位数的意义,故只要知道中位数就可以了.故选B.
    12、D
    【解析】
    能说明是假命题的反例就是能满足已知条件,但不满足结论的例子.
    【详解】
    “如果∠1+∠1=90°,那么∠1≠∠1.”能说明它是假命题为∠1=∠1=45°.
    故选:D.
    【点睛】
    考查了命题与定理的知识,理解能说明它是假命题的反例的含义是解决本题的关键.
    二、填空题:(本大题共6个小题,每小题4分,共24分.)
    13、(或)
    【解析】
    将抛物线化为顶点式,再按照“左加右减,上加下减”的规律平移即可.
    【详解】
    解:化为顶点式得:,
    ∴向右平移1个单位,再向下平移2个单位得:

    化为一般式得:,
    故答案为:(或).
    【点睛】
    此题不仅考查了对图象平移的理解,同时考查了学生将一般式转化顶点式的能力.
    14、8
    【解析】
    设正方形ABOC和正方形DOFE的边长分别是m、n,则AB=OB=m,DE=EF=OF=n,BF=OB+OF=m+n,然后根据S△ADF=S梯形ABOD+S△DOF-S△ABF=4,得到关于n的方程,解方程求得n的值,最后根据系数k的几何意义求得即可.
    【详解】
    设正方形ABOC和正方形DOFE的边长分别是m、n,则AB=OB=m,DE=EF=OF=n,
    ∴BF=OB+OF=m+n,

    ∴=8,
    ∵点E(n.n)在反比例函数y=kx(x>0)的图象上,
    ∴k==8,
    故答案为8.
    【点睛】
    本题考查了正方形的性质和反比例函数图象上点的坐标特征.图象上的点(x,y)的横纵坐标的积是定值k,即xy=k.
    15、a2+2a5b+25a4b2+20a3b3+25a2b4+2ab5+b2.
    【解析】
    通过观察可以看出(a+b)2的展开式为2次7项式,a的次数按降幂排列,b的次数按升幂排列,各项系数分别为2、2、25、20、25、2、2.
    【详解】
    通过观察可以看出(a+b)2的展开式为2次7项式,a的次数按降幂排列,b的次数按升幂排列,各项系数分别为2、2、25、20、25、2、2.
    所以(a+b)2=a2+2a5b+25a4b2+20a3b3+25a2b4+2ab5+b2.
    16、1
    【解析】
    解:根据题意可得x1+x2==5,x1x2==2,∴x1+x2﹣x1x2=5﹣2=1.故答案为:1.
    点睛:本题主要考查了根据与系数的关系,利用一元二次方程的两个根x1、x2具有这样的关系:x1+x2=,x1x2=是解题的关键.
    17、(10,3)
    【解析】
    根据折叠的性质得到AF=AD,所以在直角△AOF中,利用勾股定理求得OF=6,然后设EC=x,则EF=DE=8-x,CF=10-6=4,根据勾股定理列方程求出EC可得点E的坐标.
    【详解】
    ∵四边形AOCD为矩形,D的坐标为(10,8),
    ∴AD=BC=10,DC=AB=8,
    ∵矩形沿AE折叠,使D落在BC上的点F处,
    ∴AD=AF=10,DE=EF,
    在Rt△AOF中,OF= =6,
    ∴FC=10−6=4,
    设EC=x,则DE=EF=8−x,
    在Rt△CEF中,EF2=EC2+FC2,
    即(8−x)2=x2+42,
    解得x=3,即EC的长为3.
    ∴点E的坐标为(10,3).
    18、10%.
    【解析】
    设平均每次降价的百分率为,那么第一次降价后的售价是原来的,那么第二次降价后的售价是原来的,根据题意列方程解答即可.
    【详解】
    设平均每次降价的百分率为,根据题意列方程得,

    解得,(不符合题意,舍去),
    答:这个百分率是.
    故答案为.
    【点睛】
    本题考查一元二次方程的应用,要掌握求平均变化率的方法.若设变化前的量为,变化后的量为,平均变化率为,则经过两次变化后的数量关系为.
    三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.
    19、(1)40人;1;(2)平均数是15;众数16;中位数15.
    【解析】
    (1)用13岁年龄的人数除以13岁年龄的人数所占的百分比,即可得本次接受调查的跳水运动员人数;用16岁年龄的人数除以本次接受调查的跳水运动员人数即可求得m的值;(2)根据统计图中给出的信息,结合求平均数、众数、中位数的方法求解即可.
    【详解】
    解:(1)4÷10%=40(人),
    m=100-27.5-25-7.5-10=1;
    故答案为40,1.
    (2)观察条形统计图,
    ∵,
    ∴这组数据的平均数为15;
    ∵在这组数据中,16出现了12次,出现的次数最多,
    ∴这组数据的众数为16;
    ∵将这组数据按照从小到大的顺序排列,其中处于中间的两个数都是15,有,
    ∴这组数据的中位数为15.
    【点睛】
    本题考查了条形统计图,扇形统计图,掌握平均数、众数和中位数的定义是解题的关键.
    20、(1)证明见解析;(2)证明见解析.
    【解析】
    分析:
    (1)由已知条件易得∠EAG=∠FCG,AG=GC结合∠AGE=∠FGC可得△EAG≌△FCG,从而可得△EAG≌△FCG,由此可得EG=FG,同理可得MG=NG,由此即可得到四边形ENFM是平行四边形;
    (2)如下图,由四边形ENFM为矩形可得EG=NG,结合AG=CG,∠AGE=∠CGN可得△EAG≌△NCG,则∠BAC=∠ACB ,AE=CN,从而可得AB=CB,由此可得BE=BN.
    详解:
    (1)∵四边形ABCD为平行四四边形边形,
    ∴AB//CD.
    ∴∠EAG=∠FCG.
    ∵点G为对角线AC的中点,
    ∴AG=GC.
    ∵∠AGE=∠FGC,
    ∴△EAG≌△FCG.
    ∴EG=FG.
    同理MG=NG.
    ∴四边形ENFM为平行四边形.
    (2)∵四边形ENFM为矩形,
    ∴EF=MN,且EG=,GN=,
    ∴EG=NG,
    又∵AG=CG,∠AGE=∠CGN,
    ∴△EAG≌△NCG,
    ∴∠BAC=∠ACB ,AE=CN,
    ∴AB=BC,
    ∴AB-AE=CB-CN,
    ∴BE=BN.
    点睛:本题是一道考查平行四边形的判定和性质及矩形性质的题目,熟练掌握相关图形的性质和判定是顺利解题的关键.
    21、(1)100,108°;(2)答案见解析;(3)600人.
    【解析】
    (1)先利用QQ计算出宗人数,再用百分比计算度数;(2)按照扇形图补充条形图;(3)利用微信沟通所占百分比计算总人数.
    【详解】
    解:(1)喜欢用电话沟通的人数为20,所占百分比为20%,
    ∴此次共抽查了:20÷20%=100人.
    喜欢用QQ沟通所占比例为:,
    ∴QQ的扇形圆心角的度数为:360°×=108°.
    (2)喜欢用短信的人数为:100×5%=5人
    喜欢用微信的人数为:100-20-5-30-5=40
    补充图形,如图所示:
    (3)喜欢用微信沟通所占百分比为:×100%=40%.
    ∴该校共有1500名学生,估计该校最喜欢用“微信”进行沟通的学生有:1500×40%=600人 .
    【点睛】
    本题考查的是条形统计图和扇形统计图的综合运用.读懂统计图,从统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据.
    22、(1)(2)1(3)①②③
    【解析】
    (1)由抛物线与x轴只有一个交点,可知△=0;
    (2)由抛物线与x轴有两个交点且AB=2,可知A、B坐标,代入解析式,可得k值;
    (3)通过解析式求出对称轴,与y轴交点,并根据系数的关系得出判断.
    【详解】
    (1)∵二次函数y=kx2﹣4kx+3与x轴只有一个公共点,
    ∴关于x的方程kx2﹣4kx+3=0有两个相等的实数根,
    ∴△=(﹣4k)2﹣4×3k=16k2﹣12k=0,
    解得:k1=0,k2=,
    k≠0,
    ∴k=;
    (2)∵AB=2,抛物线对称轴为x=2,
    ∴A、B点坐标为(1,0),(3,0),
    将(1,0)代入解析式,可得k=1,
    (3)①∵当x=0时,y=3,
    ∴二次函数图象与y轴的交点为(0,3),①正确;
    ②∵抛物线的对称轴为x=2,
    ∴抛物线的对称轴不变,②正确;
    ③二次函数y=kx2﹣4kx+3=k(x2﹣4x)+3,将其看成y关于k的一次函数,
    令k的系数为0,即x2﹣4x=0,
    解得:x1=0,x2=4,
    ∴抛物线一定经过两个定点(0,3)和(4,3),③正确.
    综上可知:正确的结论有①②③.
    【点睛】
    本题考查了二次函数的性质,与x、y轴的交点问题,对称轴问题,以及系数与图象的关系问题,是一道很好的综合问题.
    23、(1)10,1;(2).
    【解析】
    (1)将点代入中,求出函数解析式,再根据二次函数的性质求出最大值即可;
    (2)求出对称轴为直线,可知点关于对称轴的对称点是,再根据图象判断出x的取值范围即可.
    【详解】
    解:(1)图象过点,

    解得


    的顶点坐标为.

    ∴当时,最大=1.
    答:该商品的销售单价为10元时,每天的销售利润最大,最大利润为1元.
    (2)∵函数图象的对称轴为直线,
    可知点关于对称轴的对称点是,
    又∵函数图象开口向下,
    ∴当时,.
    答:销售单价不少于8元且不超过12元时,该种商品每天的销售利润不低于21元.
    【点睛】
    本题考查了待定系数法求二次函数解析式以及二次函数的性质,解题的关键是熟悉待定系数法以及二次函数的性质.
    24、(1)a=7,b=7.5,c=4.2;(2)见解析.
    【解析】
    (1)利用平均数的计算公式直接计算平均分即可;将乙的成绩从小到大重新排列,用中位数的定义直接写出中位数即可;根据乙的平均数利用方差的公式计算即可;
    (2)结合平均数和中位数、众数、方差三方面的特点进行分析.
    【详解】
    (1)甲的平均成绩a==7(环),
    ∵乙射击的成绩从小到大重新排列为:3、4、6、7、7、8、8、8、9、10,
    ∴乙射击成绩的中位数b==7.5(环),
    其方差c=×[(3-7)2+(4-7)2+(6-7)2+2×(7-7)2+3×(8-7)2+(9-7)2+(10-7)2]
    =×(16+9+1+3+4+9)
    =4.2;
    (2)从平均成绩看甲、乙二人的成绩相等均为7环,从中位数看甲射中7环以上的次数小于乙,从众数看甲射中7环的次数最多而乙射中8环的次数最多,从方差看甲的成绩比乙的成绩稳定;
    综合以上各因素,若选派一名队员参加比赛的话,可选择乙参赛,因为乙获得高分的可能更大.
    【点睛】
    本题考查的是条形统计图和方差、平均数、中位数、众数的综合运用.熟练掌握平均数的计算,理解方差的概念,能够根据计算的数据进行综合分析.
    25、 (1) GF=GD,GF⊥GD;(2)见解析;(3)见解析;(4) 90°﹣.
    【解析】
    (1)根据四边形ABCD是正方形可得∠ABD=∠ADB=45°,∠BAD=90°,点D关于直线AE的对称点为点F,即可证明出∠DBF=90°,故GF⊥GD,再根据∠F=∠ADB,即可证明GF=GD;
    (2)连接AF,证明∠AFG=∠ADG,再根据四边形ABCD是正方形,得出AB=AD,∠BAD=90°,设∠BAF=n,∠FAD=90°+n,可得出∠FGD=360°﹣∠FAD﹣∠AFG﹣∠ADG=360°﹣(90°+n)﹣(180°﹣n)=90°,故GF⊥GD;
    (3)连接BD,由(2)知,FG=DG,FG⊥DG,再分别求出∠GFD与∠DBC的角度,再根据三角函数的性质可证明出△BDF∽△CDG,故∠DGC=∠FDG,则CG∥DF;
    (4)连接AF,BD,根据题意可证得∠DAM=90°﹣∠2=90°﹣∠1,∠DAF=2∠DAM=180°﹣2∠1,再根据菱形的性质可得∠ADB=∠ABD=α,故∠AFB+∠DBF+∠ADB+∠DAF=(∠DFG+∠1)+(∠DFG+∠1+α)+α+(180°﹣2∠1)=360°,2∠DFG+2∠1+α﹣2∠1=180°,即可求出∠DFG.
    【详解】
    解:(1)GF=GD,GF⊥GD,
    理由:∵四边形ABCD是正方形,
    ∴∠ABD=∠ADB=45°,∠BAD=90°,
    ∵点D关于直线AE的对称点为点F,∠BAD=∠BAF=90°,
    ∴∠F=∠ADB=45°,∠ABF=∠ABD=45°,
    ∴∠DBF=90°,
    ∴GF⊥GD,
    ∵∠BAD=∠BAF=90°,
    ∴点F,A,D在同一条线上,
    ∵∠F=∠ADB,
    ∴GF=GD,
    故答案为GF=GD,GF⊥GD;
    (2)连接AF,∵点D关于直线AE的对称点为点F,
    ∴直线AE是线段DF的垂直平分线,
    ∴AF=AD,GF=GD,
    ∴∠1=∠2,∠3=∠FDG,
    ∴∠1+∠3=∠2+∠FDG,
    ∴∠AFG=∠ADG,
    ∵四边形ABCD是正方形,
    ∴AB=AD,∠BAD=90°,
    设∠BAF=n,
    ∴∠FAD=90°+n,
    ∵AF=AD=AB,
    ∴∠FAD=∠ABF,
    ∴∠AFB+∠ABF=180°﹣n,
    ∴∠AFB+∠ADG=180°﹣n,
    ∴∠FGD=360°﹣∠FAD﹣∠AFG﹣∠ADG=360°﹣(90°+n)﹣(180°﹣n)=90°,
    ∴GF⊥DG,
    (3)如图2,连接BD,由(2)知,FG=DG,FG⊥DG,
    ∴∠GFD=∠GDF=(180°﹣∠FGD)=45°,
    ∵四边形ABCD是正方形,
    ∴BC=CD,∠BCD=90°,
    ∴∠BDC=∠DBC=(180°﹣∠BCD)=45°,
    ∴∠FDG=∠BDC,
    ∴∠FDG﹣∠BDG=∠BDC﹣∠BDG,
    ∴∠FDB=∠GDC,
    在Rt△BDC中,sin∠DFG==sin45°=,
    在Rt△BDC中,sin∠DBC==sin45°=,
    ∴,
    ∴,
    ∴△BDF∽△CDG,
    ∵∠FDB=∠GDC,
    ∴∠DGC=∠DFG=45°,
    ∴∠DGC=∠FDG,
    ∴CG∥DF;
    (4)90°﹣,理由:如图3,连接AF,BD,
    ∵点D与点F关于AE对称,
    ∴AE是线段DF的垂直平分线,
    ∴AD=AF,∠1=∠2,∠AMD=90°,∠DAM=∠FAM,
    ∴∠DAM=90°﹣∠2=90°﹣∠1,
    ∴∠DAF=2∠DAM=180°﹣2∠1,
    ∵四边形ABCD是菱形,
    ∴AB=AD,
    ∴∠AFB=∠ABF=∠DFG+∠1,
    ∵BD是菱形的对角线,
    ∴∠ADB=∠ABD=α,
    在四边形ADBF中,∠AFB+∠DBF+∠ADB+∠DAF=(∠DFG+∠1)+(∠DFG+∠1+α)+α+(180°﹣2∠1)=360°
    ∴2∠DFG+2∠1+α﹣2∠1=180°,
    ∴∠DFG=90°﹣.
    【点睛】
    本题考查了正方形、菱形、相似三角形的性质,解题的根据是熟练的掌握正方形、菱形、相似三角形的性质.
    26、(1);(2)这两个数字之和是3的倍数的概率为.
    【解析】
    (1)在标有数字1、2、3的3个转盘中,奇数的有1、3这2个,根据概率公式可得;(2)用列表法列出所有情况,再计算概率.
    【详解】
    解:(1)∵在标有数字1、2、3的3个转盘中,奇数的有1、3这2个,
    ∴指针所指扇形中的数字是奇数的概率为,
    故答案为;
    (2)列表如下:
    由表可知,所有等可能的情况数为9种,其中这两个数字之和是3的倍数的有3种,
    所以这两个数字之和是3的倍数的概率为=.
    【点睛】
    本题考核知识点:求概率. 解题关键点:列出所有情况,熟记概率公式.
    27、(1)每次运输的农产品中A产品有10件,每次运输的农产品中B产品有30件,(2)产品件数增加后,每次运费最少需要1120元.
    【解析】
    (1)设每次运输的农产品中A产品有x件,每次运输的农产品中B产品有y件,根据表中的数量关系列出关于x和y的二元一次方程组,解之即可,
    (2)设增加m件A产品,则增加了(8-m)件B产品,设增加供货量后得运费为W元,根据(1)的结果结合图表列出W关于m的一次函数,再根据“总件数中B产品的件数不得超过A产品件数的2倍”,列出关于m的一元一次不等式,求出m的取值范围,再根据一次函数的增减性即可得到答案.
    【详解】
    解:(1)设每次运输的农产品中A产品有x件,每次运输的农产品中B产品有y件,
    根据题意得:

    解得:,
    答:每次运输的农产品中A产品有10件,每次运输的农产品中B产品有30件,
    (2)设增加m件A产品,则增加了(8-m)件B产品,设增加供货量后得运费为W元,
    增加供货量后A产品的数量为(10+m)件,B产品的数量为30+(8-m)=(38-m)件,
    根据题意得:W=30(10+m)+20(38-m)=10m+1060,
    由题意得:38-m≤2(10+m),
    解得:m≥6,
    即6≤m≤8,
    ∵一次函数W随m的增大而增大
    ∴当m=6时,W最小=1120,
    答:产品件数增加后,每次运费最少需要1120元.
    【点睛】
    本题考查了一次函数的应用,二元一次方程组的应用和一元一次不等式得应用,解题的关键:(1)正确根据等量关系列出二元一次方程组,(2)根据数量关系列出一次函数和不等式,再利用一次函数的增减性求最值.
    平均成绩/环
    中位数/环
    众数/环
    方差

    7
    7
    1.2

    7
    8
    品种
    A
    B
    原来的运费
    45
    25
    现在的运费
    30
    20
    1
    2
    3
    1
    (1,1)
    (2,1)
    (3,1)
    2
    (1,2)
    (2,2)
    (3,2)
    3
    (1,3)
    (2,3)
    (3,3)
    相关试卷

    山东青岛重点名校2021-2022学年中考数学仿真试卷含解析: 这是一份山东青岛重点名校2021-2022学年中考数学仿真试卷含解析,共20页。试卷主要包含了答题时请按要求用笔,如图,空心圆柱体的左视图是,下列命题正确的是等内容,欢迎下载使用。

    内蒙古杭锦旗2021-2022学年中考数学模试卷含解析: 这是一份内蒙古杭锦旗2021-2022学年中考数学模试卷含解析,共17页。试卷主要包含了答题时请按要求用笔,一组数据等内容,欢迎下载使用。

    2022年江北新区联盟重点达标名校中考数学仿真试卷含解析: 这是一份2022年江北新区联盟重点达标名校中考数学仿真试卷含解析,共20页。试卷主要包含了考生必须保证答题卡的整洁等内容,欢迎下载使用。

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单

        欢迎来到教习网

        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        使用学贝下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        返回
        顶部
        Baidu
        map