还剩19页未读,
继续阅读
2022届徐州市中考冲刺卷数学试题含解析
展开这是一份2022届徐州市中考冲刺卷数学试题含解析,共22页。试卷主要包含了考生要认真填写考场号和座位序号等内容,欢迎下载使用。
2021-2022中考数学模拟试卷
注意事项
1.考生要认真填写考场号和座位序号。
2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B 铅笔作答;第二部分必须用黑色字迹的签字笔作答。
3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。
一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)
1.如图,直线AB∥CD,AE平分∠CAB,AE与CD相交于点E,∠ACD=40°,则∠DEA=( )
A.40° B.110° C.70° D.140°
2.将抛物线向右平移1个单位长度,再向上平移1个单位长度所得的抛物线解析式为( )
A. B.
C. D.
3.《九章算术》是我国古代数学的经典著作,书中有一个问题:“今有黄金九枚,白银一十一枚,称之重适等.交易其一,金轻十三两.问金、银一枚各重几何?”.意思是:甲袋中装有黄金9枚(每枚黄金重量相同),乙袋中装有白银11枚(每枚白银重量相同),称重两袋相等.两袋互相交换1枚后,甲袋比乙袋轻了13两(袋子重量忽略不计).问黄金、白银每枚各重多少两?设每枚黄金重x两,每枚白银重y两,根据题意得( )
A.
B.
C.
D.
4.如图,已知△ABC的三个顶点均在格点上,则cosA的值为( )
A. B. C. D.
5.如图,⊙O的直径AB的长为10,弦AC长为6,∠ACB的平分线交⊙O于D,则CD长为( )
A.7 B. C. D.9
6.如图,⊙O的半径OC与弦AB交于点D,连结OA,AC,CB,BO,则下列条件中,无法判断四边形OACB为菱形的是( )
A.∠DAC=∠DBC=30° B.OA∥BC,OB∥AC C.AB与OC互相垂直 D.AB与OC互相平分
7.如图,已知在△ABC,AB=AC.若以点B为圆心,BC长为半径画弧,交腰AC于点E,则下列结论一定正确的是( )
A.AE=EC B.AE=BE C.∠EBC=∠BAC D.∠EBC=∠ABE
8.下面四个几何体中,左视图是四边形的几何体共有()
A.1个 B.2个 C.3个 D.4个
9.如图,动点P从(0,3)出发,沿所示方向运动,每当碰到矩形的边时反弹,反弹时反射角等于入射角.当点P第2018次碰到矩形的边时,点P的坐标为( )
A.(1,4) B.(7,4) C.(6,4) D.(8,3)
10.为了纪念物理学家费米,物理学界以费米(飞米)作为长度单位.已知1飞米等于0.000000000000001米,把0.000000000000001这个数用科学记数法表示为( )
A.1×10﹣15 B.0.1×10﹣14 C.0.01×10﹣13 D.0.01×10﹣12
11.在实数,有理数有( )
A.1个 B.2个 C.3个 D.4个
12.如图,点A为∠α边上任意一点,作AC⊥BC于点C,CD⊥AB于点D,下列用线段比表示cosα的值,错误的是( )
A. B. C. D.
二、填空题:(本大题共6个小题,每小题4分,共24分.)
13.有一张三角形纸片ABC,∠A=80°,点D是AC边上一点,沿BD方向剪开三角形纸片后,发现所得两张纸片均为等腰三角形,则∠C的度数可以是__________.
14.如图,边长为6的菱形ABCD中,AC是其对角线,∠B=60°,点P在CD上,CP=2,点M在AD上,点N在AC上,则△PMN的周长的最小值为_____________ .
15.将多项式xy2﹣4xy+4y因式分解:_____.
16.如图,已知AB∥CD,直线EF分别交AB、CD于点E、F,EG平分∠BEF,若∠1=50°,则∠2的度数为_______.
17.一元二次方程x2=3x的解是:________.
18.若不等式(a﹣3)x>1的解集为,则a的取值范围是_____.
三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.
19.(6分)我市某中学举行“中国梦•校园好声音”歌手大赛,高、初中部根据初赛成绩,各选出5名选手组成初中代表队和高中代表队参加学校决赛.两个队各选出的5名选手的决赛成绩如图所示.
根据图示填写下表;
平均数(分)
中位数(分)
众数(分)
初中部
85
高中部
85
100
(2)结合两队成绩的平均数和中位数,分析哪个队的决赛成绩较好;计算两队决赛成绩的方差并判断哪一个代表队选手成绩较为稳定.
20.(6分)(2016湖南省株洲市)某市对初二综合素质测评中的审美与艺术进行考核,规定如下:考核综合评价得分由测试成绩(满分100分)和平时成绩(满分100分)两部分组成,其中测试成绩占80%,平时成绩占20%,并且当综合评价得分大于或等于80分时,该生综合评价为A等.
(1)孔明同学的测试成绩和平时成绩两项得分之和为185分,而综合评价得分为91分,则孔明同学测试成绩和平时成绩各得多少分?
(2)某同学测试成绩为70分,他的综合评价得分有可能达到A等吗?为什么?
(3)如果一个同学综合评价要达到A等,他的测试成绩至少要多少分?
21.(6分)甲、乙、丙3名学生各自随机选择到A、B2个书店购书.
(1)求甲、乙2名学生在不同书店购书的概率;
(2)求甲、乙、丙3名学生在同一书店购书的概率.
22.(8分)如图,已知点A,B的坐标分别为(0,0)、(2,0),将△ABC绕C点按顺时针方向旋转90°得到△A1B1C.
(1)画出△A1B1C;
(2)A的对应点为A1,写出点A1的坐标;
(3)求出B旋转到B1的路线长.
23.(8分)如图,在平行四边形ABCD中,E、F分别在AD、BC边上,且AE=CF.
求证:(1)△ABE≌△CDF;四边形BFDE是平行四边形.
24.(10分)如图,矩形ABCD中,AB>AD,把矩形沿对角线AC所在直线折叠,使点B落在点E处,AE交CD于点F,连接DE,求证:∠DAE=∠ECD.
25.(10分)如图1,二次函数y=ax2﹣2ax﹣3a(a<0)的图象与x轴交于A、B两点(点A在点B的右侧),与y轴的正半轴交于点C,顶点为D.
(1)求顶点D的坐标(用含a的代数式表示);
(2)若以AD为直径的圆经过点C.
①求抛物线的函数关系式;
②如图2,点E是y轴负半轴上一点,连接BE,将△OBE绕平面内某一点旋转180°,得到△PMN(点P、M、N分别和点O、B、E对应),并且点M、N都在抛物线上,作MF⊥x轴于点F,若线段MF:BF=1:2,求点M、N的坐标;
③点Q在抛物线的对称轴上,以Q为圆心的圆过A、B两点,并且和直线CD相切,如图3,求点Q的坐标.
26.(12分)瑞安市曹村镇“八百年灯会”成为温州“申遗”的宝贵项目.某公司生产了一种纪念花灯,每件纪念花灯制造成本为18元.设销售单价x(元),每日销售量y(件)每日的利润w(元).在试销过程中,每日销售量y(件)、每日的利润w(元)与销售单价x(元)之间存在一定的关系,其几组对应量如下表所示:
(元)
19
20
21
30
(件)
62
60
58
40
(1)根据表中数据的规律,分别写出毎日销售量y(件),每日的利润w(元)关于销售单价x(元)之间的函数表达式.(利润=(销售单价﹣成本单价)×销售件数).当销售单价为多少元时,公司每日能够获得最大利润?最大利润是多少?根据物价局规定,这种纪念品的销售单价不得高于32元,如果公司要获得每日不低于350元的利润,那么制造这种纪念花灯每日的最低制造成本需要多少元?
27.(12分)凯里市某文具店某种型号的计算器每只进价12元,售价20元,多买优惠,优势方法是:凡是一次买10只以上的,每多买一只,所买的全部计算器每只就降价0.1元,例如:某人买18只计算器,于是每只降价0.1×(18﹣10)=0.8(元),因此所买的18只计算器都按每只19.2元的价格购买,但是每只计算器的最低售价为16元.
(1)求一次至少购买多少只计算器,才能以最低价购买?
(2)求写出该文具店一次销售x(x>10)只时,所获利润y(元)与x(只)之间的函数关系式,并写出自变量x的取值范围;
(3)一天,甲顾客购买了46只,乙顾客购买了50只,店主发现卖46只赚的钱反而比卖50只赚的钱多,请你说明发生这一现象的原因;当10<x≤50时,为了获得最大利润,店家一次应卖多少只?这时的售价是多少?
参考答案
一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)
1、B
【解析】
先由平行线性质得出∠ACD与∠BAC互补,并根据已知∠ACD=40°计算出∠BAC的度数,再根据角平分线性质求出∠BAE的度数,进而得到∠DEA的度数.
【详解】
∵AB∥CD,
∴∠ACD+∠BAC=180°,
∵∠ACD=40°,
∴∠BAC=180°﹣40°=140°,
∵AE平分∠CAB,
∴∠BAE=∠BAC=×140°=70°,
∴∠DEA=180°﹣∠BAE=110°,
故选B.
【点睛】
本题考查了平行线的性质和角平分线的定义,解题的关键是熟练掌握两直线平行,同旁内角互补.
2、C
【解析】
试题分析:∵抛物线向右平移1个单位长度,∴平移后解析式为:,∴再向上平移1个单位长度所得的抛物线解析式为:.故选C.
考点:二次函数图象与几何变换.
3、D
【解析】
根据题意可得等量关系:①9枚黄金的重量=11枚白银的重量;②(10枚白银的重量+1枚黄金的重量)-(1枚白银的重量+8枚黄金的重量)=13两,根据等量关系列出方程组即可.
【详解】
设每枚黄金重x两,每枚白银重y两,
由题意得:,
故选:D.
【点睛】
此题主要考查了由实际问题抽象出二元一次方程组,关键是正确理解题意,找出题目中的等量关系.
4、D
【解析】
过B点作BD⊥AC,如图,
由勾股定理得,AB=,AD=,
cosA===,
故选D.
5、B
【解析】
作DF⊥CA,交CA的延长线于点F,作DG⊥CB于点G,连接DA,DB.由CD平分∠ACB,根据角平分线的性质得出DF=DG,由HL证明△AFD≌△BGD,△CDF≌△CDG,得出CF=7,又△CDF是等腰直角三角形,从而求出CD=.
【详解】
解:作DF⊥CA,垂足F在CA的延长线上,作DG⊥CB于点G,连接DA,DB.
∵CD平分∠ACB,
∴∠ACD=∠BCD
∴DF=DG,弧AD=弧BD,
∴DA=DB.
∵∠AFD=∠BGD=90°,
∴△AFD≌△BGD,
∴AF=BG.
易证△CDF≌△CDG,
∴CF=CG.
∵AC=6,BC=8,
∴AF=1,(也可以:设AF=BG=x,BC=8,AC=6,得8-x=6+x,解x=1)
∴CF=7,
∵△CDF是等腰直角三角形,(这里由CFDG是正方形也可得).
∴CD=.
故选B.
6、C
【解析】
(1)∵∠DAC=∠DBC=30°,
∴∠AOC=∠BOC=60°,
又∵OA=OC=OB,
∴△AOC和△OBC都是等边三角形,
∴OA=AC=OC=BC=OB,
∴四边形OACB是菱形;即A选项中的条件可以判定四边形OACB是菱形;
(2)∵OA∥BC,OB∥AC,
∴四边形OACB是平行四边形,
又∵OA=OB,
∴四边形OACB是菱形,即B选项中的条件可以判定四边形OACB是菱形;
(3)由OC和AB互相垂直不能证明到四边形OACB是菱形,即C选项中的条件不能判定四边形OACB是菱形;
(4)∵AB与OC互相平分,
∴四边形OACB是平行四边形,
又∵OA=OB,
∴四边形OACB是菱形,即由D选项中的条件能够判定四边形OACB是菱形.
故选C.
7、C
【解析】
解:∵AB=AC,∴∠ABC=∠ACB.∵以点B为圆心,BC长为半径画弧,交腰AC于点E,∴BE=BC,∴∠ACB=∠BEC,∴∠BEC=∠ABC=∠ACB,∴∠BAC=∠EBC.故选C.
点睛:本题考查了等腰三角形的性质,当等腰三角形的底角对应相等时其顶角也相等,难度不大.
8、B
【解析】
简单几何体的三视图.
【分析】左视图是从左边看到的图形,因为圆柱的左视图是矩形,圆锥的左视图是等腰三角形,球的左视图是圆,正方体的左视图是正方形,所以,左视图是四边形的几何体是圆柱和正方体2个.故选B.
9、B
【解析】
如图,
经过6次反弹后动点回到出发点(0,3),
∵2018÷6=336…2,
∴当点P第2018次碰到矩形的边时为第336个循环组的第2次反弹,
点P的坐标为(7,4).
故选C.
10、A
【解析】
根据科学记数法的表示方法解答.
【详解】
解:把这个数用科学记数法表示为.
故选:.
【点睛】
此题重点考查学生对科学记数法的应用,熟练掌握小于0的数用科学记数法表示法是解题的关键.
11、D
【解析】
试题分析:根据有理数是有限小数或无限循环小数,可得答案:
是有理数,故选D.
考点:有理数.
12、D
【解析】
根据锐角三角函数的定义,余弦是邻边比斜边,可得答案.
【详解】
cosα=.
故选D.
【点睛】
熟悉掌握锐角三角函数的定义是关键.
二、填空题:(本大题共6个小题,每小题4分,共24分.)
13、25°或40°或10°
【解析】
【分析】分AB=AD或AB=BD或AD=BD三种情况根据等腰三角形的性质求出∠ADB,再求出∠BDC,然后根据等腰三角形两底角相等列式计算即可得解.
【详解】由题意知△ABD与△DBC均为等腰三角形,
对于△ABD可能有
①AB=BD,此时∠ADB=∠A=80°,
∴∠BDC=180°-∠ADB=180°-80°=100°,
∠C=(180°-100°)=40°,
②AB=AD,此时∠ADB=(180°-∠A)=(180°-80°)=50°,
∴∠BDC=180°-∠ADB=180°-50°=130°,
∠C=(180°-130°)=25°,
③AD=BD,此时,∠ADB=180°-2×80°=20°,
∴∠BDC=180°-∠ADB=180°-20°=160°,
∠C=(180°-160°)=10°,
综上所述,∠C度数可以为25°或40°或10°
故答案为25°或40°或10°
【点睛】本题考查了等腰三角形的性质,难点在于分情况讨论.
14、2
【解析】
过P作关于AC和AD的对称点,连接和,过P作, 和,M,N共线时最短,根据对称性得知△PMN的周长的最小值为.因为四边形ABCD是菱形,AD是对角线,可以求得,根据特殊三角形函数值求得,,再根据线段相加勾股定理即可求解.
【详解】
过P作关于AC和AD的对称点,连接和,过P作,
四边形ABCD是菱形,AD是对角线,
,
,
,
,
又由题意得
【点睛】
本题主要考查对称性质,菱形性质,内角和定理和勾股定理,熟悉掌握定理是关键.
15、y(xy﹣4x+4)
【解析】
直接提公因式y即可解答.
【详解】
xy2﹣4xy+4y=y(xy﹣4x+4).
故答案为:y(xy﹣4x+4).
【点睛】
本题考查了因式分解——提公因式法,确定多项式xy2﹣4xy+4y的公因式为y是解决问题的关键.
16、65°
【解析】
因为AB∥CD,所以∠BEF=180°-∠1=130°,因为EG平分∠BEF,所以∠BEG=65°,因为AB∥CD,所以∠2=∠BEG=65°.
17、x1=0,x2=1
【解析】
先移项,然后利用因式分解法求解.
【详解】
x2=1x
x2-1x=0,
x(x-1)=0,
x=0或x-1=0,
∴x1=0,x2=1.
故答案为:x1=0,x2=1
【点睛】
本题考查了解一元二次方程-因式分解法:先把方程右边变形为0,再把方程左边分解为两个一次式的乘积,这样原方程转化为两个一元一次方程,然后解一次方程即可得到一元二次方程的解
18、.
【解析】
∵(a−3)x>1的解集为x<,
∴不等式两边同时除以(a−3)时不等号的方向改变,
∴a−3<0,
∴a<3.
故答案为a<3.
点睛:本题考查了不等式的性质:在不等式的两边同时乘以或除以同一个负数不等号的方向改变.本题解不等号时方向改变,所以a-3小于0.
三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.
19、(1)
平均数(分)
中位数(分)
众数(分)
初中部
85
85
85
高中部
85
80
100
(2)初中部成绩好些(3)初中代表队选手成绩较为稳定
【解析】
解:(1)填表如下:
平均数(分)
中位数(分)
众数(分)
初中部
85
85
85
高中部
85
80
100
(2)初中部成绩好些.
∵两个队的平均数都相同,初中部的中位数高,
∴在平均数相同的情况下中位数高的初中部成绩好些.
(3)∵,
,
∴<,因此,初中代表队选手成绩较为稳定.
(1)根据成绩表加以计算可补全统计表.根据平均数、众数、中位数的统计意义回答.
(2)根据平均数和中位数的统计意义分析得出即可.
(3)分别求出初中、高中部的方差比较即可.
20、(1)孔明同学测试成绩位90分,平时成绩为95分;(2)不可能;(3)他的测试成绩应该至少为1分.
【解析】
试题分析:(1)分别利用孔明同学的测试成绩和平时成绩两项得分之和为185分,而综合评价得分为91分,分别得出等式求出答案;
(2)利用测试成绩占80%,平时成绩占20%,进而得出答案;
(3)首先假设平时成绩为满分,进而得出不等式,求出测试成绩的最小值.
试题解析:(1)设孔明同学测试成绩为x分,平时成绩为y分,依题意得:,解之得:.
答:孔明同学测试成绩位90分,平时成绩为95分;
(2)由题意可得:80﹣70×80%=24,24÷20%=120>100,故不可能.
(3)设平时成绩为满分,即100分,综合成绩为100×20%=20,设测试成绩为a分,根据题意可得:20+80%a≥80,解得:a≥1.
答:他的测试成绩应该至少为1分.
考点:一元一次不等式的应用;二元一次方程组的应用.
21、(1)P=;(2)P=.
【解析】
试题分析:依据题意先用列表法或画树状图法分析所有等可能的出现结果,然后根据概率公式求出该事件的概率.
试题解析:(1)甲、乙两名学生到A、B两个书店购书的所有可能结果有:
从树状图可以看出,这两名学生到不同书店购书的可能结果有AB、BA共2种,
所以甲乙两名学生在不同书店购书的概率P(甲、乙2名学生在不同书店购书)=;
(2)甲、乙、丙三名学生AB两个书店购书的所有可能结果有:
从树状图可以看出,这三名学生到同一书店购书的可能结果有AAA、BBB共2种,
所以甲乙丙到同一书店购书的概率P(甲、乙、丙3名学生在同一书店购书)=.
点睛:本题考查的是用列表法或画树状图法求概率.列表法或画树状图法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件.用到的知识点为:概率=所求情况数与总情况数之比.
22、(1)画图见解析;(2)A1(0,6);(3)弧BB1=.
【解析】
(1)根据旋转图形的性质首先得出各点旋转后的点的位置,然后顺次连接各点得出图形;
(2)根据图形得出点的坐标;
(3)根据弧长的计算公式求出答案.
【详解】
解:(1)△A1B1C如图所示.
(2)A1(0,6).
(3)
.
【点睛】
本题考查了旋转作图和弧长的计算.
23、(1)见解析;(2)见解析;
【解析】
(1)由四边形ABCD是平行四边形,根据平行四边形的对边相等,对角相等的性质,即可证得∠A=∠C,AB=CD,又由AE=CF,利用SAS,即可判定△ABE≌△CDF.
(2)由四边形ABCD是平行四边形,根据平行四边形对边平行且相等,即可得AD∥BC,AD=BC,又由AE=CF,即可证得DE=BF.根据对边平行且相等的四边形是平行四边形,即可证得四边形BFDE是平行四边形.
【详解】
证明:(1)∵四边形ABCD是平行四边形,∴∠A=∠C,AB=CD,
在△ABE和△CDF中,∵AB=CD,∠A=∠C,AE=CF,
∴△ABE≌△CDF(SAS).
(2)∵四边形ABCD是平行四边形,∴AD∥BC,AD=BC.
∵AE=CF,∴AD﹣AE=BC﹣CF,即DE=BF.
∴四边形BFDE是平行四边形.
24、见解析,
【解析】
要证∠DAE=∠ECD.需先证△ADF≌△CEF,由折叠得BC=EC,∠B=∠AEC,由矩形得BC=AD,∠B=∠ADC=90°,再根据等量代换和对顶角相等可以证出,得出结论.
【详解】
证明:由折叠得:BC=EC,∠B=∠AEC,
∵矩形ABCD,
∴BC=AD,∠B=∠ADC=90°,
∴EC=DA,∠AEC=∠ADC=90°,
又∵∠AFD=∠CFE,
∴△ADF≌△CEF (AAS)
∴∠DAE=∠ECD.
【点睛】
本题考查折叠的性质、矩形的性质、全等三角形的性质和判定等知识,借助于三角形全等证明线段相等和角相等是常用的方法.
25、(1)(1,﹣4a);(2)①y=﹣x2+2x+3;②M(,)、N(,);③点Q的坐标为(1,﹣4+2)或(1,﹣4﹣2).
【解析】
分析: (1)将二次函数的解析式进行配方即可得到顶点D的坐标.
(2)①以AD为直径的圆经过点C,即点C在以AD为直径的圆的圆周上,依据圆周角定理不难得出△ACD是个直角三角形,且∠ACD=90°,A点坐标可得,而C、D的坐标可由a表达出来,在得出AC、CD、AD的长度表达式后,依据勾股定理列等式即可求出a的值.
②将△OBE绕平面内某一点旋转180°得到△PMN,说明了PM正好和x轴平行,且PM=OB=1,所以求M、N的坐标关键是求出点M的坐标;首先根据①的函数解析式设出M点的坐标,然后根据题干条件:BF=2MF作为等量关系进行解答即可.
③设⊙Q与直线CD的切点为G,连接QG,由C、D两点的坐标不难判断出∠CDQ=45°,那么△QGD为等腰直角三角形,即QD ²=2QG ²=2QB ²,设出点Q的坐标,然后用Q点纵坐标表达出QD、QB的长,根据上面的等式列方程即可求出点Q的坐标.
详解:
(1)∵y=ax2﹣2ax﹣3a=a(x﹣1)2﹣4a,
∴D(1,﹣4a).
(2)①∵以AD为直径的圆经过点C,
∴△ACD为直角三角形,且∠ACD=90°;
由y=ax2﹣2ax﹣3a=a(x﹣3)(x+1)知,A(3,0)、B(﹣1,0)、C(0,﹣3a),则:
AC2=9a2+9、CD2=a2+1、AD2=16a2+4
由勾股定理得:AC2+CD2=AD2,即:9a2+9+a2+1=16a2+4,
化简,得:a2=1,由a<0,得:a=﹣1,
②∵a=﹣1,
∴抛物线的解析式:y=﹣x2+2x+3,D(1,4).
∵将△OBE绕平面内某一点旋转180°得到△PMN,
∴PM∥x轴,且PM=OB=1;
设M(x,﹣x2+2x+3),则OF=x,MF=﹣x2+2x+3,BF=OF+OB=x+1;
∵BF=2MF,
∴x+1=2(﹣x2+2x+3),化简,得:2x2﹣3x﹣5=0
解得:x1=﹣1(舍去)、x2=.
∴M(,)、N(,).
③设⊙Q与直线CD的切点为G,连接QG,过C作CH⊥QD于H,如下图:
∵C(0,3)、D(1,4),
∴CH=DH=1,即△CHD是等腰直角三角形,
∴△QGD也是等腰直角三角形,即:QD2=2QG2;
设Q(1,b),则QD=4﹣b,QG2=QB2=b2+4;
得:(4﹣b)2=2(b2+4),
化简,得:b2+8b﹣8=0,解得:b=﹣4±2;
即点Q的坐标为(1,)或(1,).
点睛: 此题主要考查了二次函数解析式的确定、旋转图形的性质、圆周角定理以及直线和圆的位置关系等重要知识点;后两个小题较难,最后一题中,通过构建等腰直角三角形找出QD和⊙Q半径间的数量关系是解题题目的关键.
26、(1)y=﹣2x+100,w=﹣2x2+136x﹣1800;(2)当销售单价为34元时,每日能获得最大利润,最大利润是1元;(3)制造这种纪念花灯每日的最低制造成本需要648元.
【解析】
(1)观察表中数据,发现y与x之间存在一次函数关系,设y=kx+b.列方程组得到y关于x的函数表达式y=﹣2x+100,根据题意得到w=﹣2x2+136x﹣1800;
(2)把w=﹣2x2+136x﹣1800配方得到w=﹣2(x﹣34)2+1.根据二次函数的性质即可得到结论;
(3)根据题意列方程即可得到即可.
【详解】
解:(1)观察表中数据,发现y与x之间存在一次函数关系,设y=kx+b.
则,解得,
∴y=﹣2x+100,
∴y关于x的函数表达式y=﹣2x+100,
∴w=(x﹣18)•y=(x﹣18)(﹣2x+100)∴w=﹣2x2+136x﹣1800;
(2)∵w=﹣2x2+136x﹣1800=﹣2(x﹣34)2+1.
∴当销售单价为34元时,
∴每日能获得最大利润1元;
(3)当w=350时,350=﹣2x2+136x﹣1800,
解得x=25或43,
由题意可得25≤x≤32,
则当x=32时,18(﹣2x+100)=648,
∴制造这种纪念花灯每日的最低制造成本需要648元.
【点睛】
此题主要考查了二次函数的应用,根据已知得出函数关系式.
27、(1)1;(3);(3)理由见解析,店家一次应卖45只,最低售价为16.5元,此时利润最大.
【解析】
试题分析:(1)设一次购买x只,由于凡是一次买10只以上的,每多买一只,所买的全部计算器每只就降低0.10元,而最低价为每只16元,因此得到30﹣0.1(x﹣10)=16,解方程即可求解;
(3)由于根据(1)得到x≤1,又一次销售x(x>10)只,因此得到自变量x的取值范围,然后根据已知条件可以得到y与x的函数关系式;
(3)首先把函数变为y==,然后可以得到函数的增减性,再结合已知条件即可解决问题.
试题解析:(1)设一次购买x只,则30﹣0.1(x﹣10)=16,解得:x=1.
答:一次至少买1只,才能以最低价购买;
(3)当10<x≤1时,y=[30﹣0.1(x﹣10)﹣13]x=,当x>1时,y=(16﹣13)x=4x;
综上所述:;
(3)y==,①当10<x≤45时,y随x的增大而增大,即当卖的只数越多时,利润更大.
②当45<x≤1时,y随x的增大而减小,即当卖的只数越多时,利润变小.
且当x=46时,y1=303.4,当x=1时,y3=3.∴y1>y3.
即出现了卖46只赚的钱比卖1只赚的钱多的现象.
当x=45时,最低售价为30﹣0.1(45﹣10)=16.5(元),此时利润最大.故店家一次应卖45只,最低售价为16.5元,此时利润最大.
考点:二次函数的应用;二次函数的最值;最值问题;分段函数;分类讨论.
相关试卷
江苏省徐州市邳州市运河中学2021-2022学年中考冲刺卷数学试题含解析:
这是一份江苏省徐州市邳州市运河中学2021-2022学年中考冲刺卷数学试题含解析,共21页。试卷主要包含了考生要认真填写考场号和座位序号,一、单选题,下列各式计算正确的是等内容,欢迎下载使用。
2022年徐州市重点名校中考数学考试模拟冲刺卷含解析:
这是一份2022年徐州市重点名校中考数学考试模拟冲刺卷含解析,共19页。试卷主要包含了如图等内容,欢迎下载使用。
2022年南湾中学中考冲刺卷数学试题含解析:
这是一份2022年南湾中学中考冲刺卷数学试题含解析,共16页。试卷主要包含了二次函数的对称轴是,计算,下列计算或化简正确的是,函数的图像位于等内容,欢迎下载使用。